1
|
Wang S, Liu J, Kang R, Liu Y, Zhao X, Wang L, Wu Z, Lei Y, Li J. Effect of polystyrene micro/nanoplastics on PCBs removal in constructed wetlands planted with Myriophyllum aquaticum. ENVIRONMENTAL RESEARCH 2025; 269:120887. [PMID: 39828187 DOI: 10.1016/j.envres.2025.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCBs removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood. This study examined the influence of polystyrene MPs and NPs of two different sizes on PCBs fate in constructed wetlands featuring Myriophyllum aquaticum. Results showed that although there was no significant difference in overall PCBs removal rates, the presence of MPs increased residues of highly chlorinated PCBs from 331 μg/kg to 379 μg/kg, while the presence of NPs increased residues of lightly chlorinated PCBs from 125 μg/kg to 153 μg/kg. Additionally, MPs and NPs increased plant uptake of PCBs from 0.08% to 0.10-0.14%, despite potential inhibition of plant growth. While MPs/NPs elevated microorganism counts, they did not affect microbial diversity or community structure. Importantly, MPs significantly inhibited the main PCB-dechlorinating bacteria (Dehalococcoidia) and had a greater impact on PCB-degrading enzymes (dioxygenase, K03381) compared to NPs. This study highlights the complex interactions between MPs/NPs and PCBs in wetland environments and their implications for bioremediation strategies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jun Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Rongjie Kang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Ya Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xuan Zhao
- College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China
| | - LiTing Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Zhaocheng Wu
- Guangdong Agribusiness Tropical Agriculture Institute Co., Ltd, China
| | - Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China.
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Yang H, Zhao H, Mao H, Pu Y, Peng Q, Xu Z, Zhang X, Huang F, Li Z. Lower concentration polyethylene microplastics can influence free-floating macrophyte interactions by combined effects of many weak interactions: A nonnegligible ecological impact. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107028. [PMID: 39047441 DOI: 10.1016/j.aquatox.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.
Collapse
Affiliation(s)
- Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Hongbo Zhao
- The Forestry Prospect & Design Institute of Hubei Province, Wuhan, 430223, PR China
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Yunhai Pu
- Wildlife Conservation Chief Station of Hubei Province, Wuhan, PR China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
3
|
Wang T, Yang X, Ouyang S, Huang W, Ma G, Liu S, Zhu Y, Zhang Y, Li H, Yu H. The native submerged plant, Hydrilla verticillata outperforms its exotic confamilial with exposure to polyamide microplastic pollution: Implication for wetland revegetation and potential driving mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107029. [PMID: 39047440 DOI: 10.1016/j.aquatox.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution and biological invasion, as two by-products of human civilization, interfere the ecological function of aquatic ecosystem. The restoration of aquatic vegetation has been considered a practical approach to offset the deterioration of aquatic ecosystem. However, a lack of knowledge still lies in the species selection in the revegetation when confronting the interference from microplastic pollution and exotic counterpart. The present study subjected the native submerged species, Hydrilla verticillata and its exotic confamilial, Elodea nuttallii to the current and future scenarios of polyamide microplastic pollution. The plant performance proxies including biomass and ramet number were measured. We found that the native H. verticillata maintained its performance while the exotic E. nuttallii showed decreases in biomass and ramet number under severest pollution conditions. The restoration of native submerged plant such as H. verticillata appeared to be more effective in stabilizing aquatic vegetation in the scenario of accelerating microplastic pollution. In order to explore the underlying driving mechanism of performance differentiation, stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal microbiome were investigated. We found that polyamide microplastic had weak effects on stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal diversity, reflecting the decoupling between these indicators and plant performance. However, the relative abundance of sediment arbuscular mycorrhizal fungi for H. verticillata significantly increased while E. nuttallii gathered "useless" ectomycorrhizal fungi at the presence of severest polyamide microplastic pollution. We speculate that the arbuscular mycorrhizal fungi assisted the stabilization of plant performance for H. verticillata with exposure to the severest polyamide microplastic pollution.
Collapse
Affiliation(s)
- Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xue Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shiyu Ouyang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wangyang Huang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guiyue Ma
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shengwen Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yinuo Zhu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yi Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haifang Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
4
|
Gao Q, Lu X, Li J, Wang P, Li M. Impact of microplastics on nicosulfuron accumulation and bacteria community in soil-earthworms system. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133414. [PMID: 38181595 DOI: 10.1016/j.jhazmat.2023.133414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) widely co-occur with various pollutants in soils. However, the data related to the impacts of MPs on terrestrial animal and microbial properties in pesticide-contaminated soils are few. In this study, the influence of MPs (0.01%, 0.1%, and 1%) on nicosulfuron concentrations in soil (10 µg/g) and earthworms were investigated, moreover, microbial community structure and diversity in soil and earthworm gut were also measured. After 30 days, the concentration of nicosulfuron in soil decreased to 1.27 µg/g, moreover, the residual concentration of nicosulfuron in soil (1%MPs and nicosulfuron) was only 44.8% of that in the single nicosulfuron treatment group. The accumulation of nicosulfuron in earthworms (1%MPs and nicosulfuron) was 7.37 µg/g, which was 1.82 times of that in the single nicosulfuron treatment group. In addition, 1% MPs decreased the richness and diversity of the soil and gut bacterial community in earthworms as well as altered microbial community composition, leading to the enrichment of specific microbial community. Our findings imply that MPs may change the migration of pesticides to terrestrial animal and as well as microbial diversity in earthworms and soil.
Collapse
Affiliation(s)
- Qingchuan Gao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jinfeng Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ping Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Tao M, Zhang C, Zhang Z, Zuo Z, Zhao H, Lv T, Li Y, Yu H, Liu C, Yu D. Species-specific functional trait responses of canopy-forming and rosette-forming macrophytes to nitrogen loading: Implications for water-sediment interactions. ENVIRONMENT INTERNATIONAL 2024; 185:108557. [PMID: 38458117 DOI: 10.1016/j.envint.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Globally intensified lake eutrophication, attributed to excessive anthropogenic nitrogen loading, emerges as a significant driver of submerged vegetation degradation. Consequently, the impact of nitrogen on the decline of submerged macrophytes has received increasing attention. However, a functional trait-based approach to exploring the response of submerged macrophytes to nitrogen loading and its environmental feedback mechanism was unclear. Our study utilized two different growth forms of submerged macrophytes (canopy-forming Myriophyllum spicatum, and rosette-forming Vallisneria natans) to established "submerged macrophytes-water-sediment" microcosms. We assessed the influence of nitrogen loading, across four targeted total nitrogen concentrations (original control, 2, 5, 10 mg/L), on plant traits, water parameters, sediment properties, enzyme activities, and microbial characteristics. Our findings revealed that high nitrogen (10 mg/L) adversely impacted the relative growth rate of fresh biomass and total chlorophyll content in canopy-forming M. spicatum, while the chlorophyll a/b and free amino acid content increased. On the contrary, the growth and photosynthetic traits of resource-conservative V. natans were not affected by nitrogen loading. Functional traits (growth, photosynthetic, and stoichiometric) of M. spicatum but not V. natans exhibited significant correlations with environmental variables. Nitrogen loading significantly increased the concentration of nitrogen components in overlying water and pore water. The presence of submerged macrophytes significantly reduced the ammonia nitrogen and total nitrogen both in overlying water and pore water, and decreased total organic carbon in pore water. Nitrogen loading significantly inhibited sediment extracellular enzyme activities, but the planting of submerged macrophytes mitigated their negative effects. Furthermore, rhizosphere bacterial interactions were less compact compared to bare control, while eukaryotic communities exhibited increased complexity and connectivity. Path modeling indicated that submerged macrophytes mitigated the direct effects of nitrogen loading on overlying water and amplified the indirect effects on pore water, while also attenuating the direct negative effects of pore water on extracellular enzymes. The findings indicated that the restoration of submerged vegetation can mitigate eutrophication resulting from increased nitrogen loading through species-specific changes in functional traits and direct or indirect feedback mechanisms in the water-sediment system.
Collapse
Affiliation(s)
- Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haocun Zhao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|