1
|
Zhang J, Zhang S, Lu C, Wang X, Du Z, Wang J, Li B, Wang J, Zhu L. Comparison of the combined toxicity of PFOA and emerging alternatives: A comprehensive evaluation of oxidative damage, apoptosis and immunotoxicity in embryonic and adult zebrafish. WATER RESEARCH 2025; 273:123028. [PMID: 39721502 DOI: 10.1016/j.watres.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.5 and 5 μg L-1 as the test concentrations and simultaneously compared the combined toxicity of the substitutes and PFOA in terms of oxidative damage, neurotoxicity, apoptosis, and immunotoxicity in two developmental stages of zebrafish (adult and embryos) under the same test conditions. The results indicated that in both adult and embryonic zebrafish, PFHxA, PFBA, and PFOA disrupt redox homeostasis, stimulate cell proliferation, and lead to carcinogenesis. The mechanisms by which PFHxA and PFOA induce neurotoxicity and immunotoxicity were similar. Molecular docking analysis showed that the substitutes and PFOA stably attached to proteins and changed their structure and function. The obtained integrated biomarker response index values indicated that the toxicity of PFHxA, PFBA, and PFOA in zebrafish increased with increasing concentrations; PFHxA was more toxic than PFOA. The present study clarified the ecotoxicity of PFHxA and PFBA in zebrafish and simultaneously compared the differences in toxicity between the substitutes and PFOA to zebrafish, providing a robust scientific basis for the clarification and selection of safe substitutes to PFOA.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Shuolin Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
2
|
Pang M, Gong Y, Chen H, Shi Y, Li Z, He X, Chen J, Tang X, Wang Z, Zhang X, Qu P. Elevated pCO 2 may increase the edible safety risk of clams exposed to toxic Alexandrium spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176610. [PMID: 39357753 DOI: 10.1016/j.scitotenv.2024.176610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Toxic harmful algal blooms (HABs) have received increasing attention owing to their threat to the health of aquatic life and seafood consumers. This study evaluated the impacts of elevated atmospheric partial pressure of CO2 (pCO2) on the production of paralytic shellfish toxins (PSTs) in different Alexandrium spp. strains, together with its further effects on the bioaccumulation/elimination dynamics of PSTs in bivalves contaminated with PSTs from toxic dinoflagellates. Our results showed that elevated pCO2 stimulated the growth of the two Alexandrium spp. (A. catenella and A. pacificum) isolated from the northern and southern coastal areas of China, respectively, and affected PST production including content and toxicity of the two strains differently. Further PSTs bioaccumulation/elimination in PSTs-contaminated Manila clam, Ruditapes philippinarum under high pCO2 also occurred. It is worth noting the biotransformation of neosaxitoxin (NEO) with high toxicity through trophic transfer with effect of elevated pCO2. When in microalgae cultured under the control (410 ppm) and elevated pCO2 conditions (495 and 850 ppm), the proportion of NEO in the PST content produced by A. catenella was reduced from 11.1 to 6.4 and 2.6 %, while the proportion of NEO in A. pacificum was increased from 3.1 to 3.6 and 4.7 %, respectively. NEO accounted for >50 % of total PST contents in clams, which were biotransformed via transfer from dinoflagellates and higher pCO2 enhanced this biotransformation leading to increased NEO accumulation. The negatively affected elimination of PSTs, especially NEO, in clams fed with A. catenella or A. pacificum, indicates that the detoxification of PSTs-contaminated clams may be more difficult under elevated pCO2. This study provides reference for developing models to assess the safety of bivalves under the co-stress of environmental change and toxic HABs, suggesting that ocean acidification may lead to the higher safety risk of Manila clams exposed to toxic HAB dinoflagellates.
Collapse
Affiliation(s)
- Min Pang
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Yuchen Gong
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Hongju Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Shinan District, Qingdao City, Shandong, China
| | - Ying Shi
- Qingdao Fishery Technology Extension Station, Shinan District, Qingdao City, Shandong, China
| | - Zhao Li
- China National Environmental Monitoring Center, Chaoyang District, Beijing City, China
| | - Xiuping He
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Junhui Chen
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Xuexi Tang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Shinan District, Qingdao City, Shandong, China
| | - Zongling Wang
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Xuelei Zhang
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Pei Qu
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Laoshan District, Qingdao City, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China.
| |
Collapse
|
3
|
Jiang X, Masanja F, Li W, Li J, Xu L, Xu Y, Luo X, Liu Y, Zhao L. Gonadal rematuration and sex-specific reproductive impairment in Manila clams under ocean acidification. MARINE POLLUTION BULLETIN 2024; 208:116970. [PMID: 39293368 DOI: 10.1016/j.marpolbul.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
Ocean acidification (OA) can affect marine bivalves at various levels of biological organization. Yet, little effort has been devoted to understanding how OA affects the reproductive events of marine bivalves during multiple cycles of maturation. Here, we tested sex-specific reproductive responses of Manila clams (Ruditapes philippinarum) to OA during gonadal rematuration. Under acidified conditions, both male and female clams exhibited delayed gonadal rematuration following spawning and impairments in gonadal tissues, which can be likely ascribed to lowered concentrations of hormones and vitellogenin. The findings indicate that marine bivalves experience significant declines in reproductive capacity as a result of OA during their reproductive cycles, with clear sex-specific differences. Consequently, it is essential to consider sex-specific reproduction responses of marine bivalves to OA when developing conservation strategies and forecasting population sustainability in a rapidly acidifying marine environment.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Weinan Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jiancheng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liusuan Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Liu
- Pearl Oyster Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Science and Technology Innovation Center of Marine Invertebrate, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
4
|
Gostyukhina OL, Gavruseva TV, Tkachuk AA, Chelebieva ES, Podolskaya MS, Borovkov AB, Bogacheva EA, Lavrichenko DS, Kladchenko ES, Yu AA. How water acidification influences the organism antioxidant capacity and gill structure of Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) at normoxia and hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111682. [PMID: 38908680 DOI: 10.1016/j.cbpa.2024.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels.
Collapse
Affiliation(s)
- O L Gostyukhina
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - T V Gavruseva
- Laboratory of Aquatic Ecotoxicology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - A A Tkachuk
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - M S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - A B Borovkov
- Department of Biotechnology and Phytoresources, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E A Bogacheva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - D S Lavrichenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| | - E S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia.
| | - Andreyeva A Yu
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Ave, 2, Sevastopol 299000, Russia
| |
Collapse
|
5
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Ni Z, Liu J, Cui W, Cao L, Dou S. Interactive impacts of CO 2-induced seawater acidification and cadmium exposure on antioxidant defenses of juvenile tongue sole Cynoglossus semilaevis. MARINE POLLUTION BULLETIN 2024; 201:116284. [PMID: 38522335 DOI: 10.1016/j.marpolbul.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Antioxidant responses of juvenile sole exposed to seawater acidification (SA) and Cd were investigated. SA increased lipid peroxidation (LPO) in the fish, independent of Cd concentrations. Cd at medium and high levels inflated LPO under no or moderate SA conditions. This effect was absent under high SA levels, due to SA effect exceeding and obscuring Cd effect. SA and Cd collaborated to provoke LPO, with SOD and CAT being stimulated to defend against oxidative stress, while those related to GSH redox cycle were inhibited under SA exposure. Responses of GSH-related antioxidants to Cd impact varied contingent on their interactions with SA. This defensive strategy was insufficient to protect fish from increased LPO. Antioxidants responded more sensitively to SA than Cd exposure. GSH, GR, SOD and CAT are sensitive biomarkers for SA conditions. The findings offer insights into assessing fish's antioxidant defense strategy under Cd and SA circumstances in natural habitats.
Collapse
Affiliation(s)
- Zhilin Ni
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenting Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China; Fisheries College, Tianjin Agricultural University, Tianjin 300380, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
7
|
Xu J, Zhao R, Liu A, Li L, Li S, Li Y, Qu M, Di Y. To live or die: "Fine-tuning" adaptation revealed by systemic analyses in symbiotic bathymodiolin mussels from diverse deep-sea extreme ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170434. [PMID: 38278266 DOI: 10.1016/j.scitotenv.2024.170434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Collapse
Affiliation(s)
- Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|