1
|
Ling Q, Wu H, Xie L, Zhao Y, Huang Q, Zhang Q, Liu J, Hu P, Tang T, Xiao J, Du H, Zhao J, Zhang W, Chen H, Wang K. Advances, Challenges, and Perspectives in Glomalin-Related Soil Protein Research. Microorganisms 2025; 13:740. [PMID: 40284577 PMCID: PMC12029919 DOI: 10.3390/microorganisms13040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Glomalin-related soil protein (GRSP), a glycoprotein primarily exuded by arbuscular mycorrhizal fungi (AMF), exerts key roles in ecological processes in terrestrial ecosystems. Nevertheless, the intricate nature of GRSP, coupled with constraints in its extraction and analytical methodologies, impedes a comprehensive understanding of its compositional attributes and ecological functions. Moreover, the scope of current GRSP research has undergone significant expansion, necessitating a comprehensive synthesis in this field. Here, we employed bibliometric analysis to systematically assess research trends and hotspots in the research field of GRSP based on 840 relevant articles indexed in the Web of Science Core Collection database. Among them, key parameters evaluated encompass publications' quantity, highly cited articles, high-frequency keywords, and historical direct citations. These analyses illuminated the state-of-the-art of GRSP research, delineated emergent trends, and provided future perspectives. Current investigations into GRSP predominantly focus on three major topics: (i) GRSP's nature, origin, and quantification methodologies; (ii) GRSP's key influencing factors including agricultural management practices, climate and land use change; and (iii) GRSP's ecological functions enhancing soil aggregate stability, C sequestration, and contamination remediation. Our findings can serve as a scholarly resource for advancing inquiries into the ecological functionalities of GRSP and its prospective applications in sustainable soil management and ecological restoration.
Collapse
Affiliation(s)
- Qiumei Ling
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqing Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Lei Xie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Yuan Zhao
- Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, Changsha 410125, China;
- Huangshan Observation and Research Station for Land-Water Resources, Huangshan 245000, China
| | - Qibo Huang
- Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin 541004, China;
| | - Qian Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China;
| | - Peilei Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Tiangang Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Jun Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Hu Du
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Jie Zhao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Hongsong Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (L.X.); (Q.Z.); (P.H.); (T.T.); (J.X.); (H.D.); (J.Z.); (H.C.)
- Huanjiang Agriculture Ecosystem Obervation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
2
|
Lin L, Yuan B, Wu S, Su M, Li H, Zhang X, Zhang G, Hong H, Lu H, Liu J, Yan C. Arsenic(III) sequestration by terrestrial-derived soil protein: Roles of redox-active moieties and Fe(III). JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135775. [PMID: 39250861 DOI: 10.1016/j.jhazmat.2024.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Glomalin-related soil protein (GRSP) has demonstrated significant potential for water purification and remediation of heavy metals in soils; however, its redox reactivity for As(III) sequestration and the corresponding redox-active component are still poorly understood. This study investigated the photochemical properties of GRSP and its mechanism of oxidation/adsorption of As(III). The results showed that UV irradiation triggered electron transfer and the production of reactive oxygen species (ROS) in GRSP, thereby facilitating As(III) oxidation with promotion rates ranging from 43.34 % to 111.1 %. The oxidation of As(III) occurred both on the GRSP photoforming holes and in the ROS reaction from the oxygen reduction products of the photoforming electrons. OH• and H2O2 played an important role in the oxidation of As(III) by GRSP, especially under alkaline conditions. Moreover, the presence of Fe(III) in GRSP facilitated the formation of OH• and its the oxidation capacity towards As(III). The binding of As(III) to the -COOH, -OH, and -FeO groups on the GRSP surface occurred through surface complexation. Overall, these findings provided new insights into the roles of the redox-active moieties and Fe(III) on GRSP in the promoted oxidation of As(III), which would help to deepen our understanding of the migration and transformation of As(III) in soils.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shengjie Wu
- Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
3
|
Proshad R, Abedin Asha SMA, Abedin MA, Chen G, Li Z, Zhang S, Tan R, Lu Y, Zhang X, Zhao Z. Pollution area identification, receptor model-oriented sources and probabilistic health hazards to prioritize control measures for heavy metal management in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122322. [PMID: 39217898 DOI: 10.1016/j.jenvman.2024.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Identifying the primary source of heavy metals (HMs) pollution and the key pollutants is crucial for safeguarding eco-health and managing risks in industrial vicinity. For this purpose, this investigation was carried out to investigate the pollution area identification with soil static environmental capacity (QI), receptor model-oriented critical sources, and Monte Carlo simulation (MCS) based probabilistic environmental and human health hazards associated with HMs in agricultural soils of Narayanganj, Bangladesh. The average concentration of Cr, Ni, Cu, Cd, Pb, Co, Zn, and Mn were 98.67, 63.41, 37.39, 1.28, 23.93, 14.48, 125.08, and 467.45 mg/kg, respectively. The geoaccumulation index identified Cd as the dominant metal, indicating heavy to extreme contamination in soils. The QI revealed that over 99% of the areas were polluted for Ni and Cd with less uncertain regions whereas Cr showed a significant portion of areas with uncertain pollution status. The positive matrix factorization (PMF) model identified three major sources: agricultural (29%), vehicular emissions (25%), and industrial (46%). The probabilistic assessment of health hazards indicated that both carcinogenic and non-carcinogenic risks for adult male, adult female, and children were deemed unacceptable. Moreover, children faced a higher health hazard compared to adults. For adult male, adult female, and children, industrial operations contributed 48.4%, 42.7%, and 71.2% of the carcinogenic risks, respectively and these risks were associated with Ni and Cr as the main pollutants of concern. The study emphasizes valuable scientific insights for environmental managers to tackle soil pollution from HMs by effectively managing anthropogenic sources. It could aid in devising strategies for environmental remediation engineering and refining industry standards.
Collapse
Affiliation(s)
- Ram Proshad
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | | | - Md Anwarul Abedin
- Laboratory of Environment and Sustainable Development, Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Tan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yineng Lu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xifeng Zhang
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhuanjun Zhao
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Lin L, Yuan B, Liu H, Ke Y, Zhang W, Li H, Lu H, Liu J, Hong H, Yan C. Microplastics emerge as a hotspot for dibutyl phthalate sources in rivers and oceans: Leaching behavior and potential risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134920. [PMID: 38880047 DOI: 10.1016/j.jhazmat.2024.134920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Dibutyl phthalate (DBP) as a plasticizer has been widely used in the processing of plastic products. Nevertheless, these DBP additives have the potential to be released into the environment throughout the entire life cycle of plastic products. Herein, the leaching behavior of DBP from PVC microplastics (MPs) in freshwater and seawater and its potential risks were investigated. The results show that the plasticizer content, UV irradiation, and hydrochemical conditions have a great influence on the leaching of DBP from the MPs. The release of DBP into the environment increases proportionally with higher concentrations of additive DBP in MPs, particularly when it exceeds 15 %. The surface of MPs undergoes accelerated oxidation and increased hydrophilicity under UV radiation, thereby facilitating the leaching of DBP. Through 30 continuous leaching experiments, the leaching of DBP from MPs in freshwater and seawater can reach up to 12.28 and 5.42 mg g-1, respectively, indicating that MPs are a continuous source of DBP pollution in the aquatic environment. Moreover, phthalate pollution index (PPI) indicates that MPs can significantly increase DBP pollution in marine environment through land and sea transport processes. Therefore, we advocate that the management of MPs waste containing DBP be prioritized in coastal sustainable development.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Huiling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Yue Ke
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Weifeng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
5
|
Yuan B, Lin L, Li H, Ke Y, He L, Lu H, Liu J, Hong H, Yan C. Immobilization mechanisms of Sr(II), Ni(II), and Cd(II) on glomalin-related soil protein in mangrove sediments at the microscopic scale. ENVIRONMENTAL RESEARCH 2024; 252:118793. [PMID: 38552828 DOI: 10.1016/j.envres.2024.118793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Glomalin-related soil protein (GRSP) is a significant component in the sequestration of heavy metal in soils, but its mechanisms for metal adsorption are poorly known. This study combined spectroscopic data with molecular docking simulations to reveal metal adsorption onto GRSP's surface functional groups at the molecular level. The EXAFS combined with FTIR and XPS analyses indicated that the adsorption of Cd(II), Sr(II), and Ni(II) by GRSP occurred mainly through the coordination of -OH and -COOH groups with the metal. The -COOH and -OH groups bound to the metal as electron donors and the electron density of the oxygen atom decreased, suggesting that electrostatic attraction might be involved in the adsorption process. Two-dimensional correlation spectroscopy revealed that preferential adsorption occurred on GRSP for the metal in sequential order of -COOH groups followed by -OH groups. The presence of the Ni-C shell in the Ni EXAFS spectrum suggested that Ni formed organometallic complexes with the GRSP surface. However, Sr-C and Cd-C were absent in the second shell of the Sr and Cd spectra, which was attributed to the adsorption of Sr and Cd ions with large hydration ion radius by GRSP to form outer-sphere complexes. Through molecular docking simulations, negatively charged residues such as ASP151 and ASP472 in GRSP were found to provide electrostatic attraction and ligand combination for the metal adsorption, which was consistent with the spectroscopic analyses. Overall, these findings provided new insights into the interaction mechanisms between GRSP and metals, which will help deepen our understanding of the ecological functions of GRSP in metal sequestration.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Yue Ke
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
6
|
Yuan B, Lin L, Hong H, Li H, Liu S, Tang S, Lu H, Liu J, Yan C. Enhanced Cr(VI) stabilization by terrestrial-derived soil protein: Photoelectrochemical properties and reduction mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133153. [PMID: 38056268 DOI: 10.1016/j.jhazmat.2023.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shanle Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
7
|
Zhou X, Wang T, Wang J, Chen S, Ling W. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. CHEMOSPHERE 2023; 344:140394. [PMID: 37813247 DOI: 10.1016/j.chemosphere.2023.140394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Soil pollution caused by organic pollutants and potentially toxic elements poses a serious threat to sustainable agricultural development, global food security and human health. Therefore, strategies for reducing soil pollution are urgently required. Arbuscular mycorrhizal fungi (AMF)-assisted phytoremediation is widely recognized for its ability to remediate slightly-contaminated soil. Glomalin-related soil protein (GRSP) production by AMF is considered a vital mechanism of AMF-assisted phytoremediation. GRSP is widespread in soils and may contribute to the remediation of slightly contaminated soils. GRSP facilitates stabilization of pollutants in soils by interacting with pollutants owing to its abundant functional groups, recalcitrance, and long turnover time. It also enhances soil bioremediation and phytoremediation by stimulating soil microbial activity, improving soil structure, and providing nutrients for plants. However, research on GRSP is still in its early stages, and studies on contaminated soil remediation are limited. The effectiveness of GRSP in situ remediation remains to be proved. This review summarizes current knowledge regarding the GRSP distribution and its contribution to the remediation of slightly contaminated soils. Additionally, we present strategies to increase the GRSP content in contaminated soils, as well as prospects for future studies on the use of GRSP in contaminated soil remediation. This study focuses on recent developments that aim to improve awareness of the role of GRSP in soil remediation and relevant future directions.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuang Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Chen X, Su M, Wu S, He L, Zhang B, Zhang Y, Huang X, Liu J, Yan C, Liu W, Lu H. Change in glomalin-related soil protein along latitudinal gradient encompassing subtropical and temperate blue carbon zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165035. [PMID: 37379927 DOI: 10.1016/j.scitotenv.2023.165035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Glomalin-related soil protein (GRSP), an abundant and eco-friendly bioproduct associated with arbuscular mycorrhizal fungi (AMF), contributes significantly to the soil particle aggregation and carbon sequestration. Although much research has been conducted on the storage of GRSP at different spatio-temporal scales in terrestrial ecosystems. However, the deposition of GRSP in large-scale coastal environments has not been revealed, which hinders an in-depth understanding of GRSP storage patterns and environmental controls, and this knowledge gap has become one of the key uncertainties in understanding the ecological functions of GRSP as blue carbon components in coastal environments. Therefore, we conducted large-scale experiments (spanning subtropical and warm temperate climate zones, coastlines over 2500 km) to test the relative contributions of environmental drivers that shape unique GRSP storage. In salt marshes of China, we found that the abundance of GRSP ranges from 0.29 mg g-1 to 1.10 mg g-1, and its concentration decreases with increasing latitude (R2 = 0.30, p < 0.01). The GRSP-C/SOC of salt marshes ranged from 4 % to 43 % and increased with the increase in latitude (R2 = 0.13, p < 0.05). The carbon contribution of GRSP does not follow the trend of increasing abundance, but is limited by the total amount of background organic carbon. In salt marsh wetlands, precipitation, clay content and pH are the main factors influencing GRSP storage. GRSP is positively correlated with precipitation (R2 = 0.42, p < 0.01) and clay content (R2 = 0.59, p < 0.01), but negatively correlated with pH (R2 = 0.48, p < 0.01). The relative contributions of the main factors to the GRSP differed across climatic zones. Soil properties, such as clay content and pH, explained 19.8 % of the GRSP in subtropical salt marshes (20°N < 34°N), however, in warm temperate salt marshes (34°N < 40°N), precipitation explained 18.9 % of the GRSP variation. Our study provides insight into the distribution and function of GRSP in coastal environments.
Collapse
Affiliation(s)
- Xiangwen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Manlin Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Shengjie Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Le He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Binghuang Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Xiaohong Huang
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|