1
|
Kandaiah R, Ravindran A, Panneerselvan L, Manivannan AC, Kulanthaisamy M, Sobhani Z, Bhagwat-Russell G, Palanisami T. A comprehensive analysis and risk evaluation of microplastics contamination in Australian commercial plant growth substrates: Unveiling the invisible threat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136310. [PMID: 39486335 DOI: 10.1016/j.jhazmat.2024.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In Australia, quality standards for composts and potting mixes are defined by AS4454-2012 and AS3743-2012. These standards outline key parameters, including physicochemical properties, nutrient content, and plant toxicity. However, they do not address emerging pollutants like microplastics (< 1 mm). This study investigates the prevalence and characteristics of MPs in commercial plant growth substrates (PGS), including nineteen potting mixes and five composts, revealing a significant occurrence of MPs, with concentrations ranging from 233 to 7367 particles Kg-1 and an average of 1869 ± 109 particles Kg-1. MPs categorized by shape, size, and color, with fragments (491 ± 34 particles Kg-1), white colour (3700 ± 917 particles Kg-1), and size 500 µm being predominant. The polymer composition was diverse, with polyethylene being the most prevalent, followed by polypropylene and others. Polyterpene, Polyalkene, Pentaerythritol, and Propylene glycol were identified in PGS for the first time. The structural equation model showed that physicochemical properties like pH, EC, TOC, and heavy metals influence MPs abundance and characteristics. The Polymer Risk Index and Pollution Load Index indicated varying risk levels among the samples. These findings highlight the need to address MPs contamination in PGS to ensure ecosystem safety and human health.
Collapse
Affiliation(s)
- Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Akila Ravindran
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Arun Chandra Manivannan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Mohanrasu Kulanthaisamy
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Zahra Sobhani
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
2
|
Bai X, Shoaib N, Pan Z, Pan K, Sun X, Wu X, Zhang L. Occurrence characteristics and ecological impact of agricultural soil microplastics in the Qinghai Tibetan Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136413. [PMID: 39504767 DOI: 10.1016/j.jhazmat.2024.136413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Plastic mulch is widely recognized as a significant contributor to microplastics (MPs) pollution in agricultural soil. However, its direct impact on remote areas with low population density remains uncertain due to multiple pollution sources. This study aims to investigate MPs pollution and its risks regarding agricultural soil in the Qinghai Tibetan Plateau (QTP) in China. The results revealed that soil samples from the study area exhibited a range of MPs abundance, varying from 16.67 to 950 items/kg, with the highest average abundance observed in Chengguan district (CG) soil samples (611.11 items/kg). Polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE) were identified as the predominant components of MPs in farmland soil. Furthermore, significantly higher levels of MPs were found in the facility agriculture soil compared to the control soil. Diversity and risk of MPs in different regions and cultivation conditions were significantly different. According to the employed risk assessment models, agricultural soil demonstrated a relatively high polymer risk (47 % of areas classified as level III). In addition to being influenced by exogenous factors, the diversity of MPs also plays an intrinsic role in regulating the risk of MPs pollution. This study contributes to an enhanced comprehension of the issue of MPs pollution in QTP farmland soil, providing valuable empirical evidence and theoretical underpinning for the development of efficacious control strategies.
Collapse
Affiliation(s)
- Xiaoyun Bai
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Xu J, Zuo R, Wu G, Liu J, Liu J, Huang C, Wang Z. Global distribution, drivers, and potential hazards of microplastics in groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176194. [PMID: 39270874 DOI: 10.1016/j.scitotenv.2024.176194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Since microplastics (MPs) were first detected in groundwater, an increasing number of studies have focused on groundwater pollution by MPs. However, knowledge of the global properties of groundwater MPs: distribution, concentration, composition, and morphology remains limited, while potential factors regulating their transport and distribution in groundwater, especially the hydrogeological background and climate warming conditions, have been omitted from most analyses. Furthermore, previous field investigations did not assess the risks posed by groundwater MPs to the environment and to human health, a necessary preliminary to remediation. In this work, to promote future MP pollution studies and remediation policies, we assimilated and synthesized the current knowledge on this topic. We reviewed current data on global groundwater pollution by MPs, analyzed the driving factors of their transport and distribution, and summarized the ecological and health hazards posed by MPs, before discussing current knowledge limits and suggesting perspectives for future work.
Collapse
Affiliation(s)
- Jun Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Guanlan Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Jingchao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jiawei Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Chenxi Huang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zhiwen Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
4
|
Ye F, Duan L, Wang Z, Wang Y, Kou X, Wan F, Wang Y. Sediment grain size regulates the biogeochemical processes of nitrate in the riparian zone by influencing nutrient concentrations and microbial abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176467. [PMID: 39326764 DOI: 10.1016/j.scitotenv.2024.176467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Riparian zones play a crucial role in reducing nitrate pollution in both terrestrial and aquatic environments. Complex deposition action and dynamic hydrological processes will change the grain size distribution of riparian sediments, affect the residence time of substances, and have a cascade effect on the biogeochemical process of nitrate nitrogen (NO3--N). However, simultaneous studies on NO3--N transformation and the potential drivers in riparian zones are still lacking, especially neglecting the effect of sediment grain size (SGS). To fill this knowledge gap, we first systematically identified and quantified NO3--N biogeochemical processes in the riparian zone by integrating molecular biotechnology, 15N stable isotope tracing, and microcosmic incubation experiments. We then evaluated the combined effects of environmental variables (including pH, dissolved organic carbon (DOC), oxidation reduction potential, SGS, etc.) on NO3--N transformation through Random Forest and Structural Equation Models. The results demonstrated that NO3--N underwent five microbial-mediated processes, with denitrification, dissimilatory nitrate reduction to ammonium (DNRA) dominated the NO3--N attenuation (69.4 % and 20.1 %, respectively), followed by anaerobic ammonia oxidation (anammox) and nitrate-dependent ferric oxidation (NDFO) (8.4 % and 2.1 %, respectively), while nitrification dominated the NO3--N production. SGS emerged as the most critical factor influencing NO3--N transformation (24.96 %, p < 0.01), followed by functional genes (nirS, nrfA) abundance, DOC, and ammonia concentrations (14.12 %, 16.40 %, 13.08 %, p < 0.01). SGS influenced NO3--N transformation by regulating microbial abundance and nutrient concentrations. RF predicted that a 5 % increase in the proportion of fine grains (diameter < 50 μm) may increase the NO3--N transformation rate by 3.8 %. This work highlights the significance of integrating machine learning and geochemical analysis for a comprehensive understanding of nitrate biogeochemical processes in riparian zones, contributing valuable references for future nitrogen management strategies.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Lei Duan
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China.
| | - Zhoufeng Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Yike Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| | - Xiaomei Kou
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi 710065, China; Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, Shaanxi 710065, China
| | - Fan Wan
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi 710065, China; Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi'an, Shaanxi 710065, China
| | - Yi Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, China
| |
Collapse
|
5
|
Li F, Gong Y, Yang X, Jiang Y, Cen Y, Zhang Z. Distribution characteristics and integrated ecological risks evaluation modelling of microplastics and heavy metals in geological high background soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173602. [PMID: 38848909 DOI: 10.1016/j.scitotenv.2024.173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/09/2024]
Abstract
The microplastics (MPs), a novel pollutant, and heavy metals (HMs) significantly affect soil ecology. The study investigated HMs and MPs in Qianxi's high geological background soil, established a model for risk evaluation with MPs types and shapes, and proposed a two-dimensional comprehensive index model for MPs-HMs combined pollution and risk evaluation criterion. The results revealed a high soil Cd concentration, with a mean value of 0.38 mg·kg-1. Additionally, soils from soybean-wheat intercropping-potato-corn rotation (SWI-PCR) exhibited significantly higher concentrations of Hg, As, and Pb compared with those from soybean-wheat intercropping-corn rotation (SWI-CR). Moreover, the soil exhibited a high abundance of MPs (8667.66 ± 3864.26 items·kg-1), mainly characterized by PS and fiber. The mean of adjusted ecological risk index (ARI) for MPs in soil was 525.27, indicating a grade 3 risk. The two-dimensional combined index (TPI) was used to assess the ecological risk of MPs-HMs combined pollution, exhibiting an exceedance rate of 56 % with a mean of 445.07. The risk level of the combined pollution was graded as 6, indicating high risk. The microplastic risk evaluation model and the comprehensive evaluation method of combined pollution established in this study provide a reference for the future risk evaluation of multi-pollutant combined pollution.
Collapse
Affiliation(s)
- Fupeng Li
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yufeng Gong
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yongcheng Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yunlei Cen
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhenming Zhang
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
6
|
Cui S, Yu W, Han X, Hu T, Yu M, Liang Y, Guo S, Ma J, Teng L, Liu Z. Factors influencing the distribution, risk, and transport of microplastics and heavy metals for wildlife and habitats in "island" landscapes: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134938. [PMID: 38901262 DOI: 10.1016/j.jhazmat.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Collapse
Affiliation(s)
- Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - XingZhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Hu
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Mengqi Yu
- Forest Pest Control and Quarantine Station of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Songtao Guo
- The College of Life Sciences, Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an 710069, China
| | - Jinlian Ma
- Inner Mongolia Helan Mountain National Natural Nature Reserve Administration, Alxa League, 750306, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| |
Collapse
|
7
|
Wang K, Li C, Li H, Liu Q, Khan K, Li F, Chen W, Xu L. Interactions of traditional and biodegradable microplastics with neonicotinoid pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174512. [PMID: 38972406 DOI: 10.1016/j.scitotenv.2024.174512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Neonicotinoid pesticides (NNPs) and microplastics (MPs) are two emerging contaminants in agricultural environment. However, the interaction between MPs (especially biodegradable plastics) and NNPs is currently unclear. Therefore, taking thiacloprid (THI) as an example of NNPs, this study explores the adsorption-desorption process and mechanism of NNPs on MPs (traditional and biodegradable plastics), and analyzed the main factors affecting the adsorption (pH, salinity and dissolved organic matter). In addition, by using diffusive gradients in thin-films device, this study assessed the impact of MPs on the bioavailability of NNPs in soil. The results showed that the maximum adsorption capacity of polyamide 6 (96.49 μg g-1) for THI was greater than that of poly (butylene adipate co-terephthalate) (88.78 μg g-1). Aging increased the adsorption amount of THI (5.53 %-15.8 %) due to the higher specific surface area and reduced contact angle of MPs, but the adsorption mechanism remained unchanged. The desorption amount of THI from MPs in simulated intestinal fluid is 1.30-1.36 times. The MPs in soil alter the distribution of THI in the soil, increasing the bioavailability of THI while inhibiting its degradation. The results highlighted the significance of examining the combined pollution caused by MPs and NNPs.
Collapse
Affiliation(s)
- Kang Wang
- School of Environmental Studies & MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Haifeng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Fang Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Wei Chen
- School of Environmental Studies & MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China.
| |
Collapse
|
8
|
Zhang F, Yang X, Zhang Z. Effects of soil properties and land use patterns on the distribution of microplastics: A case study in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120598. [PMID: 38490007 DOI: 10.1016/j.jenvman.2024.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microplastic pollution in the soil environment is of great concern. However, the current research on microplastics (MPs) in Southwest China mainly focuses on their distribution characteristics and sources in soil, making the understanding of the soil properties and land use patterns influencing soil MPs insufficient. In this study, the abundance and distribution characteristics of MPs in the soil of different land use patterns in Guizhou Province were determined. The results revealed that the average abundance of MPs in soils was 2936 items/kg, ranging from 780 to 9420 items/kg. The MPs were mainly small particle size (0-0.5 mm), granular, and black, accounting for 87.5%, 36.6%, and 82.2%, respectively. The most common polymer types of MPs were polypropylene, polyethylene terephthalate, and polyethylene, which accounted for 20.4%, 16.8%, and 16.4%, respectively. As soil bulk density increased, microplastic abundance and small particle size decreased. Soil microplastic abundance slightly decreased with increasing soil porosity. The abundance of MPs increased with the increase in soil pH, but no significant correlation was observed between soil organic matter content and microplastic abundance. pH was the major factor that affected the microplastic distribution, which accounted for 32.5%. This study provides insight into the distribution and influencing factors of soil MPs and also provides a theoretical basis for subsequent research on soil microplastic pollution.
Collapse
Affiliation(s)
- Fudong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
9
|
Nohara NML, Ariza-Tarazona MC, Triboni ER, Nohara EL, Villarreal-Chiu JF, Cedillo-González EI. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170382. [PMID: 38307272 DOI: 10.1016/j.scitotenv.2024.170382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 μm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.
Collapse
Affiliation(s)
- Nicoly Milhardo Lourenço Nohara
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Eduardo Rezende Triboni
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Evandro Luís Nohara
- Department of Mechanical Engineering, University of Taubaté, R. Daniel Daneli, no number, Taubaté, Brazil
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|
10
|
Lu L, Zhang R, Wang K, Tian J, Wu Q, Xu L. Occurrence, influencing factors and sources of atmospheric microplastics in peri-urban farmland ecosystems of Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168834. [PMID: 38036125 DOI: 10.1016/j.scitotenv.2023.168834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Atmosphere is an important component of the microplastics (MPs) cycle. However, studies on atmospheric MPs in peri-urban farmland ecosystems are limited. Herein, the occurrence, influencing factors and geographic sources of atmospheric MPs in peri-urban farmland ecosystems have been analyzed. The average deposition flux of atmospheric MPs was found to be 167.09 ± 92.03 item·m-2·d-1. Around 68 % MPs had particle size <1000 μm, while the main colors of MPs were black (40.71 %) and blue (20.64 %). Approximately 91 % MPs were fibers, while polyethylene terephthalate (49 %) and rayon (36.93 %) were observed as the major microplastic types. The main factors influencing the atmospheric deposition of MPs were gross domestic product (GDP), population density, air pressure, and wind direction. Deposition fluxes exhibited positive correlations with GDP, population density and air pressure, and negative correlations with wind direction. Combined with the backward trajectory model, MPs were mainly found to be originated from the southeast in September and from the northwest in October-February. The study of atmospheric MPs in farmland ecosystems in peri-urban areas is important for the protection of ecological environment, prevention of human diseases and control of MPs pollution.
Collapse
Affiliation(s)
- Luli Lu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruixuan Zhang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Kang Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiayu Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qixin Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
11
|
Zhang Z, Zhang F, Yang X, Zhang J. The occurrence and distributions characteristics of microplastics in soils of different land use patterns in Karst Plateau, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167651. [PMID: 37813260 DOI: 10.1016/j.scitotenv.2023.167651] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Microplastics (MPs) in soils have attracted attention worldwide. However, there are few studies on the abundance and morphological characteristics of MPs under different land use patterns in karst areas. In this work, the distribution characteristics of MPs in soils from five different land use patterns, including industrial mining warehouse (IW), cropland (CL), forest land (FL), grassland (GL), and garden land (GP) in karst mountainous areas of southwest China were investigated. The results suggested that soils in Karst Plateau of Guizhou province under different land use patterns have all been polluted by MPs. The average microplastic abundances of IW, CL, FL, GL, and GP were 3114, 2948, 2770, 2718, and 4200 item kg-1. In the GP and GL soils, foam was the dominant form of MPs (47.53 % and 45.92 %), with pellet MPs accounting for the smallest proportion, while in IW, CL, and FL soils showed the opposite result. The MPs in all soil samples were dominated by small particles (0-0.5 mm), and the main components were PE, PP, PVC, and PET. Meanwhile, the characteristics of MPs in CL soils varied depending on the planted crops. The average abundances of soil microplastics in farmlands planted with corn, pepper, cabbage, watermelon, and other crops were 2504, 2792, 2987, 2370, and 3655 item kg -1. We suggested that land use pattern and crop type may influence karst soil microplastic contamination. The results of this study provide a scientific basis for understanding and controlling the distribution, degradation, and migration of MP pollution in karst regions.
Collapse
Affiliation(s)
- Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Fudong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xiuyuan Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550004, China.
| |
Collapse
|