1
|
Pellengahr F, Corella-Puertas E, Mattelin V, Saadi N, Bertella F, Boulay AM, van der Meer Y. Modeling marine microplastic emissions in Life Cycle Assessment: characterization factors for biodegradable polymers and their application in a textile case study. FRONTIERS IN TOXICOLOGY 2025; 7:1494220. [PMID: 40177402 PMCID: PMC11962433 DOI: 10.3389/ftox.2025.1494220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction With the continuous increase of plastics production, it is imperative to carefully examine their environmental profile through Life Cycle Assessment (LCA). However, current LCA modeling is not considering the potential impacts of plastic emissions on the biosphere. To integrate plastic emissions into LCA, characterization factors are needed that commonly consist of three elements: a fate factor, an exposure factor, and an effect factor. In this context, fate factors quantify the distribution and longevity of plastics in the environment. Research on these fate factors is still limited, especially for biodegradable polymers. Hence, the main objective of this research was to determine the fate factors of biodegradable polymers [poly (lactic acid), poly (butylene succinate), and poly (ε-caprolactam)] based on primary experimental data for the marine environment. Methods The validity of former research is tested by comparing the degradation evolution of i. macro- and microplastic particles, ii. two different grades of the polymer, and iii. different temperature levels. The degradation data are obtained by monitoring the oxygen consumption over a period of six months in natural seawater. The determined degradation rates are combined with sedimentation, resuspension, and deep burial rates to obtain fate factors. These fate factors are used to develop polymer-specific characterization factors. The resulting characterization factors are tested in an LCA case study of a synthetic sports shirt made from biodegradable polymer fibers. It allows to assess the relative importance of microplastic impacts compared to other life cycle impacts. Results and discussion Comparing the resulting specific surface degradation rates indicates that microplastic degradation rates could be overestimated when using macroplastic degradation data. Pertaining to the case study, the results show that the impact on ecosystem quality by microplastic emissions could account for up to 30% of the total endpoint category. Overall, this work aims to foster interdisciplinary collaboration to leverage the accuracy of LCA studies and thus provide guidance for novel material development.
Collapse
Affiliation(s)
- Felicitas Pellengahr
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| | - Elena Corella-Puertas
- Department of Chemical Engineering, CIRAIG, Polytechnique Montreal, Montreal, QC, Canada
- Chair of Circular Economy and Sustainability Assessment, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich (TUM), Straubing, Germany
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Nadim Saadi
- Department of Chemical Engineering, CIRAIG, Polytechnique Montreal, Montreal, QC, Canada
| | - Francesca Bertella
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| | - Anne-Marie Boulay
- Department of Chemical Engineering, CIRAIG, Polytechnique Montreal, Montreal, QC, Canada
| | - Yvonne van der Meer
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| |
Collapse
|
2
|
Abdolahpur Monikh F, Quik JTK, Wiesner MR, Tapparo A, Pastore P, Grossart HP, Akkanen J, Kortet R, Kukkonen JV. Importance of Attachment Efficiency in Determining the Fate of PS and PVC Nanoplastic Heteroaggregation with Natural Colloids Using a Multimedia Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4674-4683. [PMID: 40025674 PMCID: PMC11912305 DOI: 10.1021/acs.est.4c10918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Here, we assessed the heteroaggregation of polystyrene (PS) and poly(vinyl chloride) (PVC) nanoplastics with SiO2 as a model of natural colloids. Homoaggregation and heteroaggregation were evaluated as a function of CaCl2 (0-100 mM) and natural organic matter (NOM) (50 mg L-1) at a designated concentration of nanoplastics (200 μg L-1). Critical coagulation concentrations (CCC) of nanoplastics were determined in homoaggregation and heteroaggregation experiments with SiO2 and CaCl2. The attachment efficiency (α) was calculated by quantifying the number of nanoplastics in the presence of CaCl2, NOM, and SiO2 using single-particle inductively coupled plasma mass spectrometry (spICP-MS) and pseudo-first-order kinetics. The calculated α was fed into the SimpleBox4Plastics model to predict the fate of nanoplastics across air, water, soil, and sediment compartments. Nanoplastics exhibited high stability against homoaggregation, while significant heteroaggregation with SiO2 occurred at CaCl2 concentrations above 100 mM. The influence of NOM was also evaluated, showing a reduction in heteroaggregation with SiO2 for both nanoplastic types. Sensitivity analysis indicated that the degradation half-life of the tested nanoplastics had a more significant impact on persistence than did α. The results emphasize the environmental stability of nanoplastics, particularly in freshwater and soil compartments, and the critical role of NOM and emission pathways in determining their fate.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Department
of Chemical Sciences, University of Padua, Via Francesco Marzolo, 1, 35122 Padua, Italy
- Department
of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
- Institute
for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01 Liberec, Czech Republic
| | - Joris T. K. Quik
- National
Institute for Public Health and Environment (RIVM), Centre for Sustainability, Health and Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Mark R. Wiesner
- Department
of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for
the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Andrea Tapparo
- Department
of Chemical Sciences, University of Padua, Via Francesco Marzolo, 1, 35122 Padua, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padua, Via Francesco Marzolo, 1, 35122 Padua, Italy
| | - Hans-Peter Grossart
- Department
of Plankton and Microbial Ecology, Leibniz
Institute for Freshwater Ecology and Inland Fisheries, Stechlin, 16775 Berlin, Germany
- Institute
of Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| | - Jarkko Akkanen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Raine Kortet
- Department
of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jussi V.K. Kukkonen
- Department
of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
3
|
Lee I, Lee D, Jo HJ, Kim HS, Woo KS, Ji K. Ecological risk assessment of p-toluidine in freshwater, sediment, and soil media. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:332-340. [PMID: 39621194 DOI: 10.1007/s10646-024-02834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 02/20/2025]
Abstract
Para-toluidine (p-toluidine) is a high production volume chemical, of which about 5,000 tons/year are imported into Korea as of the 2018 registration. This substance is mainly used as an intermediate in the manufacture of paints, azo dyes, and pigments. In this study, an ecological risk assessment of p-toluidine was performed to investigate the risk to the environment assuming the worst-case exposure scenario. Ecotoxicity data was collected from the literature and the predicted no effect concentration (PNEC) was derived. The predicted environmental concentration (PEC) was calculated using the SimpleBox Korea v2.0 model. Hazard quotient (HQ) was calculated based on PEC and PNEC. The concentration of p-toluidine was measured in soil samples from workplaces with a HQ exceeding 1 to verify the results of modeling. PNECs for surface water, sediment, and soil were 0.00022 mg/L, 0.0025 mg/kg (dw), and 0.00037 mg/kg (dw), respectively. Based on regional-scale PEC, the HQ of freshwater, sediment, and soil media were all less than 1, but the HQ exceeded 1 at some local sites. Based on the fact that the measured environmental concentration in soil samples around the workplace is below the limit of detection and that all waste is incinerated at the actual workplace, p-toluidine is not likely to pose a high risk to the environment in Korea.
Collapse
Affiliation(s)
- Inhye Lee
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daeyeop Lee
- Environmental Risk Research Division, National Institute of Environment Research, Incheon, 22689, Republic of Korea
| | - Hun-Je Jo
- Environmental Risk Research Division, National Institute of Environment Research, Incheon, 22689, Republic of Korea
| | - Hyun Soo Kim
- Environmental Risk Research Division, National Institute of Environment Research, Incheon, 22689, Republic of Korea
| | - Kyung Sook Woo
- Environmental Risk Research Division, National Institute of Environment Research, Incheon, 22689, Republic of Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
4
|
Yang X, Tang DWS. Modeling microplastic transport through porous media: Challenges arising from dynamic transport behavior. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136728. [PMID: 39637795 DOI: 10.1016/j.jhazmat.2024.136728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Modelling microplastic transport through porous media, such as soils and aquifers, is an emerging research topic, where existing hydrogeological models for (reactive) solute and colloid transport have shown limited effectiveness thus far. This perspective article draws upon recent literature to provide a brief overview of key microplastic transport processes, with emphases on less well-understood processes, to propose potential research directions for efficiently modeling microplastic transport through the porous environment. Microplastics are particulate matter with distinct physicochemical properties. Biogeochemical processes and physical interactions with the surrounding environment cause microplastic properties such as material density, geometry, chemical composition, and DLVO interaction parameters to change dynamically, through complex webs of interactions and feedbacks that dynamically affect transport behavior. Furthermore, microplastic material densities, which cluster around that of water, distinguish microplastics from other colloids, with impactful consequences that are often underappreciated. For example, (near-)neutral material densities cause microplastic transport behavior to be highly sensitive to spatio-temporally varying environmental conditions. The dynamic nature of microplastic properties implies that at environmentally relevant large spatio-temporal scales, the complex transport behavior may be effectively intractable to direct physical modeling. Therefore, efficient modeling may require integrating reduced-complexity physics-constrained models, with stochastic or statistical analyses, supported by extensive environmental data.
Collapse
Affiliation(s)
- Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland.
| |
Collapse
|
5
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Skawina A, Dąbrowska A, Bonk A, Paterczyk B, Nowakowska J. Tracking the micro- and nanoplastics in the terrestrial-freshwater food webs. Bivalves as sentinel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170468. [PMID: 38296093 DOI: 10.1016/j.scitotenv.2024.170468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro- (MPs) and nanoplastics (NPs) are currently ubiquitous in the ecosystems, and freshwater biota is still insufficiently studied to understand the global fate, transport paths, and consequences of their presence. Thus, in this study, we investigated the role of bivalves and a trophic transfer of MPs and NPs in an experimental food chain. The food chain consisted of terrestrial non-selective detritivore Dendrobaena (Eisenia) sp., freshwater benthic filter feeder Unio tumidus, and freshwater benthic detritivore-collectors Asellus aquaticus or Gammarus sp. Animals were exposed to different fluorescently labeled micro- and nanoplastics (PMMA 20 μm, nanoPS 15-18 nm, and 100 nm, PS 1 μm and 20 μm, PE from cosmetics) as well as to the faeces of animals exposed to plastics to assess their influence on the environmental transportation, availability to biota, and bioaccumulation of supplied particles. Damaged and intact fluorescent particles were observed in the faeces of terrestrial detritivores and in the droppings of aquatic filter feeders, respectively. They were also present in the guts of bivalves and of crustaceans which were fed with bivalve droppings. Bivalves (Unio tumidus, and additionally Unio pictorum, and Sphaerium corneum) produced droppings containing micro- and nanoparticles filtered from suspension and deposited them onto the tank bottom, making them available for broader feeding guilds of animals (e.g. collectors, like crustaceans). Finally, the natural ageing of PS and its morphological changes, leakage of the fluorescent labelling, and agglomeration of particles were demonstrated. That supports our hypothesis of the crucial role of the characterization of physical and chemical materials in adequately understanding the mechanisms of their interaction with biota. Microscopical methods (confocal, fluorescent, scanning electron) and Raman and FT-IR spectroscopy were used to track the particles' passage in a food web and monitor structural changes of the MPs' and NPs' surface.
Collapse
Affiliation(s)
- Aleksandra Skawina
- University of Warsaw, Faculty of Biology, Institute of Evolutionary Biology, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Functional Biology and Ecology, Miecznikowa 1 Str., 02-096 Warsaw, Poland.
| | - Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, Pasteura 1 Str., 02-093 Warsaw, Poland.
| | - Agata Bonk
- University of Bremen, Faculty 2 Biology, Chemistry Leobener Str., 28359 Bremen, Germany
| | - Bohdan Paterczyk
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| | - Julita Nowakowska
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| |
Collapse
|
7
|
Kim JA, Park YS, Kim JH, Choi CY. Toxic effects of polystyrene microbeads and benzo[α]pyrene on bioaccumulation, antioxidant response, and cell damage in goldfish Carassius auratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115825. [PMID: 38101975 DOI: 10.1016/j.ecoenv.2023.115825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
8
|
Keller AA, Zheng Y, Praetorius A, Quik JTK, Nowack B. Predicting environmental concentrations of nanomaterials for exposure assessment - a review. NANOIMPACT 2024; 33:100496. [PMID: 38266914 DOI: 10.1016/j.impact.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
There have been major advances in the science to predict the likely environmental concentrations of nanomaterials, which is a key component of exposure and subsequent risk assessment. Considerable progress has been since the first Material Flow Analyses (MFAs) in 2008, which were based on very limited information, to more refined current tools that take into account engineered nanoparticle (ENP) size distribution, form, dynamic release, and better-informed release factors. These MFAs provide input for all environmental fate models (EFMs), that generate estimates of particle flows and concentrations in various environmental compartments. While MFA models provide valuable information on the magnitude of ENP release, they do not account for fate processes, such as homo- and heteroaggregation, transformations, dissolution, or corona formation. EFMs account for these processes in differing degrees. EFMs can be divided into multimedia compartment models (e.g., atmosphere, waterbodies and their sediments, soils in various landuses), of which there are currently a handful with varying degrees of complexity and process representation, and spatially-resolved watershed models which focus on the water and sediment compartments. Multimedia models have particular applications for considering predicted environmental concentrations (PECs) in particular regions, or for developing generic "fate factors" (i.e., overall persistence in a given compartment) for life-cycle assessment. Watershed models can track transport and eventual fate of emissions into a flowing river, from multiple sources along the waterway course, providing spatially and temporally resolved PECs. Both types of EFMs can be run with either continuous sources of emissions and environmental conditions, or with dynamic emissions (e.g., temporally varying for example as a new nanomaterial is introduced to the market, or with seasonal applications), to better understand the situations that may lead to peak PECs that are more likely to result in exceedance of a toxicological threshold. In addition, bioaccumulation models have been developed to predict the internal concentrations that may accumulate in exposed organisms, based on the PECs from EFMs. The main challenge for MFA and EFMs is a full validation against observed data. To date there have been no field studies that can provide the kind of dataset(s) needed for a true validation of the PECs. While EFMs have been evaluated against a few observations in a small number of locations, with results that indicate they are in the right order of magnitude, there is a great need for field data. Another major challenge is the input data for the MFAs, which depend on market data to estimate the production of ENPs. The current information has major gaps and large uncertainties. There is also a lack of robust analytical techniques for quantifying ENP properties in complex matrices; machine learning may be able to fill this gap. Nevertheless, there has been major progress in the tools for generating PECs. With the emergence of nano- and microplastics as a leading environmental concern, some EFMs have been adapted to these materials. However, caution is needed, since most nano- and microplastics are not engineered, therefore their characteristics are difficult to generalize, and there are new fate and transport processes to consider.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, United States of America.
| | - Yuanfang Zheng
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris T K Quik
- National Institute for Public Health and the Environment, Centre for Sustainability Health and Environment, Bilthoven, the Netherlands
| | - Bernd Nowack
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
9
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|