1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025; 25:841-866. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Li C, Xiang Y, Liu M, Wang Z, Wu Y, Yang Q, Huang L. Selenium alleviates cadmium-induced biological aging acceleration and the potential mediating role of inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118361. [PMID: 40413928 DOI: 10.1016/j.ecoenv.2025.118361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/23/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Aging and heavy metal pollution are global challenges, and cadmium (Cd) may negatively affect aging. However, effective interventions for Cd toxicity among populations remain insufficient. Selenium (Se) is recognized for its protective effects against heavy metal toxicity and aging. This study utilized data from the National Health and Nutrition Examination Survey (2015-2018) to explore the individual and joint effects of Cd and Se on biological aging acceleration, measured by Klemera-Doubal method biological age acceleration (KDM-BA-Accel) (n = 7119) and Phenotypic age acceleration (PhenoAge-Accel) (n = 7433). Results showed that Cd was positively associated with KDM-BA-Accel (β = 0.57) and PhenoAge-Accel (β = 0.77), while Se had negative associations with both (β values were -4.01 and -5.30, respectively). Nonlinear analyses revealed J-shaped associations for Cd and L-shaped for Se with aging indicators. Moreover, inflammation significantly mediated the Cd-aging and Se-aging relationships. Most importantly, a significant negative interaction between Cd and Se on PhenoAge-Accel (β for interaction = -1.29) suggested an antagonistic effect, particularly among never smokers. Increasing Se content can mitigate the harmful effects of Cd on PhenoAge-Accel were demonstrated through three methods. Specifically, ⅰ) compared to "Cd (-) & Se (-)" group, "Cd (+) & Se (-)" group had β = 0.87, while "Cd (+) & Se (+)" group was non-significant; ⅱ) higher Se content was associated with a lower increase in PhenoAge-Accel as Cd content rose; ⅲ) there were no significant associations between Cd & Se mixture and aging indicators (both p > 0.310). These findings highlight Se supplementation as a potential strategy to counteract Cd-induced aging, offering a new direction for public health interventions in polluted populations.
Collapse
Affiliation(s)
- Chen Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, PR China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuerong Xiang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingliang Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yangyang Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qinyi Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lei Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, PR China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University (Suzhou) High-Tech Institute, Suzhou 215123, PR China.
| |
Collapse
|
3
|
Wang X, Xu C, Wang H, Du B, Wang Q, Li Z, Xu Z, Wang Z, Wang B, Ouyang F, Wang J, Sun K. Association of Maternal Whole Blood Selenium with Cardiac Structure at 4 years of Age:a prospective birth cohort study. J Nutr 2025:S0022-3166(25)00284-6. [PMID: 40368297 DOI: 10.1016/j.tjnut.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/18/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Currently, little is known about the relationship between maternal blood selenium levels and offspring cardiac structure. OBJECTIVES This study aimed to evaluate the association of maternal whole blood selenium levels during early pregnancy with children's cardiac structure at 4 years of age. METHODS Using data from the Shanghai Birth Cohort, this study analyzed the data from 956 mother-child pairs. Multiple linear or logistic regressions and restricted cubic spline were used to explore the association of maternal whole blood selenium levels with offspring cardiac structure. RESULTS Low maternal selenium levels were associated with increased left ventricular posterior wall thickness at systole (LVPWs) (β = 0.29, 95%CI: 0.06, 0.53), left ventricular posterior wall thickness at diastole (LVPWd) (β = 0.17, 95%CI: 0.01, 0.31), and relative wall thickness (RWT) (β = 0.011, 95%CI: 0.003, 0.019) in male offspring. Moreover, maternal selenium showed a U-shape curve with left ventricular mass index (LVMI) (P for nonlinearity = 0.002), LVPWd (P for nonlinearity = 0.035), IVSd (P for nonlinearity = 0.006) and RWT (P for nonlinearity = 0.013) in male offspring. However, no significant association of structural changes was found in female offspring. Compared with offspring with medium maternal selenium levels, the increased risk of left ventricular hypertrophy (LVH) (OR = 4.14; 95% CI: 1.81, 9.45) was only found in male offspring with lower maternal selenium levels. CONCLUSIONS Low maternal selenium levels were associated with cardiac structural changes and higher LVH risk in preschool male offspring, while no correlation was found in female offspring.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caifang Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchuo Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yu J, Zhang R, Yang A, Yang J, Zhang Y, Wu R, Luo F, Luo H, Chen R, Luo B, Ma L. Cross-sectional associations between multiple plasma heavy metals and lung function among elderly Chinese. Sci Rep 2025; 15:8695. [PMID: 40082571 PMCID: PMC11906836 DOI: 10.1038/s41598-025-93525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Environmental exposure to heavy metals may adversely affect lung function particularly in the elderly. However, limited data are available directly evaluating the relationship of heavy metal exposures with lung function in Chinese elderly. We aimed to investigate the associations between plasma metals and lung function among Chinese elderly residents. We conducted a cross-sectional study of 308 elderly residents in an industrial area and a non-industrial area in northwest China and estimated the single and combined effects of plasma metals and their interactions with lung functions (forced vital capacity [FVC], forced expiratory volume in 1 s [FEV1], and FEV1/FVC). We analyzed 12 plasma metals and identified 4 metals by lasso regression and BKMR model for further analysis. Bayesian kernel machine regression (BKMR) and quantile-g computation (QG-comp) models estimated four metals that had greater importance in lung function indicators, namely strontium (Sr), chromium (Cr), cobalt (Co) and nickel (Ni). Subgroup analyses were performed based on the resident areas. Both BKMR and QG-comp models showed metal mixtures was positively associated with FEV1/FVC (0.046 [0.017,0.075]) among all participants but of negative association with FVC, and similar results were found among participants in non-industrial area. The subgroup analysis by region showed higher heavy metal levels in industrial areas than non-industrial area. Sr concentrations were lower in non-industrial area, but they had a negative effect on FVC. In conclusion, plasma Sr, Cr, Co, and Ni levels are significant associated with lung function particularly with restrictive ventilatory dysfunction among the Chinese elderly population.
Collapse
Affiliation(s)
- Junpu Yu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rongxuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Lanzhou City, Lanzhou, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region (SAR), China
| | - Jingli Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiwen Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Rongjie Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Fanhui Luo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huiling Luo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Lanzhou City, Lanzhou, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Zwolak I. Disentangling the role of selenium in antagonizing the toxicity of arsenic and cadmium. Arch Toxicol 2025; 99:513-540. [PMID: 39776200 DOI: 10.1007/s00204-024-03918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| |
Collapse
|
6
|
Wielsøe M, Long M, Bønløkke JH, Bossi R, Ebbehøj NE, Rasmussen K, Sigsgaard T, Bonefeld-Jørgensen EC. Persistent organic pollutants among seafood processing workers in West Greenland. Int J Hyg Environ Health 2025; 263:114484. [PMID: 39514925 DOI: 10.1016/j.ijheh.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The Greenlandic population is highly exposed to persistent organic pollutants (POPs) through the consumption of traditional marine food, including marine mammals. Central to Greenland's economy and cultural identity, the fishing industry employes about 15% of the working population. This study investigated POP exposure, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFASs), among seafood processing workers at the Greenlandic west coast. We examined determinants for the POPs including age, smoking habits, ethnicity, and working place. Additionally, we explored the association between POPs and the prevalence of asthma, allergy, and lung function. With samples taken during 2016-2018, the study encompassed 382 workers, primarily of Inuit descent (93%), employed across three large factories located in Nuuk, Sisimiut, and Ilulissat, four smaller factories in settlements (Kangaatsiaq, Ikerasaarsuk, Sarfannguaq, Qeqertarsuaq), and four factory trawlers. Data collected include clinical examinations, questionnaires on ethnicity, occupational exposure status, health indicators, and smoking habits, and serum selenium and POP analyses. We used ANCOVA with adjustment for relevant confounders to assess differences in POPs between groups (e.g. ethnic groups and working place), and multiple linear and logistic regressions were used to assess associations between POPs and lung function, allergy and asthma. Significant differences in POPs were observed among ethnic groups; Faroese workers had the highest concentrations of lipophilic POPs (lipPOPs; PCBs and OCPs), while Inuit workers exhibited highest PFASs. All subsequent analyses were focused on the Inuit workers (n = 337). The PFASs were significantly higher in workers at small factories, followed by large factories and trawlers, whereas no differences were seen for lipPOPs. The differences between the working places were most likely due to differences in lifestyle and diet, but occupational exposures cannot be excluded. LipPOP and PFAS concentrations associated positively with selenium, and PFASs positively associated with lung function. However, upon adjustment of selenium, the associations between PFASs and lung function became non-significant and attenuated towards null. No significant associations were found between POPs and the prevalence of asthma or allergy. Compared to the general population in the same area and period, the seafood processing workers exhibited 2-6 times higher POP levels. The higher exposure level among seafood processing workers, as well as the difference across workplaces, underscore the need for further investigation of environmental and occupational sources of POPs in this population. These findings may contribute to future public health strategies and regulatory measures to reduce POP exposure in Arctic populations.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark.
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Jakob Hjort Bønløkke
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Havrevangen 1, 9000, Aalborg, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Social Medicine, Holbæk Hospital, Gammel Ringstedvej 4B, 4300, Holbæk, Denmark
| | - Kurt Rasmussen
- Department of Occupational Medicine, Danish Ramazzini Center, Regional Hospital Goedstrup, Hospitalsparken 16, 7400, Herning, Denmark
| | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905, Nuussuaq, Greenland
| |
Collapse
|
7
|
Zhang C, Yan W, Sun X, Lin F. Association between dietary fiber intake and chronic kidney disease in adults with and without hypertension in the United States: a cross-sectional study of NHANES 2009-2020. Ren Fail 2024; 46:2415514. [PMID: 39412048 PMCID: PMC11486002 DOI: 10.1080/0886022x.2024.2415514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
While previous research has highlighted the potential advantages of increasing dietary fiber intake (DFI) for managing hypertension and chronic kidney disease (CKD), there is a gap in large-scale empirical studies examining the relationship between DFI and CKD among hypertensive and nonhypertensive cohorts independently. This study involved 22,871 participants sourced from the NHANES database spanning 2009 to 2020, who were divided into hypertensive (n = 9,861) and nonhypertensive (n = 13,010) groups. The analysis revealed a significant inverse correlation between DFI and CKD prevalence across the sample after adjusting for various covariates (OR = 0.98, 95% CI: 0.97-0.99, p = 0.001). Within the subset of hypertensive individuals, this inverse association mirrors the findings of the overall sample, indicating that a higher DFI was associated with a reduced occurrence of CKD (OR = 0.97, 95% CI: 0.96-0.99, p < 0.001). However, this correlation was not detected in the nonhypertensive group (OR = 0.99, 95% CI: 0.98-1.01, p = 0.285). The RCS analysis further confirmed a pronounced nonlinear inverse relationship between DFI and CKD prevalence in both the entire cohort and the hypertensive group but not in the nonhypertensive group. Further scrutiny of the hypertensive group revealed that individuals with a higher DFI had 33% lower odds of CKD progression for the moderate risk level and 36% lower odds for the high to very high risk level. Subgroup analyses confirmed the consistency of these relationships across various demographics. In summary, this investigation revealed a significant inverse relationship between DFI and CKD prevalence in US adults with hypertension, a relationship not observed in nonhypertensive individuals.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Weimin Yan
- Department of Intensive Care Unit, Bethune International Peace Hospital, Shijiazhuang, China
| | - Xun Sun
- Department of Respiratory and Critical Care Medicine, Bethune International Peace Hospital, Shijiazhuang, China
| | - Fansen Lin
- Department of Patient Management, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Huang RG, Li KD, Wu H, Wang YY, Xu Y, Jin X, Du YJ, Wang YY, Wang J, Lu ZW, Li BZ. The correlation between single and mixed trace elements exposure in systemic lupus erythematosus: A case-control study. J Trace Elem Med Biol 2024; 86:127524. [PMID: 39293108 DOI: 10.1016/j.jtemb.2024.127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Recent studies have shown an association between trace elements and systemic lupus erythematosus (SLE), but the relationship between trace elements and SLE is still unclear. This study aims to determine the distribution of plasma trace elements in newly diagnosed SLE patients and the association between these essential and toxic element mixtures and SLE. METHODS In total, 110 SLE patients and 110 healthy controls were included. Blood samples were collected. 15 plasma trace elements were quantified using an inductively coupled plasma mass spectrometer (ICP-MS). Multivariate logistic regression, restricted cubic spline (RCS), weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) are used to analyze the association between single and mixed exposure of elements and SLE. RESULTS The logistic regression model shows that, plasma lithium (Li) [OR (95 % CI): 1.963 (1.49-2.586)], vanadium (V) [OR (95 % CI): 2.617(1.645-4.166)] and lead (Pb) [OR (95 % CI): 1.603(1.197-2.145)] were positively correlated with SLE, while selenium (Se) [OR (95 % CI): 0.055(0.019-0.157)] and barium (Ba) [OR (95 % CI): 0.792(0.656-0.957)] had been identified as protective factors for SLE. RCS results showed a non-linear correlation between the elements Li, V, Ni, copper, Se, rubidium and SLE. In addition, WQS regression, qgcomp, and BKMR models consistently revealed significant positive effects of plasma Li and Pb on SLE, as well as significant negative effects of plasma Se. CONCLUSIONS Exposure to heavy metals such as Li and Pb is significantly positively correlated with SLE, but Se may be protective factors for SLE. In addition, there is a nonlinear correlation between the elements Li and Se and SLE, and there are complex interactions between the elements. In the future, larger populations and prospective studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ya Xu
- School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhang-Wei Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
9
|
Zhang C, Cheng Q, Yang X, Zhao W, Luo K, Qin Y. Association of dietary niacin intake with all-cause and cardiovascular mortality of adult patients with chronic kidney disease in the United States: results from NHANES 1999-2018. Front Nutr 2024; 11:1436836. [PMID: 39279901 PMCID: PMC11392853 DOI: 10.3389/fnut.2024.1436836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The relationship between dietary niacin intake (DNI) and mortality rates among patients afflicted with chronic kidney disease (CKD) is a subject of debate. Utilizing data derived from the National Health and Nutrition Examination Survey (NHANES), this study adopts a retrospective cohort design with an aim to investigate the association in the American adult patients with CKD. Methods A cohort study was conducted in the National Health and Nutrition Examination Survey (NHANES) between 2009 and 2018 that enrolled 6,191 CKD patients aged 20 years and above. We collected data on mortality through 31 December 2018. DNI was measured using a 24-h recall method. The relationship between DNI levels and mortality from all causes and cardiovascular causes was analyzed using weighted Cox proportional hazards models. The Kaplan-Meier (K-M) survival curve was plotted to illustrate these associations. Results Following a median monitoring period of 85 months, it was observed that 2,419 individuals (33.08%) succumbed to all causes, whereas cardiovascular-related deaths were recorded for 746 participants (10.45%). When controlling for confounders, an inverse relationship was established between DNI and mortality rates. Specifically, a marginal increase of 1 mg/day in DNI corresponded to a reduced Hazard Ratios (HRs) of 0.993 (0.987, 0.999; p = 0.027) for all-cause mortality and 0.980 (0.969, 0.991; p < 0.001) for cardiovascular mortality. A further stratified analysis by quartiles of DNI, with the lowest quartile serving as the reference, revealed that the highest quartile was associated with HRs of 0.820 (0.697, 0.966) for all-cause mortality and 0.663 (0.465, 0.944) for cardiovascular mortality, both displaying a significant trend (p < 0.001). However, a subdivision of CKD patients by age showed that the protective effects of higher DNI were only confined to individuals aged 60 years and above but not to those under 60 years of age. Conclusion A negative correlation between DNI and mortality due to all causes and cardiovascular issues among CKD patients aged 60 and above was revealed based on the datasets; however, this association was not observed in younger individuals under 60. Consequently, enhancing DNI might serve as a beneficial therapeutic strategy specifically for the older CKD demographic.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Qi Cheng
- Outpatient Department, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Xinjun Yang
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Wei Zhao
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Kaifa Luo
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Yunlong Qin
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Jiang H, Yang G, Chen J, Yuan S, Wu J, Zhang J, Zhang L, Yuan J, Lin J, Chen J, Yin Y. The correlation between selenium intake and lung function in asthmatic people: a cross-sectional study. Front Nutr 2024; 11:1362119. [PMID: 38826577 PMCID: PMC11141543 DOI: 10.3389/fnut.2024.1362119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Objective This study aimed to examine the correlation between selenium intake and lung function in asthmatic people. Methods A total of 4,541 individuals in the US National Health and Nutrition Examination Survey (NHANES) were included in this study. Multivariate linear regression, variance inflation factor, restricted cubic splines and quantile regression were used to analyze the relationship between Se intake and lung function. We divided selenium intake into four levels based on quartiles: Q1: Se ≤ 76.75 mcg/d; Q2: 76.75-105.1 mcg/d; Q3: 105.1-137.65 mcg/d; and Q4: Se ≥137.65 mcg/d. Results Asthma was negatively associated with the Ratio of Forced Expiratory Volume 1st Second to Forced Vital Capacity (FEV1/FVC) (β = -0.04, 95% CI: -0.06 to -0.02) and FEV1 (β = -215, 95% CI: -340 to -90). Se intake was positively associated with Forced Expiratory Volume 1st Second (FEV1) (β =3.30 95% CI: 2.60 to 4.00) and Forced Vital Capacity (FVC) (β =4.30, 95% CI: 3.50 to 5.10). In asthmatic individuals, the positive effects of Se intake on FVC were enhanced with increasing Se intake, while the positive effects of Se intake on FEV1 varied less dramatically. High Se intake (Q4 level, above 137.65 mcg/d) improved FVC (β = 353, 95% CI: 80 to 626) and FEV1 (β = 543, 95% CI: 118 to 969) in asthmatic patients compared to low Se intake (Q1 level, below 76.75 mcg/d). At the Q2 level (76.75-105.1 mcg/d) and Q4 level (Se ≥137.65 mcg/d) of Se intake, the correlation between FEV1 and asthma disappeared. Conclusion Our research has revealed a positive correlation between selenium intake and lung function in asthma patients and the strength of this positive correlation is related to the amount of selenium intake. We recommend that asthma patients consume 137.65 mcg to 200 mcg of selenium daily to improve pulmonary function while avoiding the adverse effects of selenium on the human body.
Collapse
Affiliation(s)
- Hejun Jiang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guijun Yang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Yuan
- Medical Department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jilei Lin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
- Shanghai Children’s Medical Center Pediatric Medical Complex (Pudong), Shanghai, China
| |
Collapse
|
11
|
Zhang L, Shi WY, Zhang LL, Sha Y, Xu JY, Shen LC, Li YH, Yuan LX, Qin LQ. Effects of selenium-cadmium co-enriched Cardamine hupingshanensis on bone damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116101. [PMID: 38359653 DOI: 10.1016/j.ecoenv.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Sha
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Le-Cheng Shen
- Jiangxi Center of Quality Supervision and Inspection for Selenium-enriched Products/Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Liang Y, Wang J, Wang T, Li H, Yin C, Liu J, Wei Y, Fan J, Feng S, Zhai S. Moderate selenium mitigates hand grip strength impairment associated with elevated blood cadmium and lead levels in middle-aged and elderly individuals: insights from NHANES 2011-2014. Front Pharmacol 2023; 14:1324583. [PMID: 38161700 PMCID: PMC10757617 DOI: 10.3389/fphar.2023.1324583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Selenium (Se) has been reported to have an antagonistic effect on heavy metals in animals. Nevertheless, there is a lack of epidemiological research examining whether Se can mitigate the adverse effects of cadmium (Cd) and lead (Pb) on hand grip strength (HGS) in middle-aged and elderly individuals. Methods: This study used data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). HGS measurements were conducted by trained examiners with a dynamometer. Concentrations of Se, Cd, and Pb in blood were determined via inductively coupled plasma mass spectrometry. We employed linear regression, restricted cubic splines, and quantile g-computation (qgcomp) to assess individual and combined associations between heavy metals and HGS. The study also explored the potential influence of Se on these associations. Results: In both individual metal and multi-metal models adjusted for confounders, general linear regression showed Se's positive association with HGS, while Cd and Pb inversely related to it. At varying Se-Cd and Se-Pb concentrations, high Se relative to low Se can attenuate Cd and Pb's HGS impact. An inverted U-shaped correlation exists between Se and both maximum and combined HGS, with Se's benefit plateauing beyond approximately 200 μg/L. Stratified analysis by Se quartiles reveals Cd and Pb's adverse HGS effects diminishing as Se levels increase. Qgcomp regression analysis detected Se alleviating HGS damage from combined Cd and Pb exposure. Subsequent subgroup analyses identified the sensitivity of women, the elderly, and those at risk of diabetes to HGS impairment caused by heavy metals, with moderate Se supplementation beneficial in mitigating this effect. In the population at risk for diabetes, the protective role of Se against heavy metal toxicity-induced HGS reduction is inhibited, suggesting that diabetic individuals should particularly avoid heavy metal-induced handgrip impairment. Conclusion: Blood Cd and Pb levels are negatively correlated with HGS. Se can mitigate this negative impact, but its effectiveness plateaus beyond 200 μg/L. Women, the elderly, and those at risk of diabetes are more vulnerable to HGS damage from heavy metals. While Se supplementation can help, its protective effect is limited in high diabetes risk groups.
Collapse
Affiliation(s)
- Yafeng Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junqi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Hangyu Li
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chaohui Yin
- School of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jialin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yulong Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Junxing Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Centre France Chine de la Médecine Chinoise, Selles sur Cher, France
| | - Shuangqing Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|