1
|
Schlosser O, Courtois S, Bryche P, Fressinet C, Revel N, Loret JF. Defining alarm thresholds for the load of pathogenic viruses in wastewater for decision making: An application to three French cities. Int J Hyg Environ Health 2025; 266:114563. [PMID: 40090160 DOI: 10.1016/j.ijheh.2025.114563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Wastewater monitoring has the potential to complement infectious disease surveillance systems. However, the absence of predefined viral signal thresholds in wastewater is often presented as a limiting factor in triggering public health action. To overcome this issue, the feasibility of defining alarm threshold for viral loads in wastewater samples was assessed by quantifying genome fragments of SARS-CoV-2, influenza A virus (IAV), respiratory syncytial virus (RSV), norovirus (NoV), and rotavirus (RoV) by RT-digital PCR (dPCR) in untreated wastewater samples from three treatment plants. Cut-point values were calculated for periods with a high rate of visits to emergency rooms or at-home visits by SOS Médecins for the related diseases. ROC curves were constructed, and the values of alarm threshold in wastewater were defined using the Youden index. For each targeted virus, alarm thresholds were close to each other across the three WWTPs. As indicated by likelihood ratios, evidence to rule in the diagnosis of high rate of visits when the alarm threshold was exceeded ranged from weak to strong and was highest for RSV and SARS-CoV-2. Evidence to rule out the diagnosis when the alarm threshold was not exceeded was strong or moderate for IAV, SARS-CoV-2 and RSV. Diagnostic performance of the test was not as high for NoV and RoV. Positive predictive value was highest for SARS-CoV-2 and RSV. For SARS-CoV-2 and RSV, the definition of an alarm threshold in wastewater could substantially inform the diagnosis of a period with a high rate of medical visits for COVID-19 and bronchiolitis, respectively.
Collapse
Affiliation(s)
| | - Sophie Courtois
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230, Le Pecq, France
| | - Philippe Bryche
- SUEZ Opale Assainissement, 114 Rue de L'Amiral Ruyter, 59140, Dunkerque, France
| | | | - Nicolas Revel
- Agence Nord SUEZ Eau France, 219 Avenue Anatole France, 59410, Anzin, France
| | | |
Collapse
|
2
|
Omatola CA, Ogunsakin RE, Olaniran AO, Kumari S. Monkeypox Virus Occurrence in Wastewater Environment and Its Correlation with Incidence Cases of Mpox: A Systematic Review and Meta-Analytic Study. Viruses 2025; 17:308. [PMID: 40143239 PMCID: PMC11945618 DOI: 10.3390/v17030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The COVID-19 pandemic has increased the interest in the use of wastewater-based surveillance (WBS) strategy for infectious disease monitoring, especially when clinical cases are underreported. The excretion of monkey virus (MPXV) in the feces of both symptomatic and preclinical individuals has further driven the interest in WBS applicability to MPXV monitoring in wastewater to support its mitigation efforts. We performed a systematic review with meta-analysis, using six databases to assess MPXV detection in wastewater. We performed a random-effects model meta-analysis to calculate the pooled prevalence at a 95% confidence interval (95% CI). Also, we carried out a subgroup analysis according to the country regions and a sensitivity analysis excluding studies classified as having a high risk of bias. The overall MPXV positivity rate in wastewater was estimated at 22% (95% CI: 14-30%; I2 = 94.8%), with more detection rate in North America (26%, 95% CI: 8-43%) compared to Europe and Asia (22%, 95% CI: 12-31%). The MPXV detection rate was significantly higher in 2022 studies (22%, 95% CI: 13-31%) compared to 2023 (19%, 95% CI: 14-25%). The real-time PCR platform significantly detected more MPXV (24%, 95% CI: 14-34%) than the digital droplet PCR-based studies (17%, 95% CI: 4-31%), which was used less frequently. Viral concentration with centrifugation procedure indicated higher detection rates (21%, 95% CI: 10-33%) than other known sample concentration protocols. Generally, MPXV detection rates in wastewater samples strongly correlate with incidence cases of mpox (range of R = 0.78-0.94; p < 0.05). Findings from this study suggest that WBS of MPXV could be employed as an epidemiological early warning tool for disease monitoring and mpox outbreak prediction similar to the clinical case-based surveillance strategies.
Collapse
Affiliation(s)
- Cornelius A. Omatola
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
- Department of Microbiology, Kogi State University, Anyigba 272102, Nigeria
| | - Ropo E. Ogunsakin
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa;
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| |
Collapse
|
3
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
4
|
Li H, He F, Lv Z, Yi L, Zhang Z, Li H, Fu S. Tailored wastewater surveillance framework uncovered the epidemics of key pathogens in a Northwestern city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171833. [PMID: 38522539 DOI: 10.1016/j.scitotenv.2024.171833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Wastewater surveillance enables rapid pathogen monitoring and community prevalence estimation. However, how to design an integrated and tailored wastewater surveillance framework to monitor major health threats in metropolises remains a major challenge. In this study, we first analyzed the historical clinical data of Xi'an city and designed a wastewater surveillance framework covering five key endemic viruses, namely, SARS-CoV-2, norovirus, influenza A virus (IAV), influenza B virus (IBV), respiratory syncytial virus (RSV), and hantavirus. Amplicon sequencing of SARS-CoV-2, norovirus and hantavirus was conducted biweekly to determine the prevalent community genotypes circulating in this region. The results showed that from April 2023 to August 2023, Xi'an experienced two waves of SARS-CoV-2 infection, which peaked in the middle of May-2023 and late August-2023. The sewage concentrations of IAV and RSV peaked in early March and early May 2023, respectively, while the sewage concentrations of norovirus fluctuated throughout the study period and peaked in late August. The dynamics of the sewage concentrations of SARS-CoV-2, norovirus, IAV, RSV, and hantavirus were in line with the trends in the sentinel hospital percent positivity data, indicating the role of wastewater surveillance in enhancing the understanding of epidemic trends. Amplicon sequencing of SARS-CoV-2 revealed a transition in the predominant genotype, which changed from DY.1 and FR.1.4 to the XBB and EG.5 subvariants. Amplicon sequencing also revealed that there was only one predominant hantavirus genotype in the local population, while highly diverse genotypes of norovirus GI and GII were found in the wastewater. In conclusion, this study provided valuable insights into the dynamics of infection trends and predominant genotypes of key pathogens in a city without sufficient clinical surveillance, highlighting the role of a tailored wastewater surveillance framework in addressing public health priorities. More importantly, our study provides the first evidence demonstrating the applicability of wastewater surveillance for hantavirus, which is a major health threat locally.
Collapse
Affiliation(s)
- Haifeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Fenglan He
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liu Yi
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | - Hui Li
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China.
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China; The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China.
| |
Collapse
|