1
|
Li Z, He J, Li X, Chen J, You M, Sun B, Yang G. A narrative review of phthalates: From environmental release to kidney injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126380. [PMID: 40339891 DOI: 10.1016/j.envpol.2025.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Plastic products play an indispensable role in human daily lives, largely due to their low cost and unrivaled convenience. Phthalates (PAEs) are the most significant plastic additives due to their distinctive properties and are extensively utilized and produced in large quantities. Nevertheless, given their inability to form covalent bonds with plastics, these compounds are prone to leaching from plastic surfaces. As a result, the use of plastics in various industries has become a major source of PAEs in the environment, leading to increased risks to humans. The kidneys, which play a central role in the excretion of PAEs, are considered one of the primary target organs for PAEs accumulation and toxicity. A growing body of evidence supports an association between exposure to PAEs and adverse effects on the kidney. In environments, PAEs are often exposed simultaneously with other contaminants that may directly or indirectly modify the toxic effects of PAEs. This review focuses on the adverse effects of PAEs exposure on the kidney and their mechanisms of action, as well as the interactions between PAEs and other contaminants on the kidney. This review underscores the necessity for future toxicological studies to prioritize the mechanisms of renal injury caused by co-exposure to PAEs and other pollutants. The employment of advanced technologies, including network toxicology and molecular docking techniques, is imperative to enhance comprehension of the potential toxicity associated with co-exposures.
Collapse
Affiliation(s)
- Zenglin Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jixing He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jing Chen
- Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Baojun Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
2
|
Feng NX, Pan B, Huang HJ, Huang YT, Lyu H, Xiang L, Zhao HM, Liu BL, Li YW, Cai QY, Li DW, Mo CH. Uptake, translocation, and biotransformation of phthalate acid esters in crop plants: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137580. [PMID: 39952132 DOI: 10.1016/j.jhazmat.2025.137580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Phthalate acid esters (PAEs) are prevalent emerging contaminants in agricultural environments. The uptake of PAEs by crop plants has attracted extensive attention due to the risks posed to human health through transfer in food chains. Despite its importance, the interaction between PAEs and crop plants remains poorly understood. In this critical review, the occurrence of six priority control PAEs in various food crops grown in greenhouses and conventional farms is investigated, with detected concentrations reaching up to mg/kg (dry weight) levels. PAEs enter plants through roots, foliar gas, or foliar particle uptake. After entry, PAEs exhibit acropetal translocation from the root and basipetal translocation from the leaf. PAEs are transformed into various metabolites through hydroxylation, hydrolysis, and oxidation in phase I metabolism and further conjugated with biomolecules such as amino acids or sugars in phase II metabolism. Exposure to PAEs disrupts plant homeostasis and activated antioxidant enzymes to alleviate phytotoxicity. Dietary intake of PAEs-contaminated food crops presents potential risks to human health, particularly from fruit and root vegetables consumed by children, warranting specific attention. Furthermore, current knowledge gaps and future perspectives are proposed. This review provides a comprehensive assessment of the knowledge on the uptake, translocation, and transformation of PAEs in crop plants, emphasizing the need for an integrated investigation into the full life cycle of PAEs in plants to ensure food safety.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hui Lyu
- School of Architecture and Planning, Foshan University, Foshan 528225, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhang Y, Wang Y, Bai B, Jing X, Yu L, Zhang J, Bo T, Liu H, Gu Y, Yang Y. Bimetallic lanthanide metal-organic framework supported ratiometric molecularly imprinted fluorescence sensor: An innovation for selective and visual detection of dimethyl phthalate. Food Chem 2025; 476:143373. [PMID: 39983473 DOI: 10.1016/j.foodchem.2025.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Dimethyl phthalate (DMP) is a prototypical member of the phthalic acid ester class of plasticizers that may remain in food, posing a considerable risk to both food safety and human health. An innovative ratiometric fluorescence sensor (MIPs@BL-MOF) was constructed by incorporating bimetallic lanthanide terbium/europium metal-organic framework (BL-MOF) into molecularly imprinted polymers (MIPs) for the rapid selective and visual detection of DMP. In this work, BL-MOF prepared by the 'post-mixing' strategy was intelligently incorporated in the MIPs layer, giving the sensor the ability of rapid mass transfer, efficient binding, excellent anti-interference, and high selectivity. Based on the photoelectron transfer mechanism, high-affinity detection of DMP was realized by MIPs@BL-MOF with a good linear fitting (R2 = 0.9944) and theoretical detection limit of 3.29 nmol L-1 in the range of 1.0 × 10-8-1.0 × 10-3 mol L-1. More importantly, a portable visual sensing platform integrated by the MIPs@BL-MOF sensor and smartphone was successfully applied to DMP detection. Accordingly, the MIPs@BL-MOF-based ratiometric fluorescence sensing platform with desirable specificity, sensitivity, and portability holds great potential for the rapid and visual detection of plasticizers for ensuring environmental and food safety.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Yidan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Sun Y, Chen J, Wang W, Zhu L. Transformation metabolites of phthalate esters (PAEs) inhibited rice growth through jasmonic acid signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 201:109553. [PMID: 40449063 DOI: 10.1016/j.envint.2025.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/24/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025]
Abstract
Phthalate esters (PAEs) were ubiquitous in agricultural soils and could be metabolized after being absorbed by crops, posing significant implications for crop yield and quality. We hypothesize that monophthalates (mPAEs), the hydrolyzed products of PAEs, might mimic phytohormone jasmonic acid (JA) to activate the JA signaling pathway, therefore enhancing the defense towards pests and inhibiting the rice plant growth. Taking dibutyl phthalate (DBP) as a representative PAE, our study discovered that DBP exposure significantly induced JA-related outcomes including decreased larval weight (9.58-18.8%), and rice biomass (11.7-34.2%). Under the conditions where the JA content remained unchanged, monobutyl phthalate (MBP), the hydrolyzed product of DBP, triggered the JA signaling pathway, evidenced by significantly upregulated genes encoding coronatine insensitive 1 (COI1) (1.56-1.73 fold), jasmonate ZIM-domain (JAZ) (4.33-7.71 fold), MYC2 transcription factor (2.07-2.87 fold), and promoted phytoalexins production in downstream signaling. MBP conjugated with isoleucine, and the conjugate subsequently mimicked a JA bioactivator (JA-isoleucine conjugate) to occupy the binding site of COI1-JAZ co-receptor protein, thereby initiating the JA signaling pathway. These JA-related outcomes and mechanism were consistently evidenced in rice exposed to other four typical PAEs, and the aliphatic chain length of selected PAEs indicated a negative contribution to these observations. In this study, we discovered a unconventional mechanism through which the transformation metabolites of PAEs elicit pest defense while simultaneously inhibiting rice growth, providing insights into the risk assessment of PAEs on crop yields and quality.
Collapse
Affiliation(s)
- Yingying Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China; Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Yang X, Dai C, Zheng G, Ding S, Wu J, Zhou Q, Zhang A, Sun J. Bisphenol analogues in soils and lettuce (Lactuca sativa L.) around typical factories in eastern China: Occurrence, contamination characteristics, and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126126. [PMID: 40154866 DOI: 10.1016/j.envpol.2025.126126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Following the restrictions on bisphenol A (BPA), the production and environmental release of bisphenol analogues (BPs) have increased. However, knowledge about the occurrence of bisphenol analogues other than BPA, especially in farmland soils and edible plants, remains limited. This study investigated the occurrence, contamination characteristics, and human health risks of eight bisphenol analogues in paired soil-plant samples from areas near factories in eastern China. Results indicated that the concentrations of Σ8BPs in the collected soil and plant samples ranged from 1.4 to 897.1 ng/g dw and 2.5 to 586.2 ng/g dw, respectively. BPA, bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS) were the primary components of BPs, with BPA having the highest detection frequency (74 %). In addition, a positive correlation was observed between the root concentration factor and the log Kow of BPs (R2 = 0.471, P < 0.05), whereas the translocation factor exhibited a negative correlation with the log Kow (R2 = 0.405, P < 0.05). The hazard index (HI) values of BPs in paired soil-plant samples were <1, suggesting that the current contamination levels of BPs in soils and plants are unlikely to pose significant health risks to humans. However, potential risks from long-term exposure require careful monitoring. This study offers new insights into the spatial distributions and contamination status of BPs in farmland soils and plants, highlighting the environmental behavior and health risks of other bisphenol analogues.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenan Dai
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoxin Zheng
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaojie Ding
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Tao Y, Gu Y, Wang H, Zhong G, Wang A, Qu J, Feng J, Zhang Y. Persistent effects of early-life exposure to dibutyl phthalate on zebrafish: Immune system dysfunction via HPA axis. ENVIRONMENT INTERNATIONAL 2025; 198:109386. [PMID: 40117685 DOI: 10.1016/j.envint.2025.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
The plasticizer dibutyl phthalate (DBP) is one of the common contaminants in the aquatic environment and has been verified to be detrimental to aquatic organisms. In this research, zebrafish was employed to explore the toxic mechanism of DBP at environmental concentrations. The findings indicated that DBP led to abnormal development of zebrafish larvae, encompassing an increase in heart rate and malformation rate, as well as a reduction in survival rate and hatching rate. DBP also induced HPA axis activation, increased glucocorticoid content and microglia activation in zebrafish larvae. Moreover, adult zebrafish in the early-life exposure and long-term exposure groups demonstrated anxiety-like and depression-like behaviors. RNA-seq analysis revealed that early embryonic exposure to DBP led to persistent damage in zebrafish that could not be recovered in adulthood. The HPA axis was more severely disorganized in males than in females, and sex-specific differences were also shown in immunotoxicity. It is speculated that the immune system disorder could partially attribute to the out-of-control HPA axis, while the activation of inflammatory cells and inflammatory factors will further exacerbate the situation of HPA axis dysregulation.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Haorui Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayi Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Liu H, Liu X, Wang K, Ma X, Gao H, Liu X, Yan C. The occurrence and safety evaluation of phthalic acid esters in Oasis agricultural soils of Xinjiang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117593. [PMID: 39953690 DOI: 10.1016/j.ecoenv.2024.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Soil pollution caused by plastic residues containing additives (e.g. phthalic acid esters (PAEs)) is ubiquitous and has become a global concern. However, the distribution, accumulation, and potential risks associated with PAEs in agricultural soils have not been fully explored. This study quantified the types, concentrations, and distribution patterns of common PAEs in 29 agricultural soil samples collected from the Xinjiang Oasis, China. The results indicated that no significant variation in PAE concentrations across the oasis farmlands in Xinjiang. The PAEs were predominantly concentrated in the topsoil layer (0-20 cm), with an average concentration of 102.3 μg/kg, with some migration observed to the deeper soil layer (20-40 cm). The most abundant PAEs detected were Di (2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), and diethyl phthalate (DEP), which accounted for 49.82 %, 23.74 %, and 20.96 % of the total, respectively. Furthermore, the concentrations of all PAEs were below China's soil quality risk control standards, and the non-carcinogenic risks to both adults and children were below the current threshold, indicating relatively low risks to both the human health and the environment. These findings are crucial for understanding the presence and safety evaluation of PAEs in Xinjiang Oasis farmland, and they provide important reference data for managing and controlling PAE contamination in agricultural soils.
Collapse
Affiliation(s)
- Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Xiuting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Xingwang Ma
- Institute of Soil, Fertilizer and Water-saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
8
|
Cui Z, Shi C, Zha L, Liu J, Guo Y, Li X, Zhang E, Yin Z. Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117659. [PMID: 39778321 DOI: 10.1016/j.ecoenv.2024.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.
Collapse
Affiliation(s)
- Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, PR China
| | - Ce Shi
- School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Lanting Zha
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiaman Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yinchu Guo
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohan Li
- School of Nursing, China Medical University, Shenyang 110122, PR China.
| | - Enjiao Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, PR China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
9
|
Kong X, Barone GD, Jin D, Mao Y, Nan F, Xu L, Wang Z, Deng Y, Cernava T. Pollution Status, Ecological Effects, and Bioremediation Strategies of Phthalic Acid Esters in Agricultural Ecosystems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27668-27678. [PMID: 39620367 DOI: 10.1021/acs.jafc.4c07884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Phthalic acid esters (PAEs) are common organic contaminants in farmland soil throughout agricultural systems, posing significant threats to human health and thus closely associated with food safety concerns. Here, we consolidate the latest findings regarding the distribution, ecological effects, bioremediation methods, and microbial degradation pathways of PAEs in agricultural ecosystems. Generally, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-isobutyl phthalate (DiBP) exhibit the highest detection frequencies and concentrations in soil, air and agricultural products. The presence of these PAEs in agricultural ecosystems can significantly affect soil and plant-associated microbial communities, leading to decreased yield and quality of agricultural products. Bioremediation techniques, such as microbial degradation and phytoremediation, are frequently explored to address these issues. Overall, this review provides a comprehensive overview of current research on PAEs in China's agricultural systems and offers insights into potential problems and future research directions.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China
| | | | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiting Mao
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Fengting Nan
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhigang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
10
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135790. [PMID: 39276744 DOI: 10.1016/j.jhazmat.2024.135790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 105 to 1.6 × 106 copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 105 copies/m3, which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China.
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
11
|
Zhou Y, Feng F, Sun J, Shan Y, Su W, Shang W, Li Y. Distribution and source analysis of soil toxic organic compounds of coal-electricity production base in arid and semi-arid region of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135317. [PMID: 39059298 DOI: 10.1016/j.jhazmat.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.
Collapse
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Feisheng Feng
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Jie Sun
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Wanli Su
- CHN ENERGY Investment Group Co Ltd, Yinchuan City, Ningxia Province, China.
| | - Wenqin Shang
- School of Physics and Optoelectronic Engineering, Anhui University, China.
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Li JY, Guo JL, Yi JF, Liu LY, Zeng LX, Guo Y. Widespread phthalate esters and monoesters in the aquatic environment: Distribution, bioconcentration, and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135201. [PMID: 39068891 DOI: 10.1016/j.jhazmat.2024.135201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Field research on phthalate monoesters (MPEs) and their relationships with phthalate esters (PAEs) is limited, especially in wild fishes. Here, PAEs and MPEs were measured in surface water, sediment, and wild fish collected from a representative river basin with high economic development. Several metabolites of emerging plasticizers, such as mono(3,5,5-trimethyl-1-hexyl) phthalate and mono(6-oxo-2-propylheptyl) phthalate, have already existed in fish with high detection frequencies (95 % and 100 %). Monobutyl phthalate and mono(2-ethylhexyl) phthalate were the predominant MPEs in fish and natural environment (surface water and sediment), while bis(2-ethylhexyl) phthalate was the most abundant PAEs in all matrices. The total concentrations (median) of 9 PAEs and 16 MPEs were 5980 and 266 ng/L in water, 231 and 10.6 ng/g (dw) in sediment, and 209 and 32.5 ng/g (ww) in fish, respectively. The occurrence of MPEs was highly related to their parent PAEs, with similar spatial distribution characteristics in the aquatic environments. Moreover, municipal wastewater discharge was recognized as the main source of MPEs in the research area. Fish species can accumulate targeted chemicals, and it seems more MPEs were from the PAE degradation in fish other than the direct uptake of MPEs in water. Parent PAEs showed higher ecological risk than their corresponding metabolites.
Collapse
Affiliation(s)
- Jia-Yao Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Liang Guo
- Guangdong Provincial Academy of Environmental Sciences, Guangzhou 510000, China
| | - Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li-Xi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Lin Q, Zheng N, An Q, Xiu Z, Li X, Zhu H, Chen C, Li Y, Wang S. Phthalate monoesters accumulation in residential indoor dust and influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174900. [PMID: 39047842 DOI: 10.1016/j.scitotenv.2024.174900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalate monoesters (mPAEs) possess biological activity that matches or even exceeds that of their parent compounds, phthalate esters (PAEs), negatively impacting humans. Indoor dust is the main carrier of indoor pollutants. In this study, indoor dust samples were collected from 46 households in Changchun City, Jilin Province, in May 2019, and particulate and flocculent fibrous dust was used as the research target to analyze the concentration and compositional characteristics of mPAEs, primary metabolites of five significant PAEs. The influence of factors such as architectural features and living habits in residential areas on exposure to mPAEs was explored. Ten suspected enzyme genes along with two metabolic pathways with the ability to degrade PAEs were screened using PICRUSt2. The results showed that the total concentrations of the five mPAEs in the indoor dust samples were particulate dust (11.49-78.69 μg/g) and flocculent fibrous dust (21.61-72.63 μg/g), respectively. The molar concentration ratio (RC) of mPAEs to corresponding PAEs significantly differed among chemicals, with MMP/DMP and MEP/DEP sporting the highest RC values. Different bacterial types have shown distinct influences against mPAEs and PAEs. Enzyme function and metabolic pathway abundance had a significant effect on the concentration of some mPAEs, mPAEs are most likely derived from microbial degradation of PAEs.
Collapse
Affiliation(s)
- Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Huang C, Gong X, Qin Y, Zhang L, Cai Y, Feng S, Zhang Y, Zhao Z. Risk assessment of China's Eastern Route of the South-to-north Water Diversion Project from the perspective of Phthalate Esters occurrence in the impounded lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134511. [PMID: 38772103 DOI: 10.1016/j.jhazmat.2024.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Phthalate esters (PAEs) are widely utilized and can accumulate in lacustrine ecosystems, posing significant ecological and human health hazards. Most studies on PAEs focus on individual lakes, lacking a comprehensive and systematic perspective. In response, we have focused our investigation on characteristic lakes situated along the Eastern Route of the South-to-north Water Diversion Project (SNWDP-ER) in China. We have detected 16 PAE compounds in the impounded lakes of the SNWDP-ER by collecting surface water samples using solid-phase extraction followed by gas chromatography analysis. The concentration of PAEs were found to between 0.80 to 12.92 μg L-1. Among them, Bis (2-ethylhexyl) phthalate (DEHP) was the most prevalent, with mean concentration of 1.56 ± 0.62 μg L-1 (48.44%), followed by Diisobutyl phthalate (DIBP), 0.64 ± 1.40 μg L-1 (19.87%). Spatial distribution showed an increasing trend in the direction of water flow. Retention of DEHP and DIBP has led to increased environmental risks. DEHP, Dimethyl phthalate (DMP) etc. determined by agriculture and human activities. Additionally, Dibutyl phthalate (DBP) and DIBP mainly related to the use of agricultural products. To mitigate the PAEs risk, focusing on integrated management of the lakes, along with the implementation of stringent regulations to control the use of plasticizes in products.
Collapse
Affiliation(s)
- Chenyu Huang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xionghu Gong
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Qin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Youliang Zhang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Zhonghua Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
15
|
Feng NX, Li DW, Zhang F, Bin H, Huang YT, Xiang L, Liu BL, Cai QY, Li YW, Xu DL, Xie Y, Mo CH. Biodegradation of phthalate acid esters and whole-genome analysis of a novel Streptomyces sp. FZ201 isolated from natural habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133972. [PMID: 38461665 DOI: 10.1016/j.jhazmat.2024.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, β-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Bin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - De-Lin Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Bai X, Pan K, Shoaib N, Sun X, Wu X, Zhang L. Status of phthalate esters pollution in facility agriculture across China: Spatial distribution, risk assessment, and remediation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168416. [PMID: 37944601 DOI: 10.1016/j.scitotenv.2023.168416] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The pervasive utilization of phthalate esters (PAEs) in plastic products has led to an emergent concern regarding the PAEs contamination in environmental matrices. However, the overall understanding of PAEs pollution in facility agriculture and its relevant risks remain limited. In this paper, the characteristics, health risks, and remediation measures of PAEs pollution in facility agriculture across China were analyzed. In general, PAEs pollution in facility agriculture soil in SWC and vegetables in SC were more serious than that in the other six regions (p < 0.05). The total level of six PAEs ranged from 0.053 to 5.663 mg·kg-1 in soil samples, nd (not detectable) to 12.540 mg·kg-1 in vegetable samples, with mean values of 0.951 mg·kg-1 and 2.458 mg·kg-1, respectively. DEHP and DnBP were dominant in both soil and vegetable samples with a total contribution of over 70 % of the six PAEs, but their concentrations were a little lower in soil samples. The PAEs concentrations of leafy, root, and fruit vegetables exhibited a descending trend. Correlation analysis revealed that the relationships between soil and vegetable PAEs concentrations remained inconclusive, lacking clear correlations. Furthermore, risk assessments indicated that the hazard quotient (HQ) for both total and individual PAEs in the vast majority of vegetable samples remained within acceptable thresholds. Meanwhile, all values for carcinogenic risks (CR) were confined within the range of 10-4. In conclusion, the study outlines remediation measures aimed at precluding and mitigating the environmental risks associated with PAEs exposure. These findings furnish a scientific foundation for the targeted assessment and judicious management of PAEs pollution within facility agriculture landscape of China.
Collapse
Affiliation(s)
- Xiaoyun Bai
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
17
|
Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94814-94826. [PMID: 37537413 DOI: 10.1007/s11356-023-28815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The accelerated accumulation of phthalate esters (PAEs) in paddy soils poses a serious threat to human health. However, related studies mainly focus on facility vegetable fields, drylands, and orchards, and little is known about paddy soils. In this study, 125 samples were collected from typical red paddy fields to investigate the pollution characteristics, sources, health risks, and main drivers of PAEs. Soil physicochemical properties, enzyme activity, and bacterial community composition were also measured simultaneously. The results showed that eight PAE congeners were detected ranging from 0.17 to 1.97 mg kg-1. Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and di-isobutyl phthalate (DIBP) were the most abundant PAE congeners, accounting for 81% of the total PAEs. DEHP exhibited a potential carcinogenic risk to humans through the intake route. The main PAEs were positively correlated with soil organic matter (SOM) and soil water content (SWC) contents. Low levels of PAEs increased bacterial abundance. Furthermore, most PAE congeners were positively correlated with hydrolase activity. Soil acidity and nutrient dynamics played a dominant role in the bacterial community composition, with PAE congeners playing a secondary role. These findings suggest that there may be a threshold response between PAEs and organic matter and nutrient transformation in red paddy soils, and that microbial community should be the key driver. Overall, this study deepens the understanding of ecological risks and microbial mechanisms of PAEs in red paddy soils.
Collapse
Affiliation(s)
- Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajun Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|