1
|
Li J, Ji C, Wang Y, Peng C, Yang S, Li Y, Tao E. Study on the synergistic carbon sequestration mechanism of Firmicutes in soil induced by highly conjugated Fe 2O 3@leather scraps-derived collagen-based biochar. Int J Biol Macromol 2025; 311:143760. [PMID: 40324492 DOI: 10.1016/j.ijbiomac.2025.143760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
In this paper, highly conjugated Fe2O3@leather scraps-derived biochar (FBC) was successfully prepared, which effectively solved the problem of organic carbon mineralization in soil and slowed down the release of CO2 while realizing the resource utilization of dander. The reactive groups in collagen macromolecules provide an ideal template for the formation of FeO coordination and conjugated structures. The formation of conjugated structures (CC, pyridine nitrogen) and Fe2O3 reduced the carbon loss during pyrolysis, resulting in a 36.96 % increase in carbon sequestration. Meanwhile, FBC induced a shift in the soil bacterial community towards the carbon stabilizing specific phylum Firmicutes, by improving soil pH and water content, resulting in a relative abundance of up to 80 %. The addition of FBC reduced the mineralization rate of organic carbon in the soil to 0.47 mg CO2/(g‧d), and increased the total organic carbon content to 48.25 %. This study confirmed the feasibility of Fe2O3@leather scraps-based biochar for carbon sequestration in soil, closely combined the "molecular advantages" of biomolecules with the "engineering needs" of soil remediation, and realized the high-value utilization of collagen molecules, which broadened the application fields of biomolecules.
Collapse
Affiliation(s)
- Jianhua Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Cheng Ji
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., Ltd, Jinzhou 121013, Liaoning, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai 264005, Shandong, China.
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
2
|
Cao H, Liu J, Ma S, Wu X, Fu Y, Gao Y. Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration. PLANTS (BASEL, SWITZERLAND) 2024; 13:2428. [PMID: 39273914 PMCID: PMC11397000 DOI: 10.3390/plants13172428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Long-term excessive use of fertilizers and intensive cultivation not only decreases soil organic carbon (SOC) and productivity, but also increases greenhouse gas emissions, which is detrimental to sustainable agricultural development. The purpose of this paper is to identify organic amendments suitable for winter wheat growth in the North China Plain by studying the effects of organic amendments on the economic benefits, carbon emissions, and carbon sequestration for winter wheat fields and to provide a theoretical basis for the wide application of organic amendments in agricultural fields. The two nitrogen rates were N0 (0 kg ha-1) and N240 (240 kg ha-1), and the four organic amendments were straw, manure, mushroom residue (M R), and biochar. The results showed that, compared to N0, N240 significantly increased the yield by 244.1-318.4% and the organic carbon storage by 16.7-30.5%, respectively, but increased the carbon emissions by 29.3-45.5%. In addition, soil carbon stocks increased with all three types of organic amendments compared to the straw amendment, with the biochar treatment being the largest, increasing carbon storage by 13.3-33.6%. In terms of yield and economic benefits, compared to the straw amendment, the manure and biochar amendments increased winter wheat yields by 0.0-1.5% and 4.0-13.3%, respectively, and M R slightly decreased wheat yield; only the economic benefit of the M R amendment was greater than that of the straw amendment, with an increase in economic benefit of 1.3% and 8.2% in the 2021-2022 and 2022-2023 seasons, respectively. Furthermore, according to the net ecosystem productivity (NEP), N0 was the source of CO2, while N240 was a sink of CO2. The TOPSIS results showed that N240 with a mushroom residue amendment could be recommended for increasing soil carbon stocks and economic benefits for winter wheat in the NCP and similar regions. Low-cost M R can increase farmer motivation and improve soil organic carbon, making a big step forward in the spread of organic materials on farmland.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junming Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xiaolei Wu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
3
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhang L, Zhang F, Zhang K, Liao P, Xu Q. Effect of agricultural management practices on rice yield and greenhouse gas emissions in the rice-wheat rotation system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170307. [PMID: 38272082 DOI: 10.1016/j.scitotenv.2024.170307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Agricultural management practices (AMPs) have the potential to significantly enhance crop yield, albeit with the possible side effect of escalating greenhouse gas emissions. Few studies have undertaken a comprehensive quantification of the impact of AMPs on crop production and soil GHG, particularly in identifying the optimal AMPs for rice cultivation within rice-wheat rotation system. Here, we combined data analysis and keyword search methods on 1433 individual experimental observations from 172 studies on diverse soil types in the subtropical monsoon climate zone of China to assess the impact of AMPs on rice yield, CH4 and N2O emissions, total greenhouse gas emissions (TGHGE). We focused on four key AMPs: mineral N fertilizer management (including ordinary N fertilizer and slow-/controlled-release fertilizer (SCRF)), organic material management (incorporating organic fertilizer, biochar amendment, and straw return), water-saving irrigation, and no-tillage. Our result showed the rice yield ranged from 2525 to 31,196 kg ha-1, and mineral N fertilizer and organic material management boosted rice yield by 2.84-16.19 % and 2.47-8.52 %, respectively. In terms of N2O emissions, biochar amendment resulted in a decrease of 13.05 %, while ordinary N fertilizer, organic fertilizer, and water-saving irrigation led to increases of 63.16 %, 136.66 %, and 37.41 %, respectively. The implementation of SCRF, water-saving irrigation, and no-tillage significantly curtailed CH4 (6.83 %-35.91 %) and TGHGE (6.22 %-20.59 %). Conversely, organic fertilizer and straw return significantly escalated CH4 emissions by 102.20 % and 33.64 % and TGHGE by 85.03 % and 32.40 %. Rice yield and GHG emissions are mainly influenced by variables such as soil bulk density, pH, soil organic carbon, soil texture, mean annual temperature, and total nitrogen. Our study demonstrates that the application of SCRF, water-saving irrigation, and no-tillage can effectively reduce GHG without compromising yield. These practices are particularly effective under climatic and soil conditions of rice-wheat rotation systems in China, thereby contributing to the sustainable rice farming.
Collapse
Affiliation(s)
- Li Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kaiping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ping Liao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Li X, Wu D, Liu X, Huang Y, Cai A, Xu H, Ran J, Xiao J, Zhang W. A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Sci Data 2024; 11:57. [PMID: 38195633 PMCID: PMC10776752 DOI: 10.1038/s41597-023-02867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Biochar application is widely studied to mitigate the threats of soil degradation to food security and climate change. However, there are big variations in the effects of biochar application on crops, soils, and the atmosphere during crop production. This study provides a global dataset of biochar application effects on crop yield, soil properties, and greenhouse emissions. The dataset is extracted and integrated from 367 peer-reviewed studies with 891 independent field, laboratory, and incubation experiments across 37 countries. This dataset includes 21 variables before and after biochar application (including soil properties, crop yield, greenhouse gas emissions, etc.) of 2438 items, focusing on two main biochar application types: biochar application alone and combined with fertilizers. Background information on climate conditions, initial soil properties, management practices, and characteristics of biochar sources and production is also contained in the dataset. This dataset facilitates a comprehensive understanding of the impact of biochar application, supports the utilization of agricultural wastes for biochar production, and assists researchers in refining experimental protocols for further studies.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- TERRA Teaching and Research Centre, Gembloux AgroBio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Dong Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaping Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Andong Cai
- Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hu Xu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College Natural of Resources and Environment, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jiwei Ran
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|