1
|
Gao Z, Ren Z, Cui T, Fu Y. Machine learning-based analysis of microplastic-induced changes in anaerobic digestion parameters influencing methane yield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124627. [PMID: 39993357 DOI: 10.1016/j.jenvman.2025.124627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Microplastics (MPs) present significant challenges for anaerobic digestion (AD) processes used in energy recovery from contaminated organic waste. Given that optimal AD conditions vary widely across studies when MPs are present, a robust predictive model is essential to accurately assess these complex effects. This study applied four machine learning algorithms to predict methane yield using two datasets-one with and one without MPs. Among these, gradient boosting regression demonstrated the highest prediction accuracy, with testing R2 values of 0.996 for systems without MP pollution and 0.998 with MP pollution. This model was then further optimized by removing redundant and low-importance features, refining its predictive power. Feature importance analysis revealed that digestion time and substrate organic matter content were key parameters positively correlated with methane production. In the presence of MPs, substrate pH and inoculum total solids emerged as critical factors, with partial dependence plots offering deeper insights into their optimal conditions. This research offers new perspectives on the intricate effects of MPs on methane production, which could inform the optimization of AD processes in environments contaminated by MPs.
Collapse
Affiliation(s)
- Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Zongqiang Ren
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Tianyi Cui
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Yao Fu
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| |
Collapse
|
2
|
Alam M, Mostafa A, Dhar BR. Impact of petroleum versus bio-based nano/microplastics on fermentative biohydrogen production from sludge. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 94:959-970. [DOI: 10.1016/j.ijhydene.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Guo P, Wang T, Wang J, Niu J, Peng C, Shan J, Zhang Y, Huang H, Chen J. Role of polylactic acid microplastics during anaerobic co-digestion of cow manure and Chinese cabbage waste enhanced by nanobubble. CHEMOSPHERE 2024; 367:143639. [PMID: 39490760 DOI: 10.1016/j.chemosphere.2024.143639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
With the increasing use of plastic products globally, environmental pollution by plastic waste is becoming increasingly problematic. This study investigated the impacts of two types of polylactic acid microplastics, clear microplastics and aluminised film microplastics, on methane yield, microbial community, and volatile fatty acid accumulation during anaerobic co-digestion of cow manure and Chinese cabbage waste under different temperature conditions. The influence of the addition of air nanobubbles on microplastic degradation in the anaerobic digestion system we also examined. The results revealed that under thermophilic conditions, clear and aluminised film microplastics increased the methane yield, with the latter resulting in greater improvement. Conversely, under mesophilic conditions, the presence of microplastics reduced the methane yield, but the addition of air-nanobubble partially mitigated this effect. Microplastics also affected the microbial community, with specific species showing correlations with methane yield. Methanothermobacter, which is linked to lactic acid conversion, was positively correlated with methane yield, whereas Methanomassiliicoccus levels increased in the presence of microplastics, particularly in the inhibited state of the digester. These results suggest that, under thermophilic conditions, microplastics may increase the cumulative methane yield by facilitating the degradation of lactic acid monomers. Furthermore, the aluminised film on microplastics could serve as an electrically conductive material during anaerobic digestion, potentially increasing the methane yield.
Collapse
Affiliation(s)
- Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Jie Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiazi Niu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Cheng Peng
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiabei Shan
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yu Zhang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haizhou Huang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jixiang Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
4
|
Wang H, Zhou Q. Electric stimulation mitigated the mixed microplastic inhibition to anaerobic digestion during wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124753. [PMID: 39153540 DOI: 10.1016/j.envpol.2024.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, China West Normal University, Nanchong 637009, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Huang Y, Chen K, Chen Y, Chen P, Ge C, Wang X, Huang C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. BIORESOURCE TECHNOLOGY 2024; 408:131221. [PMID: 39111396 DOI: 10.1016/j.biortech.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Food waste (FW) and its biogas residue were considered as sources of terrestrial microplastics (MPs) and phthalic acid esters (PAEs) contamination. However, there was a lack of research and understanding of the MPs and PAEs pollution problem in FW dry anaerobic digestion process (DADP). The MPs and PAEs in three stages of the DADP with the largest monomer disposal scale in China were identified. At the biogas residue extrusion stage, MPs abundance and PAEs concentration reached the highest values, which were 3.63 ± 0.45 × 103 N·kg-1 and 3.62 ± 0.72 mg·kg-1, respectively. Furthermore, there was a significant positive correlation between MPs and PAEs throughout the process (p < 0.05). Although bacteria and fungi with plastic degradation potential were present in all stages, the contamination problem of MPs and PAEs cannot be completely solved through DADP. This study provides a scientific basis for preventing and controlling the pollution of MPs and PAEs.
Collapse
Affiliation(s)
- Yuhuizi Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanhua Chen
- Chongqing Environment and Sanitation Group Co., Ltd., Chongqing 401122, China
| | - Pengpeng Chen
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Chunling Ge
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Liu Z, Chen L, Qu L, Zhang R, Qin Z, Zhang H, Wei J, Xu J, Hou Z. Cross-linked poly(ester urethane)/starch composite films with high starch content as sustainable food-packaging materials: Influence of cross-link density. Int J Biol Macromol 2024; 256:128441. [PMID: 38013081 DOI: 10.1016/j.ijbiomac.2023.128441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This study focused on the development of cross-linked poly(ester urethane)/starch (PEUST) composites containing 50 wt% starch content for food-packaging materials. The NCO-terminated poly(caprolactone-urethane) prepolymer (PCUP) was first synthesized through bulk condensation. Then, low-moisture starch (0.21 wt%) and PCUP-based PEUST films were fabricated through an intensive extrusion process, followed by thermo-compression molding. The chemical structure of PCUP and PEUST was confirmed using Fourier transform infrared spectroscopy. Moreover, a comprehensive evaluation was conducted to assess the influence of cross-link density on the physicochemical properties of the composite films. The results showed that an increase in the cross-link density within the composites improved component compatibility and tensile strength but reduced crystallinity, water sensitivity, hydrolytic degradability, and water vapor permeability (WVP) of the films. In addition, the cytotoxicity tests were conducted to evaluate the safety of the composite films, and the high cell viability demonstrated non-toxicity for food application. The PEUST-II films with moderate cross-link density exhibited a suitable degradation rate (27.7 % weight loss at degradation for 140 d), optimal tensile properties (tensile strength at break: 12.4 MPa; elongation at break: 352 %), and low WVP (68.4 g/(m2⋅24h) at 30 % relative humidity). These characteristics make them highly promising as fresh-keeping food packaging.
Collapse
Affiliation(s)
- Zhengqi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lengbing Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Lei Qu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Rongrong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zihao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Hao Zhang
- Shandong Tianming Pharmaceutical Co, Ltd., Jinan 250104, China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Zhao W, Hu T, Ma H, He S, Zhao Q, Jiang J, Wei L. Deciphering the role of polystyrene microplastics in waste activated sludge anaerobic digestion: Changes of organics transformation, microbial community and metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166551. [PMID: 37633377 DOI: 10.1016/j.scitotenv.2023.166551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microplastics are ubiquitous in the natural environment, which inevitably affect the relevant biochemical process. Nevertheless, the knowledge about the impacts of microplastics on organics transformation and corresponding microbial metabolism response in anaerobic environment is limited. Here, polystyrene (PS) microplastics were selected as model microplastics to explore their potential impacts on organics transformation, microbial community and metabolic pathway during sludge anaerobic digestion system operation. The results indicated that the PS microplastics exhibited the dose-dependent effects on methane production, i.e., the additive of 20-40 particles/g TS of PS microplastics improved the maximum methane yield by 3.38 %-8.22 %, whereas 80-160 particles/g TS additive led to a 4.78 %-11.04 % declining. Overall, PS microplastics facilitated the solubilization and hydrolysis of sludge, but inhibited the acidogenesis process. Key functional enzyme activities were stimulated under low PS microplastics exposure, whereas were almost severely inhibited due to the increased oxidative stress induced from excess PS microplastics. Microbial community and further metabolic analysis indicated that low PS microplastics improved the acetotrophic and hydrogenotrophic methanogenesis, while a high level of PS microplastics shifted methanogenesis from acetotrophic to hydrogenotrophic pathway. Further analysis showed that the reacted PS microplastics exhibited greater toxicity and ecological than the raw PS microplastics due to that they are more likely to adsorb contaminants. These findings revealed the dosage-dependent relationships between microplastics and organics transformation process in anaerobic environments, providing new insights for assessing the impact of PS microplastics on sludge anaerobic digestion.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Liu K, Lv L, Li W, Wang X, Han M, Ren Z, Gao W, Wang P, Liu X, Sun L, Zhang G. Micro-aeration and leachate recirculation for the acceleration of landfill stabilization: Enhanced hydrolytic acidification by facultative bacteria. BIORESOURCE TECHNOLOGY 2023; 387:129615. [PMID: 37544542 DOI: 10.1016/j.biortech.2023.129615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
The long duration of landfill stabilization is one of the challenges faced by municipalities. In this paper, a combination of micro-aeration and leachate recirculation is used to achieve rapid degradation of organic matter in landfill waste. The results showed that the content of volatile fatty acids (VFAs) in the hydrolysis phase increased significantly and could enter the methanogenic phase quickly. Until the end of the landfill, the removal rates of chemical oxygen demand (COD), total phosphorus (TP) and ammonia nitrogen (NH4+-N) by micro-aeration and leachate recirculation reached 80.17 %, 48.30 % and 48.56 %, respectively, and the organic matter degradation rate reached 50 %. Micro-aeration and leachate recirculation enhanced the abundance of facultative hydrolytic bacteria such as Rummeliibacillus and Bacillus and the oxygen tolerance of Methanobrevibacter and Methanoculleus. Micro-aeration and leachate recirculation improved the organic matter degradation efficiency of landfill waste by promoting the growth of functional microorganisms.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Xinyuan Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
10
|
Liu K, Lv L, Li W, Ren Z, Wang P, Liu X, Gao W, Sun L, Zhang G. A comprehensive review on food waste anaerobic co-digestion: Research progress and tendencies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163155. [PMID: 37001653 DOI: 10.1016/j.scitotenv.2023.163155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Food waste (FW) anaerobic digestion systems are prone to imbalance during long-term operation, and the imbalance mechanism is complex. Anaerobic co-digestion (AcoD) of FW and other substrates can overcome the performance limitations of single digestion, allowing for the mutual use of multiple wastes and resource recovery. Research on the AcoD of FW has been widely conducted and successfully applied to a practical engineering scale. Therefore, this review describes the research progress of AcoD of FW with other substrates. By analyzing the problems and challenges faced by AcoD of FW, the synergistic effects and influencing factors of different biomass wastes are discussed, and improvement strategies to improve the performance of AcoD of FW are summarized from different reaction stages of anaerobic digestion. By combing the research progress of AcoD of FW, it provides a reference for the optimization and improvement of the performance of the co-digestion system.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|