1
|
Barrick A, Berg MB, Hoang TC. Alteration to organismal behavior due to microplastic exposure. ENVIRONMENTAL RESEARCH 2025; 277:121622. [PMID: 40250583 DOI: 10.1016/j.envres.2025.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Influx of plastics into the biosphere has faced increased public scrutiny in the last twenty years. Plastics fragment into particles at the microscale which can lead them to interact with organisms in unanticipated ways. Research has focused on hazards linked to ingestion of microplastics with little research focused on how secondary effects influence organismal behavior and interspecies relationships. Plastics do not establish homogenous test suspensions; they either float or sink. The present study investigated how the presence of microplastics influenced the behavior of Daphnia magna, and two planktivorous fish, Pimephales promelas and Gambusia affinis. The study investigated two plastic types: fluorescent microspheres and microplastic fragments. The results demonstrated that microplastics influenced the behavior of the organisms with effects dependent on species and plastic type. Microplastics attracted D. magna and decreased their mobility and total swimming distance. Both fish species were more often found at the bottom of the chamber and their behavior was linked to D. magna location. Some changes in fish mobility were observed with fluorescent microspheres. Coloration of microplastics may have influenced the organism's responses results and further research is needed. Results of the present study reveal a potential effect of microplastics on communal distribution of aquatic organisms in natural ecosystems.
Collapse
Affiliation(s)
- Andrew Barrick
- Ecotoxicology and Risk Assessment Laboratory, School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, Alabama, USA.
| | - Martin B Berg
- Department of Biology, Loyola University Chicago, Illinois, USA
| | - Tham C Hoang
- Ecotoxicology and Risk Assessment Laboratory, School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
2
|
Zhang HC, Yang XQ, Wang CH, Shang CY, Shi CY, Chen GW, Liu DZ. Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107310. [PMID: 40058299 DOI: 10.1016/j.aquatox.2025.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Cai-Hui Wang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Yang Shang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| |
Collapse
|
3
|
Babkiewicz E, Nowakowska J, Zebrowski ML, Kunijappan S, Jarosińska K, Maciaszek R, Zebrowski J, Jurek K, Maszczyk P. Microplastic Passage through the Fish and Crayfish Digestive Tract Alters Particle Surface Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5693-5703. [PMID: 40085149 PMCID: PMC11948475 DOI: 10.1021/acs.est.4c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Most studies on the effects of organisms on microplastic characteristics have focused on microorganisms, while the impact of animal feeding behavior, particularly in aquatic species like fish and decapod crustaceans, has been less explored. This study examines how polyethylene spherical microplastics (275 μm in diameter) passing through the digestive tracts of crucian carp (Carassius carassius) and Australian crayfish (Cherax quadricarinatus) affect surface properties, particle size, and bacterial colonization. The species were fed diets with or without microplastics. The particles underwent two rounds of passage through the digestive tracts and were then exposed to known bacterial densities. Surface damage, size, and biofilm coverage were analyzed using scanning electron microscopy, while alterations in surface chemical composition were assessed through Fourier transform infrared spectroscopy with attenuated total reflectance, and the formation and penetration of nanoplastics in gut tissues and glands were determined using Py-GC/MS. Results show that the passage significantly altered surface properties and reduced microplastic size, without affecting chemical composition or nanoplastic penetration into tissues. These changes promoted bacterial colonization compared to controls. The findings suggest that animal feeding activity may play an important role in the mechanical fragmentation of microplastics in aquatic environments, potentially leading to their faster degradation.
Collapse
Affiliation(s)
- Ewa Babkiewicz
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Warsaw 02-089, Poland
| | - Julita Nowakowska
- Imaging
Laboratory, Faculty of Biology, University
of Warsaw, Warsaw 00-927, Poland
| | - Marcin L. Zebrowski
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Selvaraj Kunijappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, India
| | - Katarzyna Jarosińska
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Rafał Maciaszek
- Warsaw
University of Life Sciences, Institute of
Animal Science, Department of Animal Genetics and Conservation, Warsaw 02-787, Poland
| | - Jacek Zebrowski
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Krzysztof Jurek
- Faculty
of Geology, Geophysics and Environmental
Protection at the AGH University of Krakow, Kraków 30-059, Poland
| | - Piotr Maszczyk
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| |
Collapse
|
4
|
Liu Z, Wang G, Ye X, Zhang X, Jiang Y, Han Y, Lu L, Liu Z, Zhang H. Multigenerational toxic effects in Daphnia pulex are induced by environmental concentrations of tire wear particle leachate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136977. [PMID: 39724716 DOI: 10.1016/j.jhazmat.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Microplastic pollution has emerged as the second most significant scientific issue in environmental science and ecology. Similarly, the biological effects of tire wear particles (TWPs) have garnered considerable research attention; however, studies on chronic TWP leachate toxicity at environmentally relevant concentrations remain sparse. Here, we investigated the effects of TWP leachate at environmentally relevant concentrations (0.3 mg/L and 3 mg/L) on multigenerational and transgenerational Daphnia pulex for 21 days/generation, spanning three generations (F0-F2). Growth and reproductive indices (body length, growth rate, time to first clutch, number of clutches, and total offspring/female) across generations were analyzed. Multigenerational exposure to TWP leachate did not cause D. pulex death, but impaired growth and development, prolonged sexual maturity time, and reduced reproductive capacity. The transgenerational exposure group (3 mg/L) also exhibited some sub-lethal effects, such as delayed reproduction, suggesting a transgenerational impact. Gene transcription analyses and weighted gene co-expression network analysis showed that the most impacted pathways were associated with lysosome function, apoptosis, and glutathione metabolism, indicating that TWP leachate exposure compromised immune defense mechanisms and disrupted APs, CTSB, GST, DUSP1, and ERN1 gene expression. These findings underscore multigenerational toxicity effects and TWP leachate transmission patterns on aquatic organisms at realistic environmental concentrations.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Guanghui Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xindi Ye
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
5
|
Cao Z, Kim C, Song J, Li Z, Jung J. Distinct Effect of Benzophenone-3 Additive Leaching from Polyethylene Microplastics on Daphnia magna Population Dynamics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:18. [PMID: 39831975 DOI: 10.1007/s00128-024-03995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The adverse effect of chemical additives leaching from microplastics (MPs) on Daphnia magna populations is not fully understood. In this study, D. magna populations were exposed to polyethylene (PE) MP fragments (5.0 mg/L), PE MP fragments containing the ultraviolet stabilizer benzophenone-3 (MP/BP-3 fragments, 5.0 mg/L), and BP-3 leachate (79 ± 10 µg/L) from PE MP/BP-3 fragments. The test duration was 42 days to observe the population dynamics of D. magna. BP-3 leachate delayed the development and somatic growth of D. magna, resulting in a significantly lower (p < 0.05) population size (number of organisms) compared with the control group. For instance, the population size was 7.7 ± 8.1 and 115 ± 3.5 (n = 3), respectively, at 18 d. However, both MP and MP/BP-3 fragments did not significantly decrease (p > 0.05) the population size of D. magna until day 18. These findings suggest that chemical additive leachates from MPs may have a distinct adverse effect on aquatic organisms, requiring further comprehensive investigation.
Collapse
Affiliation(s)
- Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinyoung Song
- Exposure & Toxicology Research Center, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Zhihua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125133. [PMID: 39419463 DOI: 10.1016/j.envpol.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Persistent chemicals from industrial processes, particularly perfluoroalkyl substances (PFAS), have become pervasive in the environment due to their persistence, long half-lives, and bioaccumulative properties. Used globally for their thermal resistance and repellence to water and oil, PFAS have led to widespread environmental contamination. These compounds pose significant health risks with exposure through food, water, and dermal contact. Aquatic wildlife is particularly vulnerable as water bodies act as major transport and transformation mediums for PFAS. Their co-occurrence with microplastics may intensify the impact on aquatic species by influencing PFAS sorption and transport. Despite progress in understanding the occurrence and fate of PFAS and microplastics in aquatic ecosystems, the toxicity of PFAS mixtures and their co-occurrence with other high-concern compounds remains poorly understood, especially over organisms' life cycles. Our study investigates the chronic toxicity of PFAS and microplastics on the sentinel species Daphnia, a species central to aquatic foodwebs and an ecotoxicology model. We examined the effects of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and polyethylene terephthalate microplastics (PET) both individually and in mixtures on Daphnia ecological endpoints. Unlike conventional studies, we used two Daphnia genotypes with distinct histories of chemical exposure. This approach revealed that PFAS and microplastics cause developmental failures, delayed sexual maturity and reduced somatic growth, with historical exposure to environmental pollution reducing tolerance to these persistent chemicals due to cumulative fitness costs. We also observed that the combined effect of the persistent chemicals analysed was 59% additive and 41% synergistic, whereas no antagonistic interactions were observed. The genotype-specific responses observed highlight the complex interplay between genetic background and pollutant exposure, emphasizing the importance of incorporating multiple genotypes in environmental risk assessments to more accurately predict the ecological impact of chemical pollutants.
Collapse
Affiliation(s)
- Tayebeh Soltanighias
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; College of Engineering and Physical Sciences Department of Civil Engineering, Aston University, Birmingham, B4 7ET, UK
| | - Abubakar Umar
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Muhammad Abdullahi
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
7
|
Kim C, Kalčíková G, Jung J. Role of benzophenone-3 additive in the effect of polyethylene microplastics on Daphnia magna population dynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106901. [PMID: 38493548 DOI: 10.1016/j.aquatox.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The adverse effects of microplastics (MPs) on Daphnia magna have been extensively studied; however, their population-level effects are relatively unknown. This study investigated the effect of polyethylene MP fragments (33.90 ± 17.44 μm) and benzophenone-3 (BP-3), which is a widely used plastic additive (2.91 ± 0.02% w/w), on D. magna population dynamics in a 34-day microcosm experiment. In the growth phase, neither MP nor MP/BP-3 fragments changed the population size of D. magna compared with the control. However, MP/BP-3 fragments significantly reduced (p < 0.05) the population biomass compared to that of the control, whereas MP fragments did not induce a significant reduction. The MP/BP-3 group had a significantly higher (p < 0.05) neonate proportion than that in the control and MP groups. MP/BP-3 fragments upregulated usp and downregulated ecrb, ftz-f1, and hr3, altering gene expression in the ecdysone signaling pathway linked to D. magna growth and development. These findings suggested that BP-3 in MP/BP-3 fragments may disrupt neonatal growth, thereby decreasing population biomass. In the decline phase, MP fragments significantly decreased (p < 0.05) the population size and biomass of D. magna compared with the control and MP/BP-3 fragments. This study highlights the importance of plastic additives in the population-level ecotoxicity of MPs.
Collapse
Affiliation(s)
- Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea.
| |
Collapse
|