1
|
Yang X, Li H, Xie H, Ma Y, Yu Y, Liu Q, Kuang J, Zhang M, Liu J, Zhao B. Mangrove Against Invasive Snails: Aegiceras corniculatum Shows a Molluscicidal Effect on Exotic Apple Snails ( Pomacea canaliculata) in Mangroves. PLANTS (BASEL, SWITZERLAND) 2025; 14:823. [PMID: 40094819 PMCID: PMC11902146 DOI: 10.3390/plants14050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Apple snails (Pomacea canaliculata), one of the 100 most serious invasive species in the world, have invaded mangrove wetlands due to their salinity tolerance. We firstly prepared a plant molluscicide against apple snails based on the mangrove Aegiceras corniculatum in coastal wetland. The effects of four mangrove extracts from A. corniculatum, including ethanol extract (EE), petroleum ether extract (PEE), ethyl acetate extract (EAE), and n-butanol extract (BE), were studied for molluscicidal activity against apple snails in a saline environment. The LC50 values at 48 h of EE, PEE, EAE, and BE were 25 mg/L, 123 mg/L, 170 mg/L, and 14 mg/L, respectively. BE had the highest molluscicidal value (96.7%) against apple snails at 48 h. At 48 h, BE of A. corniculatum leaves significantly decreased the soluble sugar content, soluble protein content, acetylcholinesterase, and glutathione of apple snails to 4.25 mg/g, 29.50 mg/g, 947.1 U/gprot, and 6.22 U/gprot, respectively, compared to those in the control. The increased BE concentration significantly enhanced the malondialdehyde and aspartate aminotransferase contents to 4.18 mmol/gprot and 18.9 U/gprot at 48 h. Furthermore, the damage in the hepatopancreas tissue of apple snails increased, and the cellular structure became necrotic as the concentration of BE from A. corniculatum increased. The content of palmitic acid in BE of A. corniculatum leaves was the highest (10.9%), possibly be a toxic ingredient against apple snails. The n-butanol extract of A. corniculatum leaves showed a potential to control apple snails in the brackish water, and its plantation was beneficial to control the further spread of apple snails in mangrove wetlands.
Collapse
Affiliation(s)
- Xinyan Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Hongmei Li
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Huizhen Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Yanfang Ma
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Yuting Yu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Qingping Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Junhao Kuang
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Miaoying Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| | - Jinling Liu
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Benliang Zhao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.)
| |
Collapse
|
2
|
Li Y, Ma J, Fu D, Yuan J, Liu D. Mangrove Extraction Algorithm Based on Orthogonal Matching Filter-Weighted Least Squares. SENSORS (BASEL, SWITZERLAND) 2024; 24:7224. [PMID: 39599002 PMCID: PMC11598151 DOI: 10.3390/s24227224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
High-precision extraction of mangrove areas is a crucial prerequisite for estimating mangrove area as well as for regional planning and ecological protection. However, mangroves typically grow in coastal and near-shore areas with complex water colors, where traditional mangrove extraction algorithms face challenges such as unclear region segmentation and insufficient accuracy. To address this issue, in this paper we propose a new algorithm for mangrove identification and extraction based on Orthogonal Matching Filter-Weighted Least Squares (OMF-WLS) target spectral information. This method first selects GF-6 remote sensing images with less cloud cover, then enhances mangrove feature information through preprocessing and band extension, combining whitened orthogonal subspace projection with the whitened matching filter algorithm. Notably, this paper innovatively introduces Weighted Least Squares (WLS) filtering technology. WLS filtering precisely processes high-frequency noise and edge details in images using an adaptive weighting matrix, significantly improving the edge clarity and overall quality of mangrove images. This innovative approach overcomes the bottleneck of traditional methods in effectively extracting edge information against complex water color backgrounds. Finally, Otsu's method is used for adaptive threshold segmentation of GF-6 remote sensing images to achieve target extraction of mangrove areas. Our experimental results show that OMF-WLS improves extraction accuracy compared to traditional methods, with overall precision increasing from 0.95702 to 0.99366 and the Kappa coefficient rising from 0.88436 to 0.98233. In addition, our proposed method provides significant improvements in other metrics, demonstrating better overall performance. These findings can provide more reliable technical support for the monitoring and protection of mangrove resources.
Collapse
Affiliation(s)
| | | | | | | | - Dazhao Liu
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.M.); (D.F.); (J.Y.)
| |
Collapse
|
3
|
Zhu H, Zeng W, Chen M, He D, Cheng X, Yu J, Liu Y, Wu Y, Yang D. Endophytic Fungal Diversity of Mangrove Ferns Acrostichum speciosum and A. aureum in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:685. [PMID: 38475531 DOI: 10.3390/plants13050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
Microbial communities are an important component of mangrove ecosystems. In order to reveal the diversity of endophytic fungi in the mangrove ferns Acrostichum speciosum and A. aureum in China, the internal transcribed spacer (ITS) regions of endophytic fungi in four plant tissues (leaves, petioles, roots, and rhizomes) from three locations (Zhanjiang, Haikou, and Wenchang) were sequenced. The richness, species composition, and community similarity were analyzed. The main results are as follows: the dominant fungi in A. speciosum and A. aureum belonged to the phyla Ascomycota and Basidiomycota, accounting for more than 75% of the total identified fungi; in terms of species composition at the operational taxonomic unit (OTU) level, the endophytic fungi in A. aureum were more diverse than those in A. speciosum, and the endophytic fungi in rhizomes were more diverse than in other tissues. In Zhanjiang, both A. speciosum and A. aureum showed the richest diversity of endophytic fungi, both at the OTU classification level and in terms of species composition. Conversely, the richness of endophytic fungi in the samples of A. speciosum from Wenchang and Haikou is extremely low. The regional differences in dominant fungi increase with the degrading of taxonomic levels, and there were also significant differences in the number of unique fungi among different origins, with Zhanjiang samples having a larger number of unique fungi than the other locations. There were significant differences in the dominant fungi among different tissues, with Xylariales being the dominant fungi in rhizomes of A. speciosum and Hypocreales being the dominant fungi in the petioles, roots, and rhizomes of A. aureum. Overall, the community similarity of endophytic fungi among locations is moderately dissimilar (26-50%), while the similarity between tissues is moderately similar (51-75%). The low diversity of endophytic fungi could be one of the main reasons for the endangerment of A. speciosum. The protection of the diversity of endophytic fungi in the underground parts of A. speciosum is essential for the conservation of this critically endangered mangrove fern.
Collapse
Affiliation(s)
- Hongjuan Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wending Zeng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Manman Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Dan He
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Xialan Cheng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| |
Collapse
|
4
|
Dabalà A, Dahdouh-Guebas F, Dunn DC, Everett JD, Lovelock CE, Hanson JO, Buenafe KCV, Neubert S, Richardson AJ. Priority areas to protect mangroves and maximise ecosystem services. Nat Commun 2023; 14:5863. [PMID: 37735160 PMCID: PMC10514197 DOI: 10.1038/s41467-023-41333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Anthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services. We reveal that despite 13.5% of the mangrove distribution being currently strictly protected, all mangrove species are not adequately represented and many areas that provide disproportionally large ecosystem services are missed. Optimising the placement of future conservation efforts to protect 30% of global mangroves potentially safeguards an additional 16.3 billion USD of coastal property value, 6.1 million people, 1173.1 Tg C, and 50.7 million fisher days yr-1. Our findings suggest that there is a pressing need for including ecosystem services in protected area design and that strategic prioritisation and coordination of mangrove conservation could provide substantial benefits to human wellbeing.
Collapse
Affiliation(s)
- Alvise Dabalà
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia.
- Systems Ecology and Resource Management Research Unit (SERM), Department of Organism Biology, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium.
- Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium.
| | - Farid Dahdouh-Guebas
- Systems Ecology and Resource Management Research Unit (SERM), Department of Organism Biology, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium
- Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), Zoological Society of London, London, UK
- Interfaculty Institute of Social-Ecological Transitions, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Daniel C Dunn
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
| | - Jason D Everett
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
- Centre for Marine Science and Innovation (CMSI), The University of New South Wales, Sydney, NSW, Australia
| | - Catherine E Lovelock
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), Zoological Society of London, London, UK
| | | | - Kristine Camille V Buenafe
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
| | - Sandra Neubert
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Institute of Computer Science, Leipzig University, Leipzig, Germany
| | - Anthony J Richardson
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
| |
Collapse
|