1
|
Chang X, Wang W, Zhou H. Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination. PLANTS (BASEL, SWITZERLAND) 2025; 14:748. [PMID: 40094724 PMCID: PMC11901465 DOI: 10.3390/plants14050748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3- in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species' preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant-soil interactions potentially influence soil N dynamics.
Collapse
Affiliation(s)
- Xingang Chang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| |
Collapse
|
2
|
Zheng W, Guo X, Zhou P, Tang L, Lai J, Dai Y, Yan W, Wu J. Vegetation restoration enhancing soil carbon sequestration in karst rocky desertification ecosystems: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122530. [PMID: 39293112 DOI: 10.1016/j.jenvman.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Vegetation restoration measures have been increasingly employed to alleviate rocky desertification in karst ecosystems. However, the comprehensive effects of these interventions on soil properties and soil organic carbon (SOC) remain poorly understood. Herein, we gathered 644 paired observations from 68 studies and conducted a meta-analysis to quantify the performance of different vegetation restoration measures including moss (MS), grassland (GL), cash crop (CP), shrub (SH), and secondary forest (SF) through soil properties and SOC. Our results demonstrated significant effects of MS, GL, CP, SH, and SF on soil biotic and abiotic factors, each with distinct response characteristics. Particularly, MS significantly enhanced all soil properties (excluding a slight decrease in soil pH by 10.8%). Moreover, MS, GL, CP, SH, and SF could elevate SOC by 32.1%, 17.6%, 24.9%, 59.2%, and 48.7% respectively. Utilizing random forest and linear regression models, we identified primary drivers for SOC in MS, GL, CP, SH, and SF as soil moisture content, arbuscular mycorrhizal fungi, soil microbial phosphorus, total nitrogen, and β-1,4-glucosidase, respectively. This meta-analysis underlined the varied effects of vegetation restoration measures on soil properties and advocates for restoration measures that prioritize plant productivity and reduce soil temperature during the karst rocky desertification restoration process. Additionally, this study underscores the pivotal role of vegetation rehabilitation in environmental conservation and carbon sequestration of ecologically vulnerable regions.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobin Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Ping Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Li Tang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jiaxin Lai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
3
|
Dar AA, Chen Z, Rodríguez-Rodríguez S, Haghighat F, González-Rosales B. Assessing greenhouse gas emissions in Cuban agricultural soils: Implications for climate change and rice (Oryza sativa L.) production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120088. [PMID: 38295640 DOI: 10.1016/j.jenvman.2024.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Assessing the impact of greenhouse gas (GHG) emissions on agricultural soils is crucial for ensuring food production sustainability in the global effort to combat climate change. The present study delves to comprehensively assess GHG emissions in Cuba's agricultural soil and analyze its implications for rice production and climate change because of its rich agriculture cultivation tradition and diverse agro-ecological zones from the period of 1990-2022. In this research, based on Autoregressive Distributed Lag (ARDL) approach the empirical findings depicts that in short run, a positive and significant impact of 1.60 percent % in Cuba's rice production. The higher amount of atmospheric carbon dioxide (CO2) levels improves photosynthesis, and stimulates the growth of rice plants, resulting in greater grain yields. On the other hand, rice production index raising GHG emissions from agriculture by 0.35 % in the short run. Furthermore, a significant and positive impact on rice production is found in relation to the farm machinery i.e., 3.1 %. Conversely, an adverse and significant impact of land quality was observed on rice production i.e., -5.5 %. The reliability of models was confirmed by CUSUM and CUSUM square plot. Diagnostic tests ensure the absence of serial correlation and heteroscedasticity in the models. Additionally, the forecasting results are obtained from the three machine learning models i.e. feed forward neural network (FFNN), support vector machines (SVM) and adaptive boosting technique (Adaboost). Through the % MAPE criterion, it is evident that FFNN has achieved high precision (91 %). Based on the empirical findings, the study proposed the adoption of sustainable agricultural practices and incentives should be given to the farmers so that future generations inherit a world that is sustainable, and healthy.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada H3G 1M8.
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada H3G 1M8.
| | | | - Fariborz Haghighat
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada H3G 1M8.
| | | |
Collapse
|
4
|
Solanki AC, Gurjar NS, Sharma S, Wang Z, Kumar A, Solanki MK, Kumar Divvela P, Yadav K, Kashyap BK. Decoding seasonal changes: soil parameters and microbial communities in tropical dry deciduous forests. Front Microbiol 2024; 15:1258934. [PMID: 38440136 PMCID: PMC10910104 DOI: 10.3389/fmicb.2024.1258934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.
Collapse
Affiliation(s)
| | - Narendra Singh Gurjar
- Department of Soil Science and Agriculture Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Satish Sharma
- Department of Plant Pathology, B. M. College of Agriculture, Khandwa, Madhya Pradesh, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Kajal Yadav
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
5
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|