1
|
Evich MG, Ferreira J, Adeyemi O, Schroeder PA, Williams JC, Acrey B, Burdette D, Grieve M, Neill MP, Simmons K, Striggow BC, Cohen SB, Cyterski M, Glinski DA, Henderson WM, Kim DY, Washington JW. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers. Nat Commun 2025; 16:3118. [PMID: 40169557 PMCID: PMC11962083 DOI: 10.1038/s41467-025-58040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) migrate into the environment through various means, e.g., soil-amendment impurities and ambient atmospheric deposition, potentially resulting in vegetative uptake and migration to groundwater. Existing approaches for modeling sorption of PFAS commonly treat soil as an undifferentiated homogeneous medium, with distribution constants (e.g., Kd, Koc) generated empirically using surface soils. Considering the limited mineral variety expected in weathered geologic media, PFAS mobility can be better understood by accounting for predictable mineral assemblages that are ubiquitously distributed in US soils. Here we explore the role of minerals and electrostatic sorption in controlling PFAS mobility in subsurface settings at contaminated agricultural sites by measuring geochemical parameters and PFAS, and calculating pH-dependent mineral surface charges through full soil and aquifer columns. These data suggest subsurface mobility of short-chain PFAS largely is controlled by aluminum-oxide mineral(oid) electrostatic sorption, whereas long-chain PFAS mobility is controlled by organic matter and air-water interfacial area.
Collapse
Affiliation(s)
- Marina G Evich
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA.
| | | | | | | | - Jason C Williams
- South Carolina Department of Health and Environmental Control, Bureau of Land and Waste Management, Columbia, SC, USA
| | - Brad Acrey
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Diana Burdette
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Malcolm Grieve
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Michael P Neill
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Kevin Simmons
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Brian C Striggow
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Samuel B Cohen
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Mike Cyterski
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Donna A Glinski
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - W Matthew Henderson
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Du Yung Kim
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - John W Washington
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA.
- Department of Geology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Stults JF, Schaefer CE, MacBeth T, Fang Y, Devon J, Real I, Liu F, Kosson D, Guelfo JL. Laboratory validation of a simplified model for estimating equilibrium PFAS mass leaching from unsaturated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179036. [PMID: 40043657 DOI: 10.1016/j.scitotenv.2025.179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Modelling per- and polyfluoroalkyl substance (PFAS) fate and transport in the vadose zone is inherently more complex than in the saturated zone due to the highly transient nature and the wetting phase saturation dependent hydraulic flux associated with the vadose zone. The chemical complexity of PFAS impart multiple partitioning processes which complicate the evaluation of PFAS transport in the vadose zone. To date, simplified screening models describing PFAS leaching have been developed to determine PFAS soil cleanup criteria in the vadose zone. Recent work has presented evidence that while PFAS transport in the vadose zone is governed by several non-equilibrium mechanisms, it is possible to predict PFAS mass flux using equilibrium modelling over month to year timescales. We hypothesized that by quantifying important equilibrium partitioning and hydraulic processes, we could simplify vadose zone leaching models for assessing mass flux from the vadose zone to the underlying groundwater. A mass flux, cell-based model which accounts for important partitioning processes (solid and air-water interfacial partitioning) and transience in hydraulic processes (water flux and water content) was developed and validated herein. Column studies were conducted under simulated rainfall conditions to provide transient hydraulic and PFAS leaching data. A HYDRUS 1-D with PFAS module model was calibrated to the hydraulic conditions of the simulated rainfall columns. Forward simulations were carried out using HYDRUS and the mass balance approximation models. The HYDRUS and mass balance approximations performed nearly identically for all PFAS, and both models predicted PFAS mass leaching within a half order of magnitude of most measured data. These results suggest that readily applicable empirical models and simplified numerical models can reasonably estimate month to year scale mass flux from the vadose zone for sites without major heterogeneity or transport non-ideality considerations.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA.
| | | | | | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, USA
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Fangfei Liu
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - David Kosson
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Shea SM, Schaefer CE, Illangasekare T, Higgins CP. Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104506. [PMID: 39854994 DOI: 10.1016/j.jconhyd.2025.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (foc < 0.00068 g/g), particularly for longer chain and zwitterionic compounds, while PFAS mass release from the shallow soil (foc = 0.0034 g/g) was consistent with kinetically controlled desorption from the soil. The release profiles for the perfluoroalkyl sulfonamides (FASAs) differed from other PFASs examined, with more FASAs generally being eluted under fully saturated conditions from both the shallow and deep soils. Importantly, variably saturated conditions resulted in more PFAS eluting from the soils: the average release rate of PFHxS from both soils was 10-fold higher under variably saturated conditions than under constant conditions. Both soils retained significant fractions of the total PFAS mass even after extensive flushing (51-83.8 % for PFOS). These results suggest that PFAS transport in vadose zone soils is influenced by air-water interfaces, but solid-phase desorption also plays a role. Overall, these results are consistent with observations in the field and serve to confirm key mechanisms that control PFAS leaching.
Collapse
Affiliation(s)
- Stefanie M Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| | | | - Tissa Illangasekare
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
| |
Collapse
|
4
|
Alam MS, Abbasi A, Chen G. Fate, distribution, and transport dynamics of Per- and Polyfluoroalkyl Substances (PFASs) in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123163. [PMID: 39515017 DOI: 10.1016/j.jenvman.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFASs) are persistent organic pollutants with significant environmental and health impacts due to their widespread occurrence, bioaccumulation potential, and resistance to degradation. This paper comprehensively reviews current knowledge of PFAS fate and transport mechanisms by correlating PFAS leaching, retention, and movement to their physicochemical properties and environmental factors based on observing PFAS fate and transport in unsaturated zones, surface water, sediments, plants, and atmosphere. The complex and unique physiochemical properties of PFASs, such as their carbon-fluorine bonds and amphiphilic nature, determine their environmental behavior and persistence. Recent studies emphasize that concentration-dependent affinity coefficients predict the transport of diverse PFAS mixtures by considering the impact of the Air-Water Interface (AWI). These studies highlight the complex interactions that influence PFAS behavior in environmental systems and the need for refined modeling techniques to account for transport dynamics. Competitive adsorption at the AWI, influenced by PFAS physicochemical properties and environmental factors, is crucial. PFAS chain length profoundly affects PFAS volatility and mobility, i.e., longer chains show higher solid matrix adsorption, while shorter chains exhibit greater atmospheric deposition potential. Solution chemistry, encompassing pH and ionic strength, variably alters PFAS sorption behaviors. Mathematical models, such as the Leverett Thermodynamic Model (LTM) and Surface Roughness Multipliers (SRM), effectively predict PFAS retention, offering enhanced accuracy for surface-active solutes through empirical adjustments. Co-contaminants' presence influences the transport behavior of PFASs in the environment. Microbial activity alters PFAS retention, while microplastics, especially polyamide, contribute to their adsorption. These complex interactions govern PFAS fate and transport in the environment. The paper identifies critical gaps in current understanding, including the fate of PFASs, analytical challenges, ecological risk assessment methods, and the influence of episodic events on PFAS transport dynamics. This paper also investigates the research gap in refining current models and experimental approaches to predict PFAS transport accurately and enhance risk mitigation efforts. Addressing these gaps is crucial for advancing remediation strategies and regulatory frameworks to mitigate PFAS contamination effectively.
Collapse
Affiliation(s)
- Md Shahin Alam
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA.
| | - Alireza Abbasi
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
5
|
Trobisch KM, Reeves DM, Cassidy DP. Environmental fate and transport of PFAS in wastewater treatment plant effluent discharged to rapid infiltration basins. WATER RESEARCH 2024; 266:122422. [PMID: 39276479 DOI: 10.1016/j.watres.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Fate and transport of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant (WWTP) effluent discharged to rapid infiltration basins (RIBs) is investigated using data from 26 WWTPs in Michigan, USA. PFAS were found to accumulate in groundwater downgradient from RIBs with median groundwater-effluent enrichment factors for ten commonly detected, terminal-form perfluoroalkyl acids (PFAAs) ranging from 1.3 to 5.2. Maximum contaminant levels for drinking water were exceeded in groundwater at all WWTPs with available PFAS data. Numerical models of unsaturated fluid flow and PFAS transport honoring RIB site properties, such as median vertical separation distance to the water table and a realistic range of area-normalized effluent fluxes, show long-chain PFAS undergo significant delays from air-water interface (AWI) adsorption, requiring up to 15 times longer to reach maximum mass flux to the saturated zone under low-flux conditions, where AWI area is 2.5 times greater. Short-chain PFAS commonly detected in effluent are only minimally affected by AWI adsorption and show little to no attenuation under high-flux conditions. The nonlinear inverse relationship between water content and AWI area highlights the important role of AWI adsorption in modulating unsaturated transport of long-chain PFAS to underlying groundwater due to the broad range of flux rates applied to RIB systems.
Collapse
Affiliation(s)
- Kai M Trobisch
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| |
Collapse
|
6
|
Stults JF, Higgins CP, Illangasekare TH, Singha K. Non-Fickian transport processes accelerate the movement of PFOS in unsaturated media: An experimental and modelling study. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104424. [PMID: 39260021 DOI: 10.1016/j.jconhyd.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.
Collapse
Affiliation(s)
- John F Stults
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, United States.
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Tissa H Illangasekare
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Kamini Singha
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| |
Collapse
|
7
|
Garza-Rubalcava U, Klevan C, Pennell KD, Abriola LM. Transport and competitive interfacial adsorption of PFOA and PFOS in unsaturated porous media: Experiments and modeling. WATER RESEARCH 2024; 268:122728. [PMID: 39522483 DOI: 10.1016/j.watres.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation. Although there is a growing body of literature on vadose zone transport, few studies have explored PFAS mixture transport, particularly under conditions where nonlinear sorption processes are important. The present study aims to advance our understanding of PFAS transport in variably saturated porous media through integration of experiments and mathematical modeling. Experiments include batch studies to quantify sorption to the solid phase, interfacial tension (IFT) measurements to estimate adsorption at the air-water interface (AWI), and column studies with F-70 Ottawa sand at 100 % and ca. 50 % water saturation to explore transport mechanisms. Employed PFAS solutions encompass individual solutes and binary mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentration levels spanning four orders of magnitude to assess competitive and nonlinear sorption at the AWI. Observations demonstrate that concentration levels and competitive effects substantially influence PFAS transport in unsaturated systems. In the presence of PFOS, PFOA experienced less retention than would be anticipated based on single-solute behavior, and effluent breakthrough curves exhibited chromatographic peaking. The presented mathematical model for simultaneous flow and transport of PFAS was able to capture experimental observations with a consistent set of parameters and minimal curve fitting. These results demonstrate the robustness of the model formulation that included rate-limited interfacial mass transfer, an extended Langmuir-Szyszkowski model for adsorption at the AWI, and a scaled Leverett thermodynamic model to predict the AWI specific area. Overall, the results of this work underscore the importance of the AWI in PFAS transport and highlight the relevance of competition effects in adsorption formulations.
Collapse
Affiliation(s)
| | - Craig Klevan
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA
| | - Kurt D Pennell
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| | - Linda M Abriola
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| |
Collapse
|
8
|
Bigler M, He X, Brusseau ML. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. WATER RESEARCH 2024; 260:121922. [PMID: 38878314 DOI: 10.1016/j.watres.2024.121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transport of PFOS and PFOA in well-characterized sand was investigated for relatively low water saturations. An instrumented column was used for some experiments to provide real-time in-situ monitoring of water saturation and matric potential. The results showed that water saturations and matric potentials varied minimally during the experiments. Flow rates were monitored continuously and were essentially constant. These results demonstrate that surfactant-induced flow and other nonideal hydraulic processes did not materially impact PFAS transport for the experiment conditions. Air-water interfacial adsorption was demonstrated to provide the great majority of retention for PFOS and PFOA. Retention was significantly greater at the lower water saturations (0.35-0.45) compared to the higher saturations (∼0.66) for both PFAS, due to the larger extant air-water interfacial areas. Retardation factors were 5 and 3-times greater at the lower water saturations for PFOS and PFOA, respectively. Early breakthrough was observed for the PFAS but not for the non-reactive tracers at the lower water saturations, indicating the possibility that air-water interfacial adsorption was rate-limited to some degree. Independently determined retention parameters were used to predict retardation factors for PFOS and PFOA, which were similar to the measured values in all cases. The consistency between the predicted and measured values indicates that PFAS retention was accurately represented. In addition, air-water interfacial adsorption coefficients measured from the transport experiments were consistent with independently measured equilibrium-based values. Based on these results, it appears that the air-water interfacial adsorption processes mediating the magnitude of PFOS and PFOA retention under lower water-saturation conditions are consistent with those for higher water saturations. This provides some confidence that our understanding of PFAS retention obtained from work conducted at higher water saturations is applicable to lower water saturations.
Collapse
Affiliation(s)
- Matthew Bigler
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Xuexiang He
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States
| | - Mark L Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
9
|
Biesek BJ, Szymkiewicz A, Šimůnek J, Gumuła-Kawęcka A, Jaworska-Szulc B. Numerical modeling of PFAS movement through the vadose zone: Influence of plant water uptake and soil organic carbon distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173252. [PMID: 38768720 DOI: 10.1016/j.scitotenv.2024.173252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
In this study, we investigated the effects of soil organic carbon (SOC) distribution and water uptake by plant roots on PFAS movement in the vadose zone with a deep groundwater table under temperate, humid climate conditions. Two series of numerical simulations were performed with the HYDRUS computer code, representing the leaching of historical PFOS contamination and the infiltration of water contaminated with PFOA, respectively. We considered soil profiles with three distributions of SOC (no SOC, realistic SOC distribution decreasing with depth, and uniform SOC equal to the content measured in topsoil), three root distributions (bare soil, grassland, and forest), and three soil textures (sand, sandy loam, and loam). The SOC distribution had a profound impact on the velocity of PFOS movement. The apparent retardation factor for realistic SOC distribution was twice as large as for the scenario with no SOC and more than three times smaller than for the scenario with uniformly high SOC content. We also showed that the root distribution in soil profoundly impacts the simulations of PFAS migration through soil. Including the root zone significantly slows down the movement of PFAS, primarily due to increased evapotranspiration and reduced downward water flux. Another effect of water uptake by plant roots is an increase of PFAS concentrations in soil water (evapo-concentration). The evapo-concentration and the slowdown of PFAS movement due to root water uptake are more significant in fine-textured soils than in sand.
Collapse
Affiliation(s)
- Barbara Jennifer Biesek
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Adam Szymkiewicz
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Anna Gumuła-Kawęcka
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Beata Jaworska-Szulc
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
10
|
Brusseau ML, Guo B. Vapor-phase transport of per and polyfluoroalkyl substances: Processes, modeling, and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174644. [PMID: 38992358 DOI: 10.1016/j.scitotenv.2024.174644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
An increasing number of studies have demonstrated the presence of per and polyfluoroalkyl substances (PFAS) in the vapor phase. It is therefore important to consider the potential for vapor-phase transport of PFAS in soil and the vadose zone and to investigate the processes impacting the retention and transport of volatile PFAS in soil. It is also critically important to evaluate existing models and develop new models as needed for their application to PFAS vapor-phase transport. The objectives of the present work were to provide an overview of vapor-phase transport processes and modeling, with a specific focus on their relevance for PFAS, and to discuss implications for mass discharge to groundwater, vapor intrusion, and soil vapor extraction. Decades of research have been devoted to the retention and transport of legacy volatile organic contaminants in the vadose zone. This work provides an abundant source of information concerning the many factors and processes of relevance, and insights into the development and application of mathematical modeling. However, given the unique properties of PFAS, there is a need to conduct research to investigate vapor-phase transport of PFAS and to develop PFAS-specific models. We highlight with illustrative examples that vapor-phase transport can be significantly more rapid than aqueous-phase advective transport, which can result in enhanced mass discharge to groundwater.
Collapse
Affiliation(s)
- Mark L Brusseau
- Environmental Science Department, University of Arizona, United States of America; Hydrology and Atmospheric Sciences Department, University of Arizona, United States of America.
| | - Bo Guo
- Hydrology and Atmospheric Sciences Department, University of Arizona, United States of America
| |
Collapse
|
11
|
Stults JF, Schaefer CE, Fang Y, Devon J, Nguyen D, Real I, Hao S, Guelfo JL. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104382. [PMID: 38861839 DOI: 10.1016/j.jconhyd.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States.
| | - Charles E Schaefer
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; CDM Smith, 110 Fieldcrest Avenue, #8, 6th Floor, Edison, NJ 08837, United States
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, United States
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, United States
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Shilai Hao
- Civil & Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Bigler MC, Brusseau ML, Guo B, Jones SL, Pritchard JC, Higgins CP, Hatton J. High-Resolution Depth-Discrete Analysis of PFAS Distribution and Leaching for a Vadose-Zone Source at an AFFF-Impacted Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9863-9874. [PMID: 38780413 DOI: 10.1021/acs.est.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.
Collapse
Affiliation(s)
- Matthew C Bigler
- Department of Environmental Science, The University of Arizona Tucson, Arizona 85721, United States
| | - Mark L Brusseau
- Department of Environmental Science, The University of Arizona Tucson, Arizona 85721, United States
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, Arizona 85721, United States
| | - Bo Guo
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, Arizona 85721, United States
| | - Sara L Jones
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - J Conrad Pritchard
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - James Hatton
- Jacobs Engineering Group, Greenwood Village, Colorado 80111, United States
| |
Collapse
|
13
|
Schaefer CE, Nguyen D, Fang Y, Gonda N, Zhang C, Shea S, Higgins CP. PFAS Porewater concentrations in unsaturated soil: Field and laboratory comparisons inform on PFAS accumulation at air-water interfaces. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104359. [PMID: 38697007 DOI: 10.1016/j.jconhyd.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.
Collapse
Affiliation(s)
- Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, USA.
| | - Dung Nguyen
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, # 100, Bellevue, WA 98007, USA
| | - Nicholas Gonda
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Stephanie Shea
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
14
|
Arshadi M, Garza-Rubalcava U, Guedes A, Cápiro NL, Pennell KD, Christ J, Abriola LM. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170566. [PMID: 38331271 DOI: 10.1016/j.scitotenv.2024.170566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.
Collapse
Affiliation(s)
- Masoud Arshadi
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | | | - Ana Guedes
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - John Christ
- S&B Christ Consulting, Las Vegas, NV 89134, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
15
|
Smith J, Brusseau ML, Guo B. An integrated analytical modeling framework for determining site-specific soil screening levels for PFAS. WATER RESEARCH 2024; 252:121236. [PMID: 38330716 DOI: 10.1016/j.watres.2024.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Soils at many contaminated sites have accumulated a significant amount of per- and polyfluoroalkyl substances (PFAS) and may require remediation to mitigate leaching to groundwater. USEPA's current approaches for determining soil screening levels (SSLs) were developed for non-PFAS contaminants. Because many PFAS are interfacially-active with unique leaching behaviors in soils, the current non-PFAS-specific soil screening models may not be applicable. Following USEPA's general methodology, we develop a new modeling framework representing PFAS-specific transport processes for determining site-specific SSLs for PFAS-contaminated sites. We couple a process-based analytical model for PFAS leaching in the vadose zone and a dilution factor model for groundwater in an integrated framework. We apply the new modeling framework to two typical types of contaminated sites. Comparisons with the standard USEPA SSL approach suggest that accounting for the PFAS-specific transport processes may significantly increase the SSL for some PFAS. For the range of soil properties and groundwater recharge rates examined, while SSLs determined with the new model are less than a factor of 2 different from the standard-model values for less interfacially-active shorter-chain PFAS, they are up to two orders of magnitudes greater for more interfacially-active longer-chain PFAS. The new analytical modeling framework provides an effective tool for deriving more accurate site-specific SSLs and improving site characterization and remedial efforts at PFAS-contaminated sites.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America
| | - Mark L Brusseau
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America; Department of Environmental Science, University of Arizona, United States of America
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States of America.
| |
Collapse
|
16
|
Sookhak Lari K, Davis GB, Kumar A, Rayner JL, Kong XZ, Saar MO. The Dynamics of Per- and Polyfluoroalkyl Substances (PFAS) at Interfaces in Porous Media: A Computational Roadmap from Nanoscale Molecular Dynamics Simulation to Macroscale Modeling. ACS OMEGA 2024; 9:5193-5202. [PMID: 38343928 PMCID: PMC10851370 DOI: 10.1021/acsomega.3c09201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2025]
Abstract
Managing and remediating perfluoroalkyl and polyfluoroalkyl substance (PFAS) contaminated sites remains challenging. The major reasons are the complexity of geological media, partly unknown dynamics of the PFAS in different phases and at fluid-fluid and fluid-solid interfaces, and the presence of cocontaminants such as nonaqueous phase liquids (NAPLs). Critical knowledge gaps exist in understanding the behavior and fate of PFAS in vadose and saturated zones and in other porous media such as concrete and asphalt. The complexity of PFAS-surface interactions warrants the use of advanced characterization and computational tools to understand and quantify nanoscale behavior of the molecules. This can then be upscaled to the microscale to develop a constitutive relationship, in particular to distinguish between surface and bulk diffusion. The dominance of surface diffusion compared to bulk diffusion results in the solutocapillary Marangoni effect, which has not been considered while investigating the fate of PFAS. Without a deep understanding of these phenomena, derivation of constitutive relationships is challenging. The current Darcy scale mass-transfer models use constitutive relationships derived from either experiments or field measurements, which makes their applicability potentially limited. Here we review current efforts and propose a roadmap for developing Darcy scale transport equations for PFAS. We find that this needs to be based on systematic upscaling of both experimental and computational studies from nano- to microscales. We highlight recent efforts to undertake molecular dynamics simulations on problems with similar levels of complexity and explore the feasibility of conducting nanoscale simulations on PFAS dynamics at the interface of fluid pairs.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| | - Greg B Davis
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Anand Kumar
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John L Rayner
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Xiang-Zhao Kong
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| | - Martin O Saar
- Department of Earth Sciences, Geothermal Energy and Geofluids Group, ETH Zurich CH-8092, Switzerland
| |
Collapse
|