1
|
Krystek P, Koelmans AA, Quik J, Swart E, Krause S, Legler J, Aardema H, Vethaak D. Micro-and nanoplastics in soil: New insights, knowledge gaps and challenges. CHEMOSPHERE 2025; 373:144117. [PMID: 39864122 DOI: 10.1016/j.chemosphere.2025.144117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Affiliation(s)
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, the Netherlands
| | - Joris Quik
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Stefan Krause
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, United Kingdom; Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
2
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Ragu Prasath A, Selvam K, Sudhakar C. Microplastics occurrence in commercial crab Scylla serrata from Kaveri River of Tamil Nadu: An emerging concern for community health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70036. [PMID: 39914825 DOI: 10.1002/wer.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 05/07/2025]
Abstract
Microplastic (MPs) pollution has engulfed global aquatic systems, and the concerns about MPs translocation and bioaccumulation in fish, crabs, and other marine organisms are now an unpleasant truth. In the past few years, MPs pollution in freshwater systems, particularly rivers, and subsequently in freshwater organisms, especially in crabs, has caught the attention of researchers. Rivers provide livelihood to approximately 40% of the global population through food and potable water. Hence, assessment of emerging contaminants like MPs in waterways and the associated fauna is crucial. This study assessed MPs in crab S. serrata across the largest riverine system of south India, the Kaveri River. The MPs were characterized by optical microscopy, and field emission scanning electron microscopy-energy dispersive X-ray (FESEM-EDX) analysis for their number, shape, size, and color. Polymer composition was analyzed using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. Polypropylene (PP), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC) were the dominant plastic polymers in the crab intestine. Additionally, the FE-SEM analysis revealed that the MPs have differential surface morphology with rough surfaces, porous structures, fissures, and severe damage. Most MPs comprised Na, Si, Mg, Cl, K, and Ca, according to EDX analyses. The findings might provide insight into the status of MPs in S. serrata at Kavery river that could help in formulating regulations for MPs reduction and contamination in rivers eventually to protect the environment and human health. PRACTITIONER POINTS: The first findings on the identity and properties of MPs in crabs from the Kaveri River at Mettur Dam. A simple and cost-effective approach for extracting microplastics from crab samples from Mettur Dam, Kaveri River, Salem District, Tamil Nadu, India. Microplastics were detected using optical microscopy, ATR-FTIR, and FE-SEM.
Collapse
Affiliation(s)
- Arunagiri Ragu Prasath
- Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Namakkal, Tamil Nadu, India
| | - Kandasamy Selvam
- Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Namakkal, Tamil Nadu, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Chinnappan Sudhakar
- Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Namakkal, Tamil Nadu, India
| |
Collapse
|
4
|
Fraga Filho CAD. Analysis of Brazilian plastic waste management in the global context and case study of the City of Vitória, Espírito Santo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5645-5684. [PMID: 39961932 DOI: 10.1007/s11356-024-35865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/25/2024] [Indexed: 03/18/2025]
Abstract
This review analyses Brazil's current stage of plastic waste management, comparing it to what is being carried out worldwide. The Brazilian National Solid Waste Policy established principles and guidelines for solid waste management. However, a decade after its implementation, the results demonstrate timid results about those expected. Brazil's official solid waste and plastics recycling rates are around 4% and 1%, respectively, considerably behind countries with comparable economic growth levels. This work dedicates considerable attention to microplastic pollution, a worldwide concern with potential effects on water bodies, the atmosphere, soils, human health, and vegetal and animal lives. A case study on the solid waste management system in Vitória City, the capital of Espírito Santo, was developed. Besides, a portrait of the pollution in Vitória and Espírito Santo Bays in the atmosphere and mangrove areas is presented. The more critical issues found were the low adherence of the population's city in the selective waste collection (what is reflected in the low solid waste recycling rates), plastic debris, and tiny plastic in the waters, coexisting with heavy metals and hydrocarbons-originated from industrial and anthropogenic activities; microplastics are present in the atmosphere, adding their adverse effects to those of the pollutants already existing in the air and the illegal disposal of waste and the anthropogenic activities which degrade the mangrove ecosystems. A global treaty is being discussed at the United Nations. It's expected that their definitions, initially promised by the end of 2024, will be able to eradicate plastic pollution effectivelly.
Collapse
|
5
|
Ren Z, Xu X, Liang J, Yuan C, Zhao L, Qiu H, Cao X. Aging Dynamics of Polyvinyl Chloride Microplastics in Three Soils with Different Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22332-22342. [PMID: 39536284 DOI: 10.1021/acs.est.4c06317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Microplastic (MP) contamination in soil has been of great concern, but the dynamic aging process and potential pathways of MPs in natural soil systems remain poorly understood. Herein, poly(vinyl chloride) microplastics (5% w/w) were weathered for 12 months in sandy soil, silty clay, and silt loam. The results showed that the continuous increase of C═O and O-H groups (rate constant, k = 0.080-0.424 m-1) with time was observed on the surface of MPs aging in sandy soil due to the leading role of •OH induced by light irradiation. In the loam soil, the abundant coating of aluminosilicates and iron oxides on the MP surface by the formation of mineral-hydroxyl groups inhibited the generation of the C═O group (k < 0.165 m-1). The k of the characteristic bond C-Cl during the first 9 months was 9.51 and 1.93 times higher in clay compared to that in sandy and loam soil, respectively, revealing that dechlorination triggered the first step of the aging process for MPs in clay owing to the participation of degrading bacteria (Phenylobacterium and Caulobacteraceae). The results provide important insights into the aging dynamics of MPs in environmentally realistic circumstance, which account for understanding the different aging processes of MPs in different soils.
Collapse
Affiliation(s)
- Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- National Field Observation and Research Station of Erhai Lake Ecosystem, Dali 671000, China
- Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Bhattacharjee A, Rudolph S, Kaplan DL. Thermoplastic Molding of Silk-Curcumin Sustainable Composite Materials with Antibacterial Properties. ACS APPLIED BIO MATERIALS 2024; 7:8272-8280. [PMID: 39601507 DOI: 10.1021/acsabm.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Silk fibroin (SF) is a natural protein generated from the Bombyx mori silkworm cocoons. It is useful for many different material applications. Versatile aqueous process engineering options can be used to support the morphological and structural modifications of silk materials related to tailored physical, chemical, and biological properties. Conventional solution-based processing methods, while effective, present process control limitations, thus, thermoplastic molding of regenerated SF-based composites was pursued to fabricate dense, functionalized plastics consisting of silk and curcumin. Curcumin, the active compound in turmeric (Curcuma longa) was incorporated into SF during the high-temperature processing, with the objective to investigate composite thermoplastics with enhanced biological properties from the curcumin due to the protective role of silk during processing. The results showed that a significantly higher amount of curcumin (∼25-fold) could be added into thermoplastic molded silk materials compared with the solution route, attributed to the hydrophobicity and low solubility of curcumin in solution-based routes. The curcumin-incorporated silk thermoplastics provided stability in acidic environments like the human gut, and slow curcumin (∼2% over 8 days) release from the materials. The protective silk-curcumin materials supported improved cytocompatibility with immortalized human colorectal adenocarcinoma (Caco-2) cells at high doses. The intestinal epithelial barrier integrity based on zonula occluden 1 (ZO-1) testing showed that the higher amount of curcumin in the thermoplastic molded silk had no negative effects on the intestinal barrier. The functionalized silk-based plastics also displayed microwave stability and antibacterial efficacy against both Gram-positive S. aureus and Gram-negative E. coli. These silk-based sustainable plastics, functionalized with curcumin, offer potential utility for a range of consumer and medical devices.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sara Rudolph
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Ilyas M, Liu X, Yang J, Xu G. Foliar implications of polystyrene nanoplastics on leafy vegetables and its ecological consequences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136346. [PMID: 39488113 DOI: 10.1016/j.jhazmat.2024.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The rise of airborne micro-nanoplastics (MNPs) pollution poses a significant threat to agroecological systems. Despite this issue, there is a critical gap in our understanding of their specific effects on various leafy vegetable species. To address this, we conducted a controlled experiment applying Polystyrene Nanoplastics (PS-NPs) on four leafy vegetables: Brassica rapa var. chinensis, B. rapa var. parachinensis, Amaranthus viridis, and Allium tuberosum. Our results showed that PS-NPs tend to accumulate within the epidermal layers and cuticles of these vegetables, particularly around stomatal apertures. More PS-NPs were found on the adaxial and abaxial side of leaves, compared to the cross-section. The abundance of PS-NPs accumulations varied significantly among the studied species due to differences in leaf structure. Notably, leaves with trichomes trapped more PS-NPs particles. These accumulation significantly reduced chlorophyll content and photosynthetic rates, altering the growth and nutritional quality of the vegetables. Our findings reveal the ecological effects of PS-NPs on the nutrient content, phenotype, physiology, growth and biomass metrics of common leafy vegetables. This highlights the potential for PS-NPs accumulation in edible plant tissues, raising concerns about food security and human health.
Collapse
Affiliation(s)
- Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666300, China.
| | - Guorui Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
8
|
Šmídová K, Selonen S, van Gestel CAM, Fleissig P, Hofman J. Microplastics originated from agricultural mulching films affect enchytraeid multigeneration reproduction and soil properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135592. [PMID: 39217930 DOI: 10.1016/j.jhazmat.2024.135592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs) are increasingly entering agricultural soils, often from the breakdown of agricultural plastics (e.g., mulching films). This study investigates the effects of realistic MPs from different mulching films: two conventional polyethylene (PE-1 and PE-2) and two biodegradable (starch-blended polybutylene adipate co-terephthalate; PBAT-BD-1 and PBAT-BD-2). MPs were mixed into Lufa 2.2 soil at a concentration range from 0.005 % to 5 % (w/w dry soil), wide enough to reflect both realistic environmental levels and "worst-case scenarios". Effects on Enchytraeus crypticus reproduction over two generations and six important soil properties were studied. PBAT MPs notably reduced enchytraeid reproduction in the F0 generation, with a maximum decrease of 35.5 ± 9.6 % at 0.5 % concentration. F1 generation was unaffected by PBAT contamination. PE MPs had a more substantial reproductive impact, with up to a 55.3 ± 9.7 % decrease at 5 % PE-1 concentration compared to the control, showing a dose-related effect except for 1 %. Both MP types also significantly affected soil water holding capacity, pH, and total carbon. Other soil properties remained unaffected. Our results highlight the potential negative impacts of MPs originating from real agricultural plastics on soil health and raise concerns about the role of agricultural plastics in sustainable agriculture and food safety.
Collapse
Affiliation(s)
- Klára Šmídová
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Salla Selonen
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Petr Fleissig
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Schiano ME, D'Auria LJ, D'Auria R, Seccia S, Rofrano G, Signorelli D, Sansone D, Caprio E, Albrizio S, Cocca M. Microplastic contamination in the agri-food chain: The case of honeybees and beehive products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174698. [PMID: 38997016 DOI: 10.1016/j.scitotenv.2024.174698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Microplastics, MPs, plastic fragments with a dimension lower than 5 mm, and microfibers, MFs, synthetic and natural/artificial fibrous fragments with a diameter lower than 50 μm, are ubiquitous pollutants identified in different environmental compartments. In this work the occurrence of MPs and MFs on honeybees, Apis mellifera, and beehive products was evaluated, using Fourier transform infrared microspectroscopy, confirming that MPs and MFs are widely present as air contaminants in all the apiary's areas (high and low urbanized areas) in Southern Italy. Results indicated that independently from the site, both honeybees and honey samples, are contaminated by MFs with non-natural color. The majority of MFs were of natural origin followed by artificial MFs and synthetic MFs. Moreover, the chemical composition of MFs isolated from honeybees reflect that used in synthetic fabrics, leading to the hypothesis that they are released from textile to air where are captured by bees. Results highlight that MFs represent a class of ubiquitous airborne anthropogenic pollutants. The identification of polytetrafluoroethylene, PTFE, MPs in honeybees confirm the recent findings that PTFE MPs are diffuse soil and air contaminants while the identification of polyethylene, PE, based MPs in honey samples, from low density urban sites, could be correlated to the large use of PE in agriculture. In the honey samples, also polycaprolactone, PCL, MPs were identified, mainly in high density urban sites, confirming that biodegradable materials could be further pollutants in the environments. The results indicate that honeybees are contaminated by MPs and MFs during their flights or picking up from the hive components, flowers, from other nest mates, from the clothes of the beekeeper, among others and some of them could be transferred to honey samples that could be also affected by soil contamination.
Collapse
Affiliation(s)
- Marica Erminia Schiano
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Jacopo D'Auria
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Roberta D'Auria
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Serenella Seccia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Rofrano
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy.
| | - Daniel Signorelli
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Donato Sansone
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università, 100 Portici, 80055 Naples, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Consortium INBB, Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
10
|
Dvorakova D, Tsagkaris AS, Pulkrabova J. Novel strategies for the determination of plastic additives derived from agricultural plastics in soil using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174492. [PMID: 38969113 DOI: 10.1016/j.scitotenv.2024.174492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.
Collapse
Affiliation(s)
- Darina Dvorakova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - Aristeidis S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic
| |
Collapse
|
11
|
Hurley R, Binda G, Briassoulis D, Carroccio SC, Cerruti P, Convertino F, Dvořáková D, Kernchen S, Laforsch C, Löder MGL, Pulkrabova J, Schettini E, Spanu D, Tsagkaris AS, Vox G, Nizzetto L. Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174325. [PMID: 38942306 DOI: 10.1016/j.scitotenv.2024.174325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Soil environments across the globe, particularly in agricultural settings, have now been shown to be contaminated with microplastics. Agricultural plastics - such as mulching films - are used in close or direct contact with soils and there is growing evidence demonstrating that they represent a potential source of microplastics. There is a demand to undertake fate and effects studies to understand the behaviour and potential long-term ecological risks of this contamination. Yet, there is a lack of test materials available for this purpose. This study describes the manufacture and characterisation of five large (1-40 kg) batches of microplastic test materials derived from agricultural mulching films. Batches were produced from either polyethylene-based conventional mulching films or starch-polybutadiene adipate terephthalate blend mulching films that are certified biodegradable in soil. Challenges encountered and overcome during the micronisation process provide valuable insights into the future of microplastic test material generation from these material types. This includes difficulties in micronising virgin polyethylene film materials. All five batches were subjected to a thorough physical and chemical characterisation - both of the original virgin films and the subsequent microplastic particles generated - including a screening for the presence of chemical additives. This is a critical step to provide essential information for interpreting particle fate or effects in scientific testing. Trade-offs between obtaining preferred particle typologies and time and cost constraints are elucidated. Several recommendations emerging from the experiences gained in this study are put forward to advance the research field towards greater harmonisation and utilisation of environmentally relevant test materials.
Collapse
Affiliation(s)
- Rachel Hurley
- Norwegian Institute for Water Research, Oslo, Norway.
| | - Gilberto Binda
- Norwegian Institute for Water Research, Oslo, Norway; Department of Science and High Technology, University of Insubria, Como, Italy
| | - Demetres Briassoulis
- Natural Resources & Agricultural Engineering Department, Agricultural University of Athens, Athens, Greece
| | | | - Pierfrancesco Cerruti
- National Research Council Institute of Polymers, Composites and Biopolymers, Pozzuoli, Italy
| | - Fabiana Convertino
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Darina Dvořáková
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | | | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Evelia Schettini
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Aristeidis S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Giuliano Vox
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Liava V, Golia EE. Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:634-650. [PMID: 38520089 DOI: 10.1177/0734242x241234234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.
Collapse
Affiliation(s)
- Vasiliki Liava
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Evangelia E Golia
- Faculty of Agriculture, Forestry and Natural Environment, Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Romano I, Ventorino V, Schettino M, Magaraci G, Pepe O. Changes in Soil Microbial Communities Induced by Biodegradable and Polyethylene Mulch Residues Under Three Different Temperatures. MICROBIAL ECOLOGY 2024; 87:101. [PMID: 39083238 PMCID: PMC11291583 DOI: 10.1007/s00248-024-02420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Mulching is a common method increasing crop yield and achieving out-of-season production; nevertheless, their removal poses a significant environmental danger. In this scenario, the use of biodegradable plastic mulches comes up as a solution to increase the sustainability of this practice, as they can be tilled in soil without risk for the environment. In this context, it is important to study the microbial response to this practice, considering their direct involvement in plastic biodegradation. This study evaluated the biodegradation of three commercial mulch residues: one conventional non-biodegradable mulch versus two biodegradable ones (white and black compostable Mater-Bi mulches). The experiment was conducted under three incubation temperatures (room temperature 20-25 °C, 30 °C, and 45 °C) for a 6-month trial using fallow agricultural soil. Soil without plastic mulch residues was used as a control. White mater-bi biodegradable mulch residues showed higher degradation rates up to 88.90% at 30 °C, and up to 69.15% at room temperature. Furthermore, incubation at 45 °C determines the absence of degradation for all types of mulch considered. Moreover, bacterial alpha diversity was primarily influenced by plastic type and temperature, while fungal populations were mainly affected by temperature. Beta diversity was impacted by all experimental variables. Predicted functional genes crucial for degrading complex substrates, including those encoding hydrolases, cutinases, cellobiosidases, and lipases, were derived from 16S rRNA gene sequencing data. Cluster analysis based on predicted enzyme-encoding gene abundance revealed two clusters, mainly linked to sampling time. Finally, core microbiome analysis identified dominant bacterial and fungal taxa in various soil-plastic ecosystems during degradation, pinpointing species potentially involved in plastic breakdown. The present study allows an assessment of how different temperatures affect the degradation of mulch residues in soil, providing important insights for different climatic growing zones. It also fills a gap in the literature by directly comparing the effects of biodegradable and polyethylene mulches on soil microbial communities.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Mariachiara Schettino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppina Magaraci
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
- Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
14
|
Pham TH, Kim T, Kim J, Le DM, Bui TH. Removal of bisphenol a micropollutants released from plastic waste using Pt-ZnO photocatalyst. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:335. [PMID: 39060805 DOI: 10.1007/s10653-024-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024]
Abstract
Plastic pollution is becoming increasingly severe and is attracting global attention. One of its consequences is the recent discovery of micropollutant discharge into water, with Bisphenol A (BA-MP) being a typical example. This study utilizes an advanced oxidation process based on Pt-doped ZnO photocatalyst to remove BA-MP. Health concerns related to the release of BA-MP from plastic waste are discussed. Besides, the results of the photodegradation experiment show that the Pt-ZnO photocatalyst can remove 94.1% of BA-MP within 60 min when exposed to solar light. Moreover, after five reuse cycles, Pt-ZnO retains a high BA-MP removal efficiency of 71.2%, and its structure remains largely unchanged compared to the original material. The removal efficiency of BA-MP leaching from plastic waste was measured at 98.8%, confirming the suitability of Pt-ZnO for the treatment of micropollutants. Furthermore, this study also highlights the prospects and challenges of using Pt-ZnO for the treatment of micropollutants discharged from plastic waste.
Collapse
Affiliation(s)
- Thi Huong Pham
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 13120, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam, 13120, South Korea
| | - Jitae Kim
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Dang Manh Le
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trung Hieu Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
15
|
Klaus J, Seeger M, Bigalke M, Weber CJ. Microplastics in vineyard soils: First insights from plastic-intensive viticulture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174699. [PMID: 38997010 DOI: 10.1016/j.scitotenv.2024.174699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In the terrestrial environment, microplastics in specialty cropping systems have not been studied so far. Viticulture as a potential plastic-intensive management form and a land use with high erosion risks, plays an important role in transport and distribution of material to other terrestrial and aquatic systems. This paper is a first investigation of microplastics in vineyard soils, assessing the spatial distribution and composition of microplastics in organically and conventionally managed viticulture, and relates it to the macroplastic collected at the vineyards. Topsoils (0-10, 10-30 cm) and plastic particles on soil surfaces from eight vineyard lots were sampled. Four of the vineyards were under organic and four underconventional management and they were all located in the Moselle and Saar Wine Region (Rhineland-Palatinate, Germany). Microplastic analysis was performed via μFTIR chemical imaging after wet-chemical microplastic extraction from soil samples. The mean microplastic concentration was 4200 ± 2800 p kg-1 (mean ± SD), with detected mean sizes of 230 μm ± 300 μm. Most abundant polymers were PP (35.2 %), PA (25.3 %) and PE (15.5 %). The distribution pattern showed higher microplastic concentration in topsoil, at middle and bottom slope position. The smallest particle sizes were found in subsoil samples and bottom position. Thus, erosion is assumed to be a potential downhill transport pathway. According to our dataset, management seems to have no significant influence on microplastic abundance, but affects polymer composition. Polymer composition of micro- and macroplastics partly coincide, thus in-situ fragmentation, is considered the major input source. Based on our findings, we recommend further investigation of plastic pathways in speciality crop systems like viticulture.
Collapse
Affiliation(s)
- Jenny Klaus
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Manuel Seeger
- Department of Physical Geography, Trier University, Behringstraße 21, 54296 Trier, Germany
| | - Moritz Bigalke
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Collin J Weber
- Department of Soil Mineralogy and Soil Chemistry, Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany.
| |
Collapse
|
16
|
Ganie ZA, Mandal A, Arya L, T S, Talib M, Darbha GK. Assessment and accumulation of microplastics in the Indian riverine systems: Risk assessment and implications of translocation across the water-to-fish continuum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106944. [PMID: 38823071 DOI: 10.1016/j.aquatox.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Abhishek Mandal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Lavish Arya
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sangeetha T
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
17
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
18
|
Wang Y, Tang DWS. Soil chemical fumigation alters soil phosphorus cycling: effects and potential mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1289270. [PMID: 38855465 PMCID: PMC11157047 DOI: 10.3389/fpls.2024.1289270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Soil chemical fumigation is an effective and popular method to increase agricultural productivity. However, the broad-spectrum bioactivity of fumigants causes harm to soil beneficial microorganisms involved in the soil phosphorous cycle, such as soil phosphorus solubilizing microorganisms (PSMs). We review the effects of soil chemical fumigation on soil phosphorus cycling, and the potential underlying mechanisms that ultimately lead to altered phosphorus availability for crops. These complex processes involve the highly diverse PSM community and a plethora of soil phosphorus forms. We discuss phosphatizing amendments aimed at counteracting the possible negative effects of fumigation on phosphorus availability, phosphorus use efficiency, and crop yields. We also emphasize distinguishing between the effects on soil phosphorus cycling caused by the chemical fumigants, and those caused by the fumigation process (e.g. plastic mulching). These are typically conflated in the literature; distinguishing them is critical for identifying appropriate amendments to remediate possible post-fumigation soil phosphorus deficiencies.
Collapse
Affiliation(s)
| | - Darrell W. S. Tang
- Soil Physics and Land Management Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
19
|
Gao W, Wang X, Diao Y, Gong Y, Miao J, Sang W, Yuan H, Shen Z, El-Sayed MEA, Abdelhafeez IA. Co-impacts of cation type and humic acid on migration of polystyrene microplastics in saturated porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120918. [PMID: 38643625 DOI: 10.1016/j.jenvman.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The aging process of microplastics (MPs) could significantly change their physical and chemical characteristics and impact their migration behavior in soil. However, the complex effects of different cations and humic acids (HA) on the migration of aged MPs through saturated media are not clear. In this research, the migration and retention of pristine/aged PSMPs (polystyrene microplastics) under combined effects of cations (Na+, Ca2+) (ionic strength = 10 mM) and HA (0, 5, 15 mg/L) were investigated and analyzed in conjunction with the two-site kinetic retention model and DLVO theory. The findings showed that the aging process accelerated PSMPs migration under all tested conditions. Aged PSMPs were less susceptible to Ca2+ than pristine PSMPs. Under Ca2+ conditions, pristine/aged PSMPs showed higher retention than under Na+ conditions in the absence of HA. Furthermore, under Na+ conditions, the migration of aged PSMPs significantly increased at higher concentrations of HA. However, under Ca2+ conditions, the migration of aged PSMPs decreased significantly at higher concentrations of HA. In higher HA conditions, HA, Ca2+, and PSMPs interact to cause larger aggregations, resulting in the sedimentation of aged PSMPs. The DLVO calculations and two-site kinetic retention models' results showed the detention of PSMPs was irreversible under higher HA conditions (15 mg/L) with Ca2+, and aged PSMPs were more susceptible to clogging. These findings may help to understand the potential risk of migration behavior of PSMPs in the soil-groundwater environment.
Collapse
Affiliation(s)
- Wenxin Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqun Gong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Miao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hui Yuan
- Tianjin Eco-Environmental Monitoring Center, 19 Fukang Road, Nankai District, Tianjin, 300191, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mohamed E A El-Sayed
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Islam A Abdelhafeez
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
20
|
Oda K, Wlodawer A. Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochemistry 2024. [PMID: 38285602 DOI: 10.1021/acs.biochem.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Pollution by plastics such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polyamide (PA), polystyrene (PS), and poly(ethylene terephthalate) (PET) is now gaining worldwide attention as a critical environmental issue, closely linked to climate change. Among them, PET is particularly prone to hydrolysis, breaking down into its constituents, ethylene glycol (EG) and terephthalate (TPA). Biorecycling or bioupcycling stands out as one of the most promising methods for addressing PET pollution. For dealing with pollution by the macrosize PET, a French company Carbios has developed a pilot-scale plant for biorecycling waste PET beverage bottles into new bottles using derivatives of thermophilic leaf compost cutinase (LCC). However, this system still provides significant challenges in its practical implementation. For the micro- or nanosize PET pollution that poses significant human health risks, including cancer, no industrial-scale approach has been established so far, despite the need to develop such technologies. In this Perspective, we explore the enhancement of the low activity and thermostability of the enzyme PETase to match that of LCC, along with the potential application of microbes and enzymes for the treatment of waste PET as microplastics. Additionally, we discuss the shortcomings of the current biorecycling protocols from a life cycle assessment perspective, covering aspects such as the diversity of PET-hydrolyzing enzymes in nature, the catalytic mechanism for crystallized PET, and more. We also provide an overview of the Ideonella sakaiensis system, highlighting its ability to operate and grow at moderate temperatures, in contrast to high-temperature processes.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
21
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
22
|
Zhang Y, Song M, Zhu Y, Li H, Zhang Y, Wang G, Chen X, Zhang W, Wang H, Wang Y, Shao R, Guo J, Yang Q. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168219. [PMID: 37924875 DOI: 10.1016/j.scitotenv.2023.168219] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The effect of microplastics (MPs) on plant growth has received increasing attention. However, whether soil texture and MPs size influence the toxicological effects of MPs on plants is unknown. To address this knowledge gap, two soils with different physical structures (lime concretion black and silty loam soils) were selected to explore the potential toxicity of MPs of different particle sizes to maize growth. The results showed that, in both soils, the harm caused by small MPs on maize growth was greater than that caused by large MPs. Low MPs concentrations had no significant effect on maize growth between two soil types; however, when exposed to a concentration of 1 % large MPs, the dry biomass of maize was promoted in lime concretion black soil but inhibited in silty loam soil. All MPs-exposed treatments resulted in a high level of superoxide anions in maize roots, resulting in an increase in the root aerenchyma area and reducing the metabolic activity of maize roots. Metabolomics showed that MPs exposure affected multiple amino acid metabolic pathways, including phenylalanine and tyrosine metabolism, and inhibited lignin biosynthesis in roots. This study provides a theoretical basis for a more comprehensive assessment of the effect of MPs pollution on agricultural production.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Miaomiao Song
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiming Zhu
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Huan Li
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Yinglei Zhang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaofeng Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinping Chen
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Wushuai Zhang
- College of Resources and Environment and Academy of Agricultural Science, Southwest University, Chongqing 400700, China
| | - Hao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongchao Wang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China..
| | - Qinghua Yang
- College of Agronomy, Collaborative Innovation of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
23
|
Kim JH, Chan KL, Hart-Cooper WM, Ford D, Orcutt K, Palumbo JD, Tam CC, Orts WJ. Valorizing Tree-Nutshell Particles as Delivery Vehicles for a Natural Herbicide. Methods Protoc 2023; 7:1. [PMID: 38392682 PMCID: PMC10892353 DOI: 10.3390/mps7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Abstract
The United States is a principal producer of tree nuts (almonds, pistachios, and walnuts), resulting in the generation of excess of tree-nutshell by-products each year, with few market outlets. A nutshell is an essential, lignocellulosic layer that protects a kernel (seed) from the environment during cultivation. The objective of this study was to develop nutshell by-products as herbicide delivery systems, which would not only enable sustainable weed control in fields but also increases nutshell value and reduce the cost of waste disposal. We recently identified a natural salicylaldehyde (SA) that emits volatiles with both herbicidal and antifungal properties. In this study, walnut shell particles saturated with 0.8 to 1.6 M SA were developed as delivery vehicles for SA to soil, which allowed for the controlled release of an SA fumigant for weed control. The pre- and post-emergent herbicidal efficacy of SA was investigated using model monocot (Lolium arundinaceum (Schreb.) Darbysh; turfgrass) and dicot (Brassica rapa var. pekinensis; Chinese cabbage) plants. We compared (1) the effects of different types of solvents for dissolving SA (dimethyl sulfoxide (DMSO) and ethanol (60%, v/v)), and (2) the effect of covering soil with plastic layers (i.e., soil pasteurization) or not covering soil during SA fumigation using nutshells. Results: In the pre-emergent herbicidal testing with the soil covered, the dicot plants exhibited levels of higher susceptibility to SA in DMSO emitted from nutshells when compared to the monocot plants. The seed germination frequencies in the dicots were 15% and 1% with 0.8 and 1.6 M SA, respectively, while those in the monocots were 32% and 18%, respectively, under the same test conditions. In the post-emergent herbicidal testing with the soil covered, the growth of both the monocot and dicot plants was completely prevented after 5 to 7 days of SA fumigation, resulting in the deaths of entire plants. It was noteworthy that in the post-emergent herbicidal testing, SA dissolved in ethanol (60%, v/v) completely disrupted the growth of the monocot and dicot plants as early as 3 days after SA emission from the nutshells, even without the soil being covered. Tree-nutshell particles could serve as effective SA delivery vehicles with controlled release capabilities for SA. The SA exhibited pre- and post-emergent herbicidal activities against the monocot and dicot plants at most growth stages. SA (0.8 and 1.6 M) dissolved in ethanol (60%, v/v) might exert a synergism for higher herbicidal activity after emission from nutshells. Since tree nuts capture/store a substantial amount of carbon over their life-cycles, the new and sustainable utility of using nutshells not only reduces carbon emissions but also valorizes tree-nut by-products, thus benefitting the tree-nut industry.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - William M. Hart-Cooper
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| | - DeAngela Ford
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Kaydren Orcutt
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| | - Jeffrey D. Palumbo
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (K.L.C.); (D.F.); (J.D.P.); (C.C.T.)
| | - William J. Orts
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA; (W.M.H.-C.); (K.O.); (W.J.O.)
| |
Collapse
|
24
|
Geppner L, Karaca J, Wegner W, Rados M, Gutwald T, Werth P, Henjakovic M. Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. TOXICS 2023; 11:790. [PMID: 37755800 PMCID: PMC10536618 DOI: 10.3390/toxics11090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Microplastic particles are ubiquitous in our environment, having entered the air, the water, the soil, and ultimately our food chain. Owing to their small size, these particles can potentially enter the bloodstream and accumulate in the organs. To detect microplastics using existing methods, they must first be isolated. The aim of this study was to develop a non-destructive method for efficiently and affordably isolating plastic particles. We investigated the digestion of kidney, lung, liver, and brain samples from pigs. Kidney samples were analyzed using light microscopy after incubation with proteinase K, pepsin/pancreatin, and 10% potassium hydroxide (KOH) solution. Various KOH:tissue ratios were employed for the digestion of lung, liver, and brain samples. Additionally, we examined the effect of 10% KOH solution on added polystyrene microplastics using scanning electron microscopy. Our findings revealed that a 10% KOH solution is the most suitable for dissolving diverse organ samples, while enzymatic methods require further refinement. Moreover, we demonstrated that commonly used 1 µm polystyrene particles remain unaffected by 10% KOH solution even after 76 h of incubation. Digestion by KOH offers a simple and cost-effective approach for processing organ samples and holds potential for isolating plastic particles from meat products.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Jakob Karaca
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Wencke Wegner
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Moritz Rados
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Tobias Gutwald
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Philemon Werth
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| |
Collapse
|