1
|
Li Y, Ling W, Hou C, Yang J, Xing Y, Lu Q, Wu T, Gao Z. Global distribution characteristics and ecological risk assessment of microplastics in aquatic organisms based on meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137977. [PMID: 40120259 DOI: 10.1016/j.jhazmat.2025.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
As microplastic pollution in the natural environment intensifies, the risk of microplastic contamination faced by aquatic organisms has garnered increasing widespread attention. Most studies have primarily focused on the impacts of microplastics within specific regions and on particular species. However, with the global migration of microplastics, it is necessary to conduct comprehensive research on the distribution characteristics, ingestion mechanisms, and ecological impacts of microplastics across various aquatic organisms. To address this research gap, the present study systematically evaluates the distribution status of microplastics in global aquatic organisms and assesses their potential ecological risks. Firstly, a review of the sources and impacts of microplastics within aquatic organisms is provided. Secondly, a bibliometric analysis is employed to examine the current research landscape and trends, coupled with a quantitative analysis of how the biological characteristics of aquatic organisms influence microplastic ingestion and the distribution patterns of microplastics within these organisms. Thirdly, the study investigates the mechanisms by which microplastics affect aquatic food chains by examining their impact on organisms at different trophic levels. Finally, strategies to reduce microplastic input into water bodies and future research directions are proposed. The findings offer scientific foundations and decision-making support for global microplastic pollution control, aiming to protect the health and sustainable development of aquatic ecosystems.
Collapse
Affiliation(s)
- Yifei Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Jian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qingbing Lu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Tianqi Wu
- Human Resources Department, Yangquan Power Supply Company of State Grid Shanxi Electric Power Company, Yangquan, Shanxi 045000, China
| | - Ziyuan Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Wang Q, Li S, Ding Y. Characteristics, influencing factors, and ecological risks of microplastics in the north branch tidal marshes of the Yangtze River estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126230. [PMID: 40221114 DOI: 10.1016/j.envpol.2025.126230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Microplastic pollution is a growing global environmental issue, particularly in vulnerable tidal marsh ecosystems, where its environmental behaviour and ecological risks remain poorly understood. This study investigated the microplastic contamination in the north branch tidal marshes of the Yangtze River estuary. Surface sediment samples were collected from 42 stations across 6 transects, revealing an average microplastic abundance of 506.80 ± 386.82 items/kg. The distribution of microplastics was strongly influenced by salinity and vegetation, with seawater intrusion playing a critical role. A significant negative correlation between salinity and microplastic abundance was observed; areas dominated by Phragmites australis (low salinity) had higher microplastic abundance compared to high-salinity areas with sparse vegetation. 12 types of microplastics were identified, with polyethylene and polystyrene being the most abundant (20 % and 19 %, respectively). The most common colours were transparent (26 %) and yellow (23 %), while the predominant shapes were granular (37 %) and fragmentary (32 %). Most microplastics measured under 2000 μm, with the 200-500 μm size range accounting for 49 % of the total. Likely sources of microplastics include aquaculture equipment, industrial products, agricultural cultivation supplies, and daily necessities. Although the ecological risk index for the region is relatively low, the presence of diverse species highlights potential ecological threats.
Collapse
Affiliation(s)
- Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Songshuo Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China; Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
3
|
Fong J, Kumar AS, Choy ZY, Tan YH, Gowidjaja JAP, Neo ML. Accumulation of microplastics in various organs of fiddler crabs and sea cucumbers across the coastal habitats in Singapore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125773. [PMID: 39892458 DOI: 10.1016/j.envpol.2025.125773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Microplastics (or MPs) are an emergent threat to marine organisms. This study assessed MP contamination in the major organs of four species from Singapore's coastal habitats: Orange Fiddler Crab (Gelasimus vocans) and Porcelain Fiddler Crab (Austruca annulipes) from mangroves, Garlic Bread Sea Cucumber (Holothuria scabra) from seagrass beds and Synaptid Sea Cucumber (Synaptula recta) from coral reefs. MPs were prevalent in all species and their organs. Mean MP concentrations in fiddler crabs were 6.63 ± 0.97 MP individual-1 in G. vocans and 12.18 ± 3.38 MP individual-1 in A. annulipes, where their female crabs had significantly more MPs than males. This study also confirmed the translocation of MPs to the crabs' hepatopancreas, which had the highest MP concentrations compared to gills and digestive tracts. These observations suggest that the fiddler crabs' sexual dimorphism could influence feeding efficiency and behaviour. In contrast, the sea cucumbers had lower MP concentrations in their organs, where the average MP concentrations were 10.00 ± 2.32 MP individual-1 in H. scabra and 6.33 ± 0.69 MP individual-1 in S. recta. For H. scabra only, their respiratory trees showed the highest MP levels compared to their digestive tracts. Across the species, MPs were predominantly <1,000 μm in size, in fibre shape and polyethylene (PE). These findings provide critical baseline data on MP contamination across different organs in marine organisms, serving as proxies for MP pollution levels in the environment.
Collapse
Affiliation(s)
- Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore.
| | - Ashwini Suresh Kumar
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore
| | - Zhen Yu Choy
- Republic Polytechnic, 9 Woodlands Avenue 9, Singapore, 738964, Singapore
| | - Yi Hong Tan
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore
| | | | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119557, Singapore.
| |
Collapse
|
4
|
Chia RW, Atem NV, Lee JY, Cha J. Microplastic and human health with focus on pediatric well-being: a comprehensive review and call for future studies. Clin Exp Pediatr 2025; 68:1-15. [PMID: 39533740 PMCID: PMC11725616 DOI: 10.3345/cep.2023.01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 11/16/2024] Open
Abstract
Although humans are highly dependent on plastics from infancy to adolescence, these materials can degrade into ubiquitous microplastics (MPs) that affect individuals at every stage of life. However, information on the sources, mechanisms, detection techniques, and detrimental effects of MPs on children's health from infancy to adolescence is limited. Hence, here we identified and reviewed original research papers published in 2017-2023 across 11 database categories in PubMed, Google Scholar, Scopus, and Web of Science to improve our understanding of MPs with a focus on pediatric well-being. These studies found that milk and infant formulas are common sources of MP exposure in infants. Infant formula is the dominant source of MPs in babies, while plastic toys are a common source of MPs in toddlers. Adolescents are frequently exposed to MPs through the consumption of food contaminated with MPs and the use of plastics in food packaging. Water and air are sources of MP exposure in children from infancy through adolescence. This study thoroughly summarized how MP exposure in children of all ages causes cell damage and leads to adverse health effects such as cancer. With appropriate authorization from the relevant authorities, small amounts of human biological samples (10 g of feces) were collected from volunteers to assess the amounts of MPs in children with the aim of promoting pediatric well-being. The samples were then treated with Fenton's reagent, stored in glass jars, and filtered through nonplastic filters. Finally, MPs in children were quantified using stereomicroscopy and characterized using micro-Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, Korea
| | | | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon, Korea
- School of Science and Engineering, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
5
|
Yu F, Zhang L, Chu W, Wu X, Pei Y, Ma J. Occurrence and distribution of microplastics in freshwater aquaculture area with different culture modes in Yangtze River Delta of China. MARINE POLLUTION BULLETIN 2024; 209:117135. [PMID: 39486204 DOI: 10.1016/j.marpolbul.2024.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
There are multiple sources of microplastic contamination in freshwater aquaculture areas, such as water inputs, use of plastic farming tools and weathering of discarded plastics, leading to microplastic contamination of aquaculture environments, but microplastics in freshwater aquaculture areas are still limited. In our study, we investigated the distribution of microplastics (MPs) in the aquaculture water, sediments and crabs during the growth cycle of crabs with different culture modes. The results show that from May to October, MPs in surface water first increased and then decreased, which is related to water evaporation and river water recharge caused by local hot and sunny weather. The concentration of microplastics in surface water reached a maximum of 9.25 items/L in September and 0.34 items/g-dry weight in sediment in June. The MPs in the sediments, although relatively stable, fluctuated due to river water replenishment. The number of detected MPs in male crabs was higher than that in female crabs, 17.96 ± 6.23 and 16.71 ± 4.45 items/individual, respectively. Crabs of different sexes were not selective for the color of MPs. The abundance of microplastics in different tissues of river crabs was in the order of foregut > hindgut > gill > hepatopancreas, whereas they were not detected in muscles. There were microplastic uptake and excretion behaviors during the growth culture cycle of river crabs. The microplastic amount was higher in the early stage and then showed a dynamic change of decreasing and then increasing. The number of MPs was higher in culture modes with different sex ratios, especially in male-dominated culture modes, which may be related to the more frequent activities of male crabs when the male ratio is high. This study provides useful information to understand the accumulation of microplastics in cultured hairy crabs and the source sinks and transportation of microplastics in artificial freshwater aquaculture in China.
Collapse
Affiliation(s)
- Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 110044, China
| | - Leilihe Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Wei Chu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Xugan Wu
- College of Fisheries and Life Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China.
| | - Yizhi Pei
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Das S, Chatterjee NH, Choudhury A, Ray A, Rana N, Banerjee A, Ray M, Ray S. Characterization and ecological risk assessment of microplastics accumulated in sea water, sand, sediment, shell water and selected tissues of hermit crab of Sundarban Biosphere Reserve. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124484. [PMID: 38960120 DOI: 10.1016/j.envpol.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 μm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.
Collapse
Affiliation(s)
- Sourav Das
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Nilanjan Hari Chatterjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Abhishek Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Nabakumar Rana
- Department of Physics, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, West Bengal, India.
| | - Aritra Banerjee
- Department of Physics, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, West Bengal, India.
| | - Mitali Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
7
|
Xu X, He L, Huang F, Jiang S, Dai Z, Sun R, Li C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. CHEMOSPHERE 2024; 364:143112. [PMID: 39153532 DOI: 10.1016/j.chemosphere.2024.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160‒12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20‒1000 μm, larger MPs of 50-1000 μm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Collapse
Affiliation(s)
- Xiaohan Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fei Huang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Li X, Wu F, Zhang C, Wang T. The Effects of Rainfall Events on the Composition and Diversity of Microplastics on Beaches in Xiamen City on a Short-Term Scale. TOXICS 2024; 12:375. [PMID: 38787154 PMCID: PMC11125818 DOI: 10.3390/toxics12050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Coastal beaches are vulnerable to microplastic pollution originating primarily from terrestrial and marine sources or the in situ weathering of plastic waste. The present study investigates the effects of rainfall events on the composition and diversity of microplastics on beaches in Xiamen City on a short-term scale. In the results, the quantity of microplastics in beach sediments was 245.83 ± 11.61 items·kg-1 (mean ± standard error). The abundance of microplastics did not differ after each rainfall event but significantly decreased after multiple rainfall events. When the diversity of microplastics in the coastal area was evaluated, the Shannon-Wiener index and Pielou's index also decreased from 3.12 and 0.64 to 2.99 and 0.62, respectively, after multiple rainfall events. Rainfall had varying effects on microplastics depending on their size and shape, with particles smaller than 500 μm experiencing pronounced reductions. There was a significant negative correlation between the abundance of microplastics and the grain size of sand, but a positive correlation with sediment moisture content. We encourage the consideration of the potential impact of rainfall events during sample collection to ensure the reliability of the data. We also recommend using diversity indexes to help in understanding the influence of physical processes on microplastic distribution and their mechanisms.
Collapse
Affiliation(s)
- Xueyan Li
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Fengrun Wu
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Chengyi Zhang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Tao Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
9
|
Han M, Zhu T, Zhou Z, Si Q, Zhu C, Li Y, Jiang Q. Effects of different concentrations and particle sizes of nanoplastics on gut microbiology, metabolism, and immunity in Chiromantes dehaani. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109461. [PMID: 38382689 DOI: 10.1016/j.fsi.2024.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
This study investigated the effects of nanoplastics (NPs) of varying particle sizes (75, 500, and 1000 nm) and concentrations (2.5 and 10 mg/L) on the gut health of Chiromantes dehaani. The experimental groups included a control (Cg0), and varying combinations of particle size and concentration. Our results showed that 75 nm NPs were more likely to enhance pathogenic bacterial growth than other sized NPs. Compared with CK, Low NPs concentrations (2.5 mg/L) raised total cholesterol (T-CHO) levels in the gut, while high concentrations significantly decreased both triglyceride (TG) and T-CHO levels (p < 0.05). The enzymatic activities of intestinal lipase and amylase were inhibited by NPs exposure, with greater inhibition at higher NPs concentrations. The 500 nm NPs exhibited a notably higher inhibitory effect than the 75 and 1000 nm NPs (P < 0.05). In terms of apoptosis, NPs exposure led to reduced mRNA expression of Bcl2 and increased expression of Caspase-3, Caspase-8, and Caspase-9, indicating an induction of apoptosis. This effect was more pronounced at higher NPs concentrations, with 75 nm NPs more likely to induce apoptosis in intestinal cells than 500 nm and 1000 nm NPs. Moreover, NPs triggered intestinal inflammatory responses, evidenced by the increased mRNA expression of TNF-β, TNF-α, IL1β, IL6, and IL8, and the decreased expression of IL10. High NPs concentrations were more likely to induce intestinal inflammation, with 500 nm NPs imparting the strongest effect. In summary, the study demonstrated that NPs, and particularly those at higher concentrations, disrupted the gut environment of C. dehaani by altering the microflora, reducing microbial diversity, inhibiting digestion and metabolism, inducing apoptosis, and triggering inflammation. Among the sizes of NPs tested, 500 nm NPs had the most significant adverse impact on digestion, metabolism, and inflammation, while 75 nm NPs most strongly induced apoptosis in C. dehaani's intestinal cells.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Zihan Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu, 211100, China
| | - Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
10
|
Valsan G, Tamrakar A, Warrier AK. Microplastics in Scylla Serrata: A baseline study from southwest India. MARINE POLLUTION BULLETIN 2024; 200:116109. [PMID: 38330815 DOI: 10.1016/j.marpolbul.2024.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Scylla serrata plays a crucial role in India's seafood exports yet there exists limited understanding on the occurrence of microplastics (MPs) in these crabs. In this baseline study, we examined the presence of microplastics in the digestive tracts of S. serrata collected from the Kota mangroves, southwestern coast of India. Our analysis revealed the presence of 264 MPs in all the samples with an average (± standard deviation) of 29.33 (±11.53) MPs/Individual. The most dominant categories were fibres (98.86 %) and fragments (1.14 %). Primarily 0.1-0.3 mm (50.90 %) and 0.3-1 mm (37.65 %) size range dominated. The predominant polymers were polypropylene (33.71 %), high-density polyethylene (31.44 %), and polyethylene terephthalate (17.80 %). Scanning electron microscopy revealed extensive weathering on the surface of the microplastics. Risk assessments indicated severe risks to S. serrata due to microplastic ingestion emphasizing the need to protect delicate ecosystems like mangroves and the biota within.
Collapse
Affiliation(s)
- Gokul Valsan
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anjali Tamrakar
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anish Kumar Warrier
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
11
|
Wang N, Wang Q, Song S, Sun Z, Zhao A, Ali A, Xu G, Zhong X, Wang F, Xu H. Microplastics drive community dynamics of periphytic protozoan fauna in marine environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13327-13334. [PMID: 38244160 DOI: 10.1007/s11356-024-32054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qiaoling Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Suihan Song
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Zhiyi Sun
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Anqi Zhao
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Awais Ali
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaoxiao Zhong
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
12
|
Xie S, Song K, Liu S, Li Y, Wang J, Huang W, Feng Z. Distribution and characteristics of microplastics in 16 benthic organisms in Haizhou Bay, China: Influence of habitat, feeding habits and trophic level. MARINE POLLUTION BULLETIN 2024; 199:115962. [PMID: 38157831 DOI: 10.1016/j.marpolbul.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are widely found in the ocean and cause a serious risk to marine organisms. However, fewer studies have been conducted on benthic organisms. This study conducted a case study on the pollution characteristics of MPs on 16 marine benthic organisms in Haizhou Bay, and analyzed the effects of habitat, trophic level, and feeding mode on the MPs pollution characters. The results showed that MPs were detected in all 16 organisms with an average abundance of 8.84 ± 9.14 items/individual, which is in the middle-high level in the international scale. Among the detected MPs, the main material was cellophane. This study showed that benthic organisms can be used as indicator organisms for MPs pollution. MPs in organisms can be affected by their habitat, trophic level, and feeding mode. Comprehensive analysis of MPs in benthic organisms will contribute to fully understand the characterization and source resolution of MPs pollution.
Collapse
Affiliation(s)
- Siqi Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China; University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shiwei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - You Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
13
|
Ji X, Yan S, He Y, He H, Liu H. Distribution Characteristics of Microplastics in Surface Seawater off the Yangtze River Estuary Section and Analysis of Ecological Risk Assessment. TOXICS 2023; 11:889. [PMID: 37999541 PMCID: PMC10674722 DOI: 10.3390/toxics11110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Microplastics are widespread in the oceans as a new type of pollutant. Due to the special geographical environment characteristics, the Yangtze River estuary region become hotspot for microplastics research. In 2017 and 2019, surface seawater microplastics samples were collected from five stations off the Yangtze River estuary during four seasons (spring, summer, autumn, and winter). The abundance and characteristics of microplastics in seawater were researched. The results showed that microplastics widely existed in surface seawater; the average abundance of microplastics in seawater was (0.17 ± 0.14) items/m3 (0.00561 ± 0.00462) mg/m3; and accounting for 80% of the total plastic debris, the abundance of microplastics was at moderately low levels compared to national and international studies. The particle size of most microplastics was between 1 mm to 2 mm, accounting for 36.1% of the total microplastics. The main shapes of microplastics were fiber, flake, and line, accounting for 39.5%, 28.4%, and 20.8%, respectively. Polypropylene, polyethylene terephthalate, and polyethylene were the main components of microplastics, accounting for 41.0%, 25.1%, and 24.9%, respectively. Yellow, green, black, and transparent were the most common colors, accounting for 21.9%, 19.6%, 16.5%, and 15.7%, respectively. This study shows that the spatial distribution of microplastics in the surface waters off the Yangtze River estuary shows a decreasing trend from nearshore to farshore due to the influence of land-based inputs, hydrodynamics, and human activities; the distribution of microplastics has obvious seasonal changes, and the level of microplastic pollution is higher in summer. The potential ecological risk of microplastics in the surface waters off the Yangtze River estuary is relatively small.
Collapse
Affiliation(s)
- Xiao Ji
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| | - Shuaishuai Yan
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Yanlong He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Haisheng He
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China; (X.J.); (S.Y.); (Y.H.); (H.H.)
- Key Laboratory of Marine Ecological Monitoring and Restoration Technology, Ministry of Natural Resources, Shanghai 201206, China
| |
Collapse
|