1
|
Zhang Y, Qin W, Qiao L. Characteristics of the vertical variation in water quality indicators of aquatic landscapes in urban parks: A case study of Xinxiang, China. PLoS One 2024; 19:e0314860. [PMID: 39637136 PMCID: PMC11620695 DOI: 10.1371/journal.pone.0314860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The quality of landscape water directly impacts the recreational and leisure experiences of the public. Factors such as water clarity, color, and taste can influence public perception, while contaminants like heavy metals, algae, and microorganisms may pose health risks. Stratified monitoring can reveal variations in the physical, chemical, and biological properties of water at different depths, thereby providing a more comprehensive understanding of water quality and aiding in the identification of pollution sources. This study examined aquatic landscapes at five parks in Xinxiang, China, monitoring thirteen indicators including Water Temperature (WT), Chroma (Ch), Turbidity (Tu), Suspended Solids (SS), Electrical Conductivity (EC), pH, Dissolved Oxygen (DO), Total Nitrogen (TN), Total Phosphorus (TP), Chemical Oxygen Demand (COD), Fe, Zn, and Cu. Utilizing the single-factor evaluation method, the water quality level of each indicator was assessed in accordance with the Water Quality Standard for Scenery and Recreation Area of the People's Republic of China (GB12941-91). The findings revealed significant vertical variations in the levels of TN, TP, COD, Fe, Zn and Cu of aquatic landscapes at parks, while WT, Ch, Tu, SS, EC, and DO showed no marked differences (P>0.05). The monthly dynamics of the water quality indicators indicated generally consistent trends for WT, Ch, Tu, SS, EC, DO, TN, TP, Zn, and Cu, albeit with varying degrees of fluctuation; however, the trends for EC, pH, COD, and Fe exhibited greater variability. These results offer valuable insights for the environmental protection and management of aquatic landscapes in urban parks. Stratified monitoring can capture the dynamic changes in water quality, assisting managers in developing more effective water quality management strategies.
Collapse
Affiliation(s)
- Yichuan Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Wenke Qin
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Lifang Qiao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
2
|
Liu L, Zhang X, Schorn S, Doda T, Kang M, Bouffard D, Kirillin G, Milucka J, Shi X, Grossart HP. Strong Subseasonal Variability of Oxic Methane Production Challenges Methane Budgeting in Freshwater Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19690-19701. [PMID: 39445507 DOI: 10.1021/acs.est.4c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Methane (CH4) accumulation in the well-oxygenated lake epilimnion enhances the diffusive atmospheric CH4 emission. Both lateral transport and in situ oxic methane production (OMP) have been suggested as potential sources. While the latter has been recently supported by increasing evidence, quantifying the exact contribution of OMP to atmospheric emissions remains challenging. Based on a large high-resolution field data set collected during 2019-2020 in the deep stratified Lake Stechlin and on three-dimensional hydrodynamic modeling, we improved existing CH4 budgets by resolving each component of the mass balance model at a seasonal scale and therefore better constrained the residual OMP. All terms in our model showed a large temporal variability at scales from intraday to seasonal, and the modeled OMP was most sensitive to the surface CH4 flux estimates. Future efforts are needed to reduce the uncertainties in estimating OMP rates using the mass balance approach by increasing the frequency of atmospheric CH4 flux measurements.
Collapse
Affiliation(s)
- Liu Liu
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, 650500 Kunming, China
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Xin Zhang
- National Institute of Natural Hazards, Ministry of Emergency Management of China, 100085 Beijing, China
- Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Sina Schorn
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Tomy Doda
- Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, Mouline, CH-1015 Lausanne, Switzerland
| | - Manchun Kang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, 443002 Yichang, China
| | - Damien Bouffard
- Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, Mouline, CH-1015 Lausanne, Switzerland
| | - Georgiy Kirillin
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, 443002 Yichang, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Liu J, Xue F, Guo X, Yang Z, Kang M, Chen M, Ji D, Liu D, Xiao S, Wang C. Methane dynamics altered by reservoir operations in a typical tributary of the Three Gorges Reservoir. WATER RESEARCH 2024; 263:122163. [PMID: 39111214 DOI: 10.1016/j.watres.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
Substantial nutrient inputs from reservoir impoundment typically increase sedimentation rate and primary production. This can greatly enhance methane (CH4) production, making reservoirs potentially significant sources of atmospheric CH4. Consequently, elucidating CH4 emissions from reservoirs is crucial for assessing their role in the global methane budget. Reservoir operations can also influence hydrodynamic and biogeochemical processes, potentially leading to pronounced spatiotemporal heterogeneity, especially in reservoirs with complex tributaries, such as the Three Gorges Reservoir (TGR). Although several studies have investigated the spatial and temporal variations in CH4 emissions in the TGR and its tributaries, considerable uncertainties remain regarding the impact of reservoir operations on CH4 dynamics. These uncertainties primarily arise from the limited spatial and temporal resolutions of previous measurements and the complex underlying mechanisms of CH4 dynamics in reservoirs. In this study, we employed a fast-response automated gas equilibrator to measure the spatial distribution and seasonal variations of dissolved CH4 concentrations in XXB, a representative area significantly impacted by TGR operations and known for severe algal blooms. Additionally, we measured CH4 production rates in sediments and diffusive CH4 flux in the surface water. Our multiple campaigns suggest substantial spatial and temporal variability in CH4 concentrations across XXB. Specifically, dissolved CH4 concentrations were generally higher upstream than downstream and exhibited a vertical stratification, with greater concentrations in bottom water compared to surface water. The peak dissolved CH4 concentration was observed in May during the drained period. Our results suggest that the interplay between aquatic organic matter, which promotes CH4 production, and the dilution process caused by intrusion flows from the mainstream primarily drives this spatiotemporal variability. Importantly, our study indicates the feasibility of using strategic reservoir operations to regulate these factors and mitigate CH4 emissions. This eco-environmental approach could also be a pivotal management strategy to reduce greenhouse gas emissions from other reservoirs.
Collapse
Affiliation(s)
- Jia Liu
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China; Post Doctoral Research Station of Hydraulic Engineering of Three Gorges University, Yichang 443002, China
| | - Fei Xue
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China.
| | - Xiaojuan Guo
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China
| | - Zhengjian Yang
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China
| | - Manchun Kang
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China
| | - Min Chen
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China
| | - Daobin Ji
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China
| | - Defu Liu
- College of Resources Environment Sciences, Hubei University of Technology, Wuhan, China
| | - Shangbin Xiao
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Yichang 443002, China.
| | - Chenghao Wang
- School of Meteorology, University of Oklahoma, Norman 73072, OK, USA; Department of Geography and Environmental Sustainability, University of Oklahoma, Norman 73019, OK, USA.
| |
Collapse
|
4
|
Kang M, Liu L, Grossart HP. Spatio-temporal variations of methane fluxes in sediments of a deep stratified temperate lake. iScience 2024; 27:109520. [PMID: 38591008 PMCID: PMC11000008 DOI: 10.1016/j.isci.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Spatio-temporal variability of sediment-mediated methane (CH4) production in freshwater lakes causes large uncertainties in predicting global lake CH4 emissions under different climate change and eutrophication scenarios. We conducted extensive sediment incubation experiments to investigate CH4 fluxes in Lake Stechlin, a deep, stratified temperate lake. Our results show contrasting spatial patterns in CH4 fluxes between littoral and profundal sites. The littoral sediments, ∼33% of the total sediment surface area, contributed ∼86.9% of the annual CH4 flux at the sediment-water interface. Together with sediment organic carbon quality, seasonal stratification is responsible for the striking spatial difference in sediment CH4 production between littoral and profundal zones owing to more sensitive CH4 production than oxidation to warming. While profundal sediments produce a relatively small amount of CH4, its production increases markedly as anoxia spreads in late summer. Our measurements indicate that future lake CH4 emissions will increase due to climate warming and concomitant hypoxia/anoxia.
Collapse
Affiliation(s)
- Manchun Kang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Yichang 443002, China
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, Yichang 443002, China
| | - Liu Liu
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Ma S, Yang M, Chen X, Wang F, Xia Y, Xu P, Ma J, Luo C, Zhou C, Xu T, Zhu Y. Microbial methanogenesis in aerobic water: A key driver of surface methane enrichment in a deep reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120481. [PMID: 38447515 DOI: 10.1016/j.jenvman.2024.120481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Significant amounts of the greenhouse gas methane (CH4) are released into the atmosphere worldwide via freshwater sources. The surface methane maximum (SMM), where methane is supersaturated in surface water, has been observed in aquatic systems and contributes significantly to emissions. However, little is known about the temporal and spatial variability of SMM or the mechanisms underlying its development in artificial reservoirs. Here, the community composition of methanogens as major methane producers in the water column and the mcrA gene was investigated, and the cause of surface methane supersaturation was analyzed. In accordance with the findings, elevated methane concentration of SMM in the transition zone, with an annually methane emission flux 2.47 times higher than the reservoir average on a large and deep reservoir. In the transition zone, methanogens with mcrA gene abundances ranging from 0.5 × 103-1.45 × 104 copies/L were found. Methanobacterium, Methanoseata and Methanosarcina were the three dominate methanogens, using both acetic acid and H2/CO2 pathways. In summary, this study contributes to our comprehension of CH4 fluxes and their role in the atmospheric methane budget. Moreover, it offers biological proof of methane generation, which could aid in understanding the role of microbial methanogenesis in aerobic water.
Collapse
Affiliation(s)
- Shuwen Ma
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Meilin Yang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yue Xia
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Peifan Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Chai Luo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Canran Zhou
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Tian Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
6
|
Mao Y, Lin T, Li H, He R, Ye K, Yu W, He Q. Aerobic methane production by phytoplankton as an important methane source of aquatic ecosystems: Reconsidering the global methane budget. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167864. [PMID: 37866611 DOI: 10.1016/j.scitotenv.2023.167864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Biological methane, a major source of global methane budget, is traditionally thought to be produced in anaerobic environments. However, the recent reports about methane supersaturation occurring in oxygenated water layer, termed as "methane paradox", have challenged this prevailing paradigm. Significantly, growing evidence has indicated that phytoplankton including prokaryotic cyanobacteria and eukaryotic algae are capable of generating methane under aerobic conditions. In this regard, a systematic review of aerobic methane production by phytoplankton is expected to arouse the public attention, contributing to the understanding of methane paradox. Here, we comprehensively summarize the widespread phenomena of methane supersaturation in oxic layers. The remarkable correlation relationships between methane concentration and several key indicators (depth, chlorophyll a level and organic sulfide concentration) indicate the significance of phytoplankton in in-situ methane accumulation. Subsequently, four mechanisms of aerobic methane production by phytoplankton are illustrated in detail, including photosynthesis-driven metabolism, reactive oxygen species (ROS)-driven demethylation of methyl donors, methanogenesis catalyzed by nitrogenase and demethylation of phosphonates catalyzed by CP lyase. The first two pathways occur in various phytoplankton, while the latter two have been specially discovered in cyanobacteria. Additionally, the effects of four crucial factors on aerobic methane production by phytoplankton are also discussed, including phytoplankton species, light, temperature and crucial nutrients. Finally, the measures to control global methane emissions from phytoplankton, the precise intracellular mechanisms of methane production and a more complete global methane budget model are definitely required in the future research on methane production by phytoplankton. This review would provide guidance for future studies of aerobic methane production by phytoplankton and emphasize the potential contribution of aquatic ecosystems to global methane budget.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; Lingzhi Environmental Protection Co., Ltd, Wuxi 214200, China
| | - Tong Lin
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|