1
|
Zhang K, Xian L, Shang B, Xu Y, Feng Z, Agathokleous E. Fluctuating ozone exposures caused trade-offs between vegetative growth and reproduction of two Chinese bean cultivars and ethylenediurea alleviated ozone phytotoxicities. J Environ Sci (China) 2025; 156:450-465. [PMID: 40412946 DOI: 10.1016/j.jes.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 05/27/2025]
Abstract
Ozone (O3) pollution has elevated in China, threatening plants and crop production. Ethylenediurea (EDU) is a chemical alleviating O3-induced phytotoxicities. This study aimed at revealing fluctuating O3 exposures effects on Youxian No 3 (Phaseolus vulgaris) and Sukui No 4 (Vigna angularis), two widely grown Chinese bean cultivars, and EDU role in mediating these effects. Plants were periodically treated with EDU (400 mg/L) or water and subjected to charcoal-filtered air (CF) or non-filtered ambient air enriched with an additional targeted O3 concentration of 40 ppb (NF40). with subsequent ambient or NF40 exposures. A 10-day exposure to NF40 increased photosynthetic rate (A) while decreasing the leaf intercellular CO2 concentration (Ci), but this effect was absent after moving plants to ambient air for two weeks. Moving previously CF-exposed plants to ambient air for two weeks also increased A, which was not linked with Ci but more related to stomatal conductance (gs). Following two one-week and two-week sequential exposures of all plants to NF40, with an intermediate exposure to ambient air, elevated O3 reduced chlorophylls (SPAD), A, gs, Ci, and transpiration and decoupled A-gs response. More O3 effects were observed in plants treated with NF40 during each O3-treatment cycle, compared to those exposed to CF during the first cycle. The former plants exhibited significantly decreased biomass and water content of leaves and stems but increased flowers biomass and water content. Some of the effects were cultivar-dependent, with Youxian showing more apparent trade-offs between vegetative growth and reproduction. EDU alleviated various negative O3 effects.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Le Xian
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yansen Xu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Pagano M, Hoshika Y, Gennari F, Manzini J, Marra E, Viviano A, Paoletti E, Sultana S, Tredicucci A, Toncelli A. Probing ozone effects on European hornbeam (Carpinus betulus L. and Ostrya carpinifolia Scop.) leaf water content through THz imaging and dynamic stomatal response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177358. [PMID: 39491562 DOI: 10.1016/j.scitotenv.2024.177358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
We investigated the impact of ozone exposure on Hornbeam using a novel dual approach based on Terahertz (THz) imaging in a free-air ozone exposure experiment (three ozone levels: ambient; 1.5 times ambient; twice ambient). The research aims at unraveling the physiological responses induced by elevated ozone levels on water dynamics. THz imaging unveiled dynamic changes in leaf water content, providing a non-invasive approach to leaf water monitoring. Leaf gas exchange measurements assessed stomatal responses to light variation. Our findings showcase a compelling correlation between elevated ozone levels and reduction in photosynthetic rate and impairment of stomatal function, i.e. "stomatal sluggishness", indicative of nuanced regulatory mechanism. Stomatal sluggishness was particularly evident in Carpinus betulus (CB) compared to Ostrya carpinifolia (OC) and was linked to reduction in photosynthetic capacity. THz-based imaging techniques confirmed this result indicating a negative effect of O3 on leaf-level total water content. In addition, spatial analysis of leaf water status using these techniques also highlighted that the negative effect of O3 on water status was progressing even in less sensitive OC plants though visible foliar injury was not detected. In fact, OC showed a relative dry area of 1.6 ± 1.6 % in the control group and 3.8 ± 1.3 % under high ozone levels. THz-based imaging techniques provided a deep understanding of O3 behavior in plants and may be recommended for precision biosensing in the early detection of O3-induced damage. The integration of THz imaging and physiological analysis resulted in comprehensive understanding of Hornbeam acclimation response to ozone exposure.
Collapse
Affiliation(s)
- Mario Pagano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Fulvia Gennari
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy.
| | - Jacopo Manzini
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; DAGRI, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Elena Marra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Andrea Viviano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; DAGRI, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Sharmin Sultana
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
| | - Alessandro Tredicucci
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy; Centro per l'Integrazione della Strumentazione dell'Università di Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy; Istituto Nanoscienze - CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Alessandra Toncelli
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy; Centro per l'Integrazione della Strumentazione dell'Università di Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy; Istituto Nanoscienze - CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
3
|
Hoshika Y, Agathokleous E, Moura BB, Paoletti E. Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit. ENVIRONMENTAL RESEARCH 2024; 255:119215. [PMID: 38782333 DOI: 10.1016/j.envres.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
4
|
Shang B, Tian T, Shen D, Du E, Agathokleous E, Feng Z. Can ethylenediurea (EDU) alter the effects of ozone on the source-sink regulation of nitrogen uptake and remobilization during grain filling period in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171030. [PMID: 38367724 DOI: 10.1016/j.scitotenv.2024.171030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.
Collapse
Affiliation(s)
- Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Tongtong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Dongyun Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| |
Collapse
|
5
|
Vougeleka V, Risoli S, Saitanis C, Agathokleous E, Ntatsi G, Lorenzini G, Nali C, Pellegrini E, Pisuttu C. Exogenous application of melatonin protects bean and tobacco plants against ozone damage by improving antioxidant enzyme activities, enhancing photosynthetic performance, and preventing membrane damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123180. [PMID: 38142812 DOI: 10.1016/j.envpol.2023.123180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Ozone (O3) pollution is harmful to plants and ecosystems. Several chemicals have been evaluated to protect plants against O3 deleterious effects. However, they are not adequately efficient and/or the environmental safety of their application is questioned. Hence, new chemicals that provide sufficient protection while being safer for environmental application are needed. This study investigates the response of two O3-sensitive plant species (Phaseolus vulgaris L. cv. Pinto and Nicotiana tabacum L. cv. Bel-W3) leaf-sprayed with deionized water (W, control), ethylenediurea (EDU, 1 mM) or melatonin at lower (1 mM) or higher (3 mM) concentrations (Mel_L and Mel_H, respectively), and then exposed to a square wave of 200 ppb O3, lasting 1 day (5 h day-1) for bean and 2 days (8 h day-1) for tobacco. In both species, the photosynthetic activity of O3-exposed plants was about halved. O3-induced membrane damage was also confirmed by increased malondialdehyde (MDA) byproducts compared to control (W). In EDU- and Mel-treated bean plants, the photosynthetic performance was not influenced by O3, leading to reduction of the incidence and severity of O3 visible injury. In bean plants, Mel_L mitigated the detrimental effect of O3 by boosting antioxidant enzyme activities or osmoprotectants (e.g. abscisic acid, proline, and glutathione transferase). In Mel_L-sprayed tobacco plants, O3 negatively influenced the photosynthetic activity. Conversely, Mel_H ameliorated the O3-induced oxidative stress by preserving the photosynthetic performance, preventing membrane damage, and reducing the visible injuries extent. Although EDU performed better, melatonin protected plants against O3 phytotoxicity, suggesting its potential application as a bio-safer and eco-friendlier phytoprotectant against O3. It is worth noting that the content of melatonin in EDU-treated plants remained unchanged, indicating that the protectant mode of action of EDU is not Mel-related.
Collapse
Affiliation(s)
- Vasiliki Vougeleka
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| |
Collapse
|
6
|
Ramya A, Dhevagi P, Poornima R, Avudainayagam S, Watanabe M, Agathokleous E. Effect of ozone stress on crop productivity: A threat to food security. ENVIRONMENTAL RESEARCH 2023; 236:116816. [PMID: 37543123 DOI: 10.1016/j.envres.2023.116816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Tropospheric ozone (O3), the most important phytotoxic air pollutant, can deteriorate crop quality and productivity. Notably, satellite and ground-level observations-based multimodel simulations demonstrate that the present and future predicted O3 exposures could threaten food security. Hence, the present study aims at reviewing the phytotoxicity caused by O3 pollution, which threatens the food security. The present review encompasses three major aspects; wherein the past and prevailing O3 concentrations in various regions were compiled at first, followed by discussing the physiological, biochemical and yield responses of economically important crop species, and considering the potential of O3 protectants to alleviate O3-induced phytotoxicity. Finally, the empirical data reported in the literature were quantitatively analysed to show that O3 causes detrimental effect on physiological traits, photosynthetic pigments, growth and yield attributes. The review on prevailing O3 concentrations over various regions, where economically important crop are grown, and their negative impact would support policy makers to implement air pollution regulations and the scientific community to develop countermeasures against O3 phytotoxicity for maintaining food security.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India.
| | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Tamil Nadu, 641003, India
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
7
|
Agathokleous E, Frei M, Knopf OM, Muller O, Xu Y, Nguyen TH, Gaiser T, Liu X, Liu B, Saitanis CJ, Shang B, Alam MS, Feng Y, Ewert F, Feng Z. Adapting crop production to climate change and air pollution at different scales. NATURE FOOD 2023; 4:854-865. [PMID: 37845546 DOI: 10.1038/s43016-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Oliver M Knopf
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | | | | | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Athens, Greece
| | - Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China.
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| |
Collapse
|