1
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
2
|
Singh D, Singh K, Jadeja Y, Menon SV, Singh P, Ibrahim SM, Singh M, Abosaoda MK, Al Reshaidan SB, El-Meligy MA. Magnetic nano-sized solid acid catalyst bearing sulfonic acid groups for biodiesel synthesis and oxidation of sulfides. Sci Rep 2025; 15:1397. [PMID: 39789124 PMCID: PMC11718112 DOI: 10.1038/s41598-024-84494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, the AlFe2O4@n-Pr@Et-SO3H heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFe2O4@n-Pr@Et-SO3H nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFe2O4@n-Pr@Et-SO3H materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides. Moreover, the catalyst can be easily recovered and reused multiple times without a significant reduction in its effectiveness.
Collapse
Affiliation(s)
- Durgesh Singh
- Department of Chemistry, School of Chemical Sciences and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, India.
| | - Kamini Singh
- Department of Chemistry, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, 273009, India
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University Rajasthan, Jaipur, 303121, India
| | - Safaa Mohammed Ibrahim
- Department of Optics Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Salwa Bader Al Reshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh, 11451, Saudi Arabia
| | - Mohammed A El-Meligy
- Jadara University Research Center, Jadara University, PO Box 733, Irbid, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
3
|
Yan X, Qian X. Carboxymethyl cellulose assisted hydrothermal synthesis of litchi-like zinc ferrite nanoparticles for water remediation through visible photo-Fenton-like catalysis. Int J Biol Macromol 2024; 283:137978. [PMID: 39592036 DOI: 10.1016/j.ijbiomac.2024.137978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
The conventional methods for the synthesis of zinc ferrite (ZnFe2O4) basically require high temperature calcination oxidation step, which produces environmentally unfriendly high energy consumption and may produce harmful gases that pollute the atmosphere, as well as the calcination synthesis limits the application of ZnFe2O4 such as preparation of organic composite materials. To end this, by adding carboxymethyl cellulose (CMC) to the reaction system, homogeneous litchi-like ZnFe2O4/CMC nanoparticles were successfully synthesized without alkali and calcination in this paper. The rich carboxyl group of CMC is conducive to the chelation and fixation of metal ions in the reaction precursor, which greatly promotes the synthesis of ZnFe2O4. The synthesized particle size is ~100 nm, with obvious ZnFe2O4 diffraction peaks and good crystallinity. The photocatalytic performance of the synthesized photocatalyst was evaluated by visible light-Fenton-like method. With the activation of peroxymonosulfate (PMS), 80.27 % of tetracycline hydrochloride (TC) was degraded in just 18 min, suggesting that the synthesized catalyst had an excellent photocatalytic performance. After four cycles, the catalyst still could degrade 64.52 % TC. And the same behavior in XRD and FTIR spectra confirms the stability of the photocatalyst. In addition, it was determined that singlet oxygen (1O2) dominated the visible light catalytic degradation.
Collapse
Affiliation(s)
- Xingchen Yan
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P.R. China.
| |
Collapse
|
4
|
Abdullah JAA, Ali Mohammed H, Salmi C, Alqarni Z, Eddine Laouini S, Guerrero A, Romero A. Sustainable synthesis of ZnO and Fe xO y nanoparticles and their nanocomposite ZnFe 2O 4: Comprehensive characterization and applications in antioxidant activity and antibiotics degradation efficiency. Bioorg Chem 2024; 153:107828. [PMID: 39306901 DOI: 10.1016/j.bioorg.2024.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 12/14/2024]
Abstract
This study focuses on developing and evaluating eco-friendly nanoparticles, specifically FexOy NPs, ZnO NPs, and a ZnFe2O4 nanocomposite (NC), for potential applications in environmental remediation and biomedicine. The nanoparticles were synthesized and characterized using X-ray diffraction (XRD), which revealed their crystalline structures with sizes of 20.3 nm for FexOy NPs, 22.1 nm for ZnO NPs, and 10.9 nm for ZnFe2O4 NC. Fourier-transform infrared (FTIR) spectroscopy identified functional groups, while UV-visible spectroscopy determined band gap energies of 2.35 eV, 3.38 eV, and 2.68 eV for FexOy NPs, ZnO NPs, and ZnFe2O4 NC, respectively. Morphological analysis via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that FexOy NPs have cubic, hexagonal, and tetragonal forms, ZnO NPs are hexagonal nanorods, and ZnFe2O4 NC has a hexagonal-faced cubic structure. Antioxidant activity, assessed through the DPPH assay, revealed that ZnFe2O4 NC had the highest potency. Additionally, under sunlight irradiation, ZnFe2O4 NC demonstrated superior degradation of the antibiotic cephalexin (96 % within 30 min) compared to FexOy NPs (58.2 %) and ZnO NPs (52 %), with respective kinetic rate constants of 0.109 min-1, 0.029 min-1, and 0.025 min-1. These results highlight the nanoparticles' potential for environmental and biomedical applications.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain.
| | - Hamdi Ali Mohammed
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Chaima Salmi
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Zarah Alqarni
- Department of Chemical, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Salah Eddine Laouini
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; Laboratory of Biotechnology, Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Lin HC, Liu YJ, Yao DJ. Preparation of magnetic microalgae composites for heavy metal ions removal from water. Heliyon 2024; 10:e37445. [PMID: 39309958 PMCID: PMC11416482 DOI: 10.1016/j.heliyon.2024.e37445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hexavalent chromium Cr(VI) and divalent Copper Cu(II) ions were heavy metals that were severely toxic to organisms and aquatic ecosystems. Algae is considered as an eco-friendly and cost-effective method for heavy metal ions treatment, but there are still some disadvantages to be improved. Therefore, In this paper, we combine microalgae biomass with ferric oxide magnetic nanoparticles (MNPs) to prepare a more widely applicable adsorbent. Box-Behnken design (BBD) was evaluated for exploring the significant parameters for maximum adsorption in a binary Cr(VI) and Cu(II) solution using our synthesized MNPs@Algae (M@A) adsorbent and constructed a predictability of 88.84 and 95.6 % quadratic regression model, through ANOVA, Pareto Chart of the standardized effects, Three-dimensional surface plot, desirability function to analysis and discussion each factor further. The combined results from UV-Vis, FTIR, TGA, and SQUID measurements confirmed the successful synthesis and accurate properties of the MNPs@Algae composites. The experiment results indicated that when initial pH 6, 5 mg/L Cr(VI), 20 mg/L Cu(II), M@A(3 : 3), dose (1 g/L), and contact time 6 h can achieve the maximum 58 % Cr(VI) and 73.4 % Cu(II) removal efficiency. M@A can eliminate Cr(VI) and Cu(II) from binary solution and separate them from the solution within a few seconds by a permanent magnet as a feasible and efficient absorbent.
Collapse
Affiliation(s)
- Huan-Cheng Lin
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
| | - Yi-Ju Liu
- Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Taiwan
| |
Collapse
|
6
|
Tran GT, Nguyen LM, Nguyen TTT, Nguyen DH, Tran TV. Recent developments in the bio-mediated synthesis of CoFe 2O 4 nanoparticles using plant extracts for environmental and biomedical applications. NANOSCALE ADVANCES 2024:d4na00604f. [PMID: 39364297 PMCID: PMC11446309 DOI: 10.1039/d4na00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Conventional methods for the synthesis of nanoparticles often involve toxic chemicals, exacerbating environmental issues in the context of climate change and water scarcity. Green synthesis using plant extracts offers a sustainable and viable alternative for CoFe2O4 nanoparticle production, but understanding the mechanisms and applications of this method is challenging. Here, we review the synthesis and applications of CoFe2O4 nanoparticles using plant extracts with emphasis on biomedical activity and water treatment. Plant extract-mediated CoFe2O4 nanoparticles exhibit high surface area, small particle size, unique morphology, sufficient band gap energy, and high saturation magnetization. These nanoparticles demonstrate strong antimicrobial and anticancer activities, highlighting their potential in biomedical treatments. Green CoFe2O4 are effective in removing organic dyes, heavy metals, and pharmaceuticals from water, promoting cleaner water resources. Challenges such as scalability and reproducibility still remain, but ongoing research aims to optimize synthesis protocols and explore new applications. This work underscores the importance of sustainable nanotechnology in addressing environmental challenges.
Collapse
Affiliation(s)
- Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | | | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
| |
Collapse
|
7
|
Starko I, Tatarchuk T, Naushad M. The potential of Gd doping as a promising approach for enhancing the adsorption properties of nickel-cobalt ferrites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55462-55474. [PMID: 39230814 DOI: 10.1007/s11356-024-34809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
The study shows that the addition of gadolinium ions has a significant impact on the structure, morphology, and adsorption properties of Ni-Co spinel ferrite that was synthesized by the sol-gel auto-combustion method. The research also indicates that the higher the Gd content, the greater the increase in the lattice parameter, which suggests that Gd3+ ions uniformly replaced the octahedral Fe3+ ions. The morphology and chemical composition of Gd-doped Ni-Co ferrites have been studied using SEM and EDS. Gd adding to the NiCoFe matrix increases the BET surface area by 50% (from 48 to 72 m2/g) and promotes the formation of mesopores with an average radius from 3.9 to 4.9 nm. The pHPZC values of Gd-doped ferrites are in the range of 7.22-7.39, which means that the ferrite surface will acquire a positive charge at natural pH, so this will promote the adsorption of Congo red anionic dye through electrostatic interaction forces. Langmuir, Freundlich, and Dubinin-Radushkevich models were used to explain the mechanism of CR adsorption on the Ni0.5Co0.5GdxFe2-xO4 adsorbent surface. The ionic-covalent parameter has been estimated to describe the surface acid-base properties. Overall, this study highlights the potential of Gd3+ doping as a promising approach for enhancing the adsorption properties of nickel-cobalt ferrites.
Collapse
Affiliation(s)
- Iryna Starko
- Department of Chemistry, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland.
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| |
Collapse
|
8
|
Lakshmi Priya R, Dhayanithi CA, Hariprasad BS, Vidya R, Ganesh Babu S. Comparative evaluation of antimicrobial activity of spinel structured transition metal ferrites supported on reduced graphene oxide against pathogenic strains of bacteria and fungi. NANOTECHNOLOGY 2024; 35:325708. [PMID: 38701766 DOI: 10.1088/1361-6528/ad4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
One of the global challenges for living things is to provide pollution and harmful microbes-free environment. In this study, magnetically retrievable spinel-structured manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) (MZF) was synthesized by a facile solvothermal method. Further, the MZF with different weight percentages (10 wt%, 50 wt%, and 80 wt%) were supported on reduced graphene oxide (rGO). The phase purity and morphology of MZF and MZF/rGO nanocomposite were confirmed by x-ray diffraction technique and scanning electron microscopy, respectively. The Fourier transform infrared spectroscopy, Raman, UV-visible spectroscopy, and thermogravimetric analyses of the as-synthesized nanocomposites were examined for the detection of various chemical groups, band gap, and thermal properties, respectively. The MZF/rGO nanocomposite exhibited significant antibacterial and antifungal activity againstEggerthella lenta, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa,andCandida albicanscompared to bare MZF and rGO. The high surface area of rGO plays a crucible role in antimicrobial analysis. Additionally, the antibacterial and antifungal activity is compared by synthesizing various metal ferrites such as MnFe2O4, ZnFe2O4, and Fe3O4. The 50 wt% MZF/rGO nanocomposite exhibits significantly high antibacterial activity. However, 10 wt% MZF/rGO nanocomposite shows good antifungal activity than Fe3O4, MnFe2O4, ZnFe2O4, MnZnFe2O4, 50 wt%, and 80 wt% MZF/rGO nanocomposites. These findings suggest that the prepared ferrite nanocomposites hold promise for microbial inhibition.
Collapse
Affiliation(s)
- Rajendran Lakshmi Priya
- Nano-Catalysis Research Lab, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Chettipalayam Arunasalam Dhayanithi
- Nano-Catalysis Research Lab, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Boopathi Shagunthala Hariprasad
- Nano-Catalysis Research Lab, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Radhakrishnan Vidya
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundaram Ganesh Babu
- Nano-Catalysis Research Lab, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
9
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
10
|
Ghanbarpour A, Ghorbani-Choghamarani A, Aghavandi H, Jafari A. ZnFe 2O 4@SiO 2@L-lysine@SO 3H: preparation, characterization, and its catalytic applications in the oxidation of sulfides and synthesis of Bis(pyrazolyl)methanes. Sci Rep 2024; 14:7449. [PMID: 38548734 PMCID: PMC10978937 DOI: 10.1038/s41598-024-57317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Herein, we report the synthesis of ZnFe2O4@SiO2@L-lysine@SO3H as a green, novel magnetic nanocatalyst, containing the sulfuric acid catalytic sites on the surface of zinc ferrite as the catalytic support. The physical and chemical properties of raw and modified samples (ZnFe2O4@SiO2@L-lysine@SO3H) were characterized by TGA, EDX, PXRD, Map, and FTIR analyses. The prepared nanocatalyst has excellent catalytic activity in synthesizing the oxidation of sulfides to the sulfoxides and Synthesis of pyrazolyl (Bis(pyrazolyl)methane) derivatives under green conditions. This designed nanocatalyst offers several advantages including the use of inexpensive materials and high yield, simple procedure, and commercially available. The synthesized mesoporous nanocatalyst was recovered and reused in five continuous cycles without considerable change in its catalytic activity.
Collapse
Affiliation(s)
- Amir Ghanbarpour
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Hamid Aghavandi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ahmad Jafari
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
11
|
Majeed H, Iftikhar T, Ashir Nadeem M, Altaf Nazir M. Green synthesis of Eucalyptus globulus zinc nanoparticles and its use in antimicrobial insect repellent paint formulation in bulk industrial production. Heliyon 2024; 10:e24467. [PMID: 38288019 PMCID: PMC10823064 DOI: 10.1016/j.heliyon.2024.e24467] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Mitigating climate change can be achieved by opting for sustainable, plant-based materials instead of relying on hazardous chemicals that come with various side effects. Various natural plant extracts find widespread application in synthesizing insect-repellent coatings, particularly in industries such as paint manufacturing. The increasing demand for these coatings has led us to find out the effects of different plant extracts for the efficient preparation of paints with more advanced impacts and low cost. For this purpose, zinc nanoparticles of Eucalyptus globulus L. and its extracts were used in this study due to their remarkable biocidal and antimicrobial activities. The extract was prepared by the process of oven-drying and heating followed by their filtration. Then, they were subjected to different phytochemical tests that were performed in which plant material did not contain flavonoids and glycol. The comparison of the size of nanoparticles was visible during the weighing which was found to be 4.451 mg. Advanced characterization techniques like FTIR, UV visible spectroscopy, and particle size analysis were adopted for the analysis of nanoparticles of plant extract. The FTIR analysis of the plant material was reported to lie in the range of 1000-1800 cm-1. On the other hand, the results of UV visible spectroscopy of nanoparticles of plant extract showed absorption peaks around 300 nm. The produced material was integrated into paint formulations to impart insect-repellent and antibacterial characteristics. Painted panels exhibited notable antibacterial efficacy, presenting an inhibition zone of 0.7 cm for Escherichia coli and 0.3 cm for Staphylococcus aureus when utilizing biocide. Plant nanoparticles yielded inhibition zones of 1 and 1.2, while aqueous extract resulted in zones of 0.2 and 0.5, respectively. A thorough evaluation of the paint's color attributes, including ΔL, Δa, Δb, and ΔE, indicated noteworthy differences. The CMC ΔE values from the trials exceeded 1, indicating a substantial change in shade. The batches of paints containing E. globulus extracts and nanoparticles were found to be lighter in color specifically green and yellow colors. Their antimicrobial and insect repellant activity was tested using the mosquitos of Aedes aegypti with an age of 4-5 weeks, revealing that formulations with plant extracts exhibited a 61 % effective period, greater than the 7 % observed in non-biocidal formulations. The paint responded best towards these mosquitoes in terms of repellency and the ultimate target of this study was achieved.
Collapse
Affiliation(s)
- Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT) Lahore, Sialkot Campus, 51310, Pakistan
| | - Tehreema Iftikhar
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Ashir Nadeem
- Applied Botany Lab, Department of Botany, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
12
|
Rypar T, Bezdekova J, Pavelicova K, Vodova M, Adam V, Vaculovicova M, Macka M. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing. Talanta 2024; 266:124911. [PMID: 37536103 DOI: 10.1016/j.talanta.2023.124911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 08/05/2023]
Abstract
Paper-based analysis has captivated scientists' attention in the field of analytical chemistry and related areas for the last two decades. Arguably no other area of modern chemical analysis is so broad and diverse in its approaches spanning from simple 'low-tech' low-cost paper-based analytical devices (PADs) requiring no or simple instrumentation, to sophisticated PADs and microfluidic paper-based analytical devices (μPADs) featuring elements of modern material science and nanomaterials affording high selectivity and sensitivity. Correspondingly diverse is the applicability, covering resource-limited scenarios on the one hand and most advanced approaches on the other. Herein we offer a view reflecting this diversity in the approaches and types of devices. The core idea of this article rests in dividing μPADs according to their type into two groups: A) instrumentation-free μPADs for resource-limited scenarios or developing countries and B) instrumentation-based μPADs as futuristic POC devices for e-diagnostics mainly aimed at developed countries. Each of those two groups is presented and discussed with the view of the main requirements in the given area, the most common targets, sample types and suitable detection approaches either implementing high-tech elements or low-tech low-cost approaches. Finally, a socioeconomic perspective is offered in discussing the fabrication and operational costs of μPADs, and, future perspectives are offered.
Collapse
Affiliation(s)
- Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Milada Vodova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic; Australian Centre for Research on Separation Science and School o Natural Sciences, University of Tasmania, Private Bag 75, Hobart TAS, 7001, Australia.
| |
Collapse
|
13
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
14
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
15
|
Tran GT, Nguyen NTH, Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Formation, properties and applications of microalgae-based ZnO nanoparticles: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110939. [DOI: 10.1016/j.jece.2023.110939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|