1
|
Nelson SK, Kim-Fu ML, Azizian M, Field JA. Cyclosiloxane artifacts explain reported Henry's law constants for nonvolatile fluorotelomer sulfonates. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138316. [PMID: 40245713 DOI: 10.1016/j.jhazmat.2025.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The Henry's Law partition coefficient (KH) is important for understanding and predicting the air-water partitioning and transport of molecules, including per- and polyfluoroalkyl substances (PFAS). Henry's Law constants for three fluorotelomer sulfonates (FTSs) were reported in 2022 by static headspace analysis coupled with gas chromatography (GC)-tandem mass spectrometry. However, FTSs are nonvolatile at the reported experimental pH values (5.0-7.0). We tested the hypothesis that artifacts were responsible for the chromatographic peaks attributed to FTSs. Static air-water partition experiments and controls were conducted with free-acid (neutral) FTS standards with GC-quadrupole time-of-flight mass spectrometry (QTOF). Free acid standards of FTSs directly injected into the GC-QTOF gave no peaks. In contrast, a 10:2 FTOH standard produced a distinct peak and strong match with the NIST23 library. Although FTS homologs are not in the NIST library because they are nonvolatile, accurate mass fragments and formula calculations confirmed that the peaks previously attributed to FTSs were D3, D4, and D5 cyclosiloxanes (74-90 % match). Controls revealed that injection of oxygen and moisture creates the cyclosiloxanes artifacts that were misidentified as FTSs.
Collapse
Affiliation(s)
- Sophia K Nelson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Mitchell L Kim-Fu
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammad Azizian
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Quinete N, Tansel B, Katsenovich Y, Ocheje JO, Mendoza Manzano M, Nasir Z. Leaching profile of per- and polyfluoroalkyl substances from selected e-waste components and potential exposure pathways from discarded components. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137953. [PMID: 40120278 DOI: 10.1016/j.jhazmat.2025.137953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Improper handling and disposal of Waste Electrical and Electronic Equipment (WEEE) containing PFAS can lead to the release of these substances into the environment. In this study, we have collected and characterized PFAS leaching profiles of selected e-waste components, including keyboards, cables, monitor screens, and circuit boards, and discussed potential PFAS exposure routes during e-waste disposal by landfilling and associated environmental and health risks. The e-waste components were disassembled, separated, sorted, shredded, and grounded, and leaching experiments were conducted for 30 days to elucidate the potential release and distribution of PFAS from the e-waste components into the environment. PFAS were extracted by solid phase extraction and analyzed through liquid chromatography-mass spectrometry (LC-MS/MS) in e-waste leachate samples to investigate their occurrence and composition in the different e-waste components. The leachate from the e-waste components had 21 out of the 40 PFAS analyzed, in which the most predominant and abundant were perfluorobutanoic acid, perfluorohexanoic acid, perfluorooctanoic acid, and perfluorooctanesulfonic acid. The cables had the highest sum of PFAS in the leachate with concentrations up to 465 ng/kg. Mobilization of PFAS from e-waste components deposited in landfills through leachate requires proper management practices to protect the environment and public health.
Collapse
Affiliation(s)
- Natalia Quinete
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Institute of Environment, Florida International University, North Miami, FL 33181, USA.
| | - Berrin Tansel
- Civil and Environmental Engineering Department, Florida International University, Miami, FL 33174, USA
| | - Yelena Katsenovich
- Applied Research Center, Florida International University, Miami, FL 33174, USA
| | - Joshua O Ocheje
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Institute of Environment, Florida International University, North Miami, FL 33181, USA
| | - Maria Mendoza Manzano
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
| | - Zariah Nasir
- Applied Research Center, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
3
|
Khair Biek S, Khudur LS, Askeland M, Jones J, Sundararajan K, Lakshminarayanan S, Ball AS. Fate of per- and polyfluoroalkyl substances through commercial composting facilities. BIORESOURCE TECHNOLOGY 2025; 428:132485. [PMID: 40187501 DOI: 10.1016/j.biortech.2025.132485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Rising concerns about solid waste management globally necessitate the adoption of sustainable practices, particularly in dealing with organic waste, which constitutes a significant portion of municipal solid waste (MSW). Composting is an effective waste management strategy that can reduce both the environmental impact and greenhouse gas emissions of organic wastes, while producing valuable organic material (compost) for soil enhancement. However, the presence of persistent contaminants such as per- and polyfluoroalkyl substances (PFAS) in compost poses environmental and human health risks, challenging the sustainable management of organic wastes. This study investigates the fate of 33 PFAS compounds in two composting systems-windrow and in-vessel-focusing on the transformation and persistence of these compounds through the composting process, with the aim of collecting information which will support the identification of strategies to mitigate PFAS contamination in composting practices. The findings indicate significant reductions in total PFAS concentrations after composting, with reductions of 88.3% and 86.3% in the windrow and in-vessel systems, respectively. Notably, certain PFAS compounds, such as PFBS, appeared after composting, while PFPeA, became undetectable, suggesting potential leaching or transformation. Across both leachate and dust samples, PFAS concentrations were relatively low, with only a few compounds detected in each matrix. The final compost products met Australia's proposed NEMP 3.0 guidelines. However, considering the variation in PFAS content within similar categories of waste (feedstock), compliance with regulatory limits may vary. These results highlight the need for continued research into PFAS behaviour during composting and the development of best practices to mitigate contamination risks.
Collapse
Affiliation(s)
- Sali Khair Biek
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia; School of Science, STEM Collage, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia; School of Science, STEM Collage, RMIT University, Bundoora, VIC 3083, Australia.
| | - Matthew Askeland
- ADE Consulting Group Pty Ltd, Williamstown North, VIC 3016, Australia.
| | - Jacob Jones
- ADE Consulting Group Pty Ltd, Williamstown North, VIC 3016, Australia.
| | | | | | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia; School of Science, STEM Collage, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
4
|
Yao Y, Wang X, Liu F, Zhang W, Artigas FJ, Gao Y. Distributions and partitioning of airborne Per- and Polyfluoroalkyl Substances (PFAS) in urban atmosphere of Northern New Jersey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179037. [PMID: 40043653 DOI: 10.1016/j.scitotenv.2025.179037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
This study collected gas-phase and particulate samples, wet deposition, and total deposition from the urban atmosphere in Northern New Jersey to determine the atmospheric characteristics of airborne ionic Per- and Polyfluoroalkyl Substances (PFAS). The results showed higher PFAS concentrations in the gas phase (197.7 ± 47.9 pg·m-3) compared to the particulate samples (48.3 ± 47.9 pg·m-3), indicating higher inhalation risks to human health. Short-chain alternative PFAS, such as perfluoroheptanoic acid (PFHpA), had higher concentrations in the gas-phase than the US EPA-regulated PFAS (e.g., PFHpA reached 142.6 ± 28.0 pg·m-3). Additionally, PFHpA had the lowest rain-air partition coefficient, suggesting its preferential distribution in the gas phase. In contrast, perfluorohexanoic acid (PFHxA) exhibited the highest levels of both the total deposition rate (12.4 ± 29.0 μg·m-2 yr-1) and wet deposition rate (40.2 ± 76.0 μg·m-2 yr-1) among the 24 PFAS analyzed in this study. Most PFAS had higher wet deposition fluxes than total deposition fluxes, indicating they may predominately accumulate at the water-air interfaces and could re-enter the atmosphere. Legacy perfluorooctanoic acid (PFOA) still had the highest concentrations (12.3 ± 8.5 pg·m-3) in particulate samples, ranking second in both gas-phase and total deposition samples and third in wet deposition samples. The results reveal that airborne PFAS in urban environments could pose negative impacts on human health and the natural environment.
Collapse
Affiliation(s)
- Ying Yao
- Department of Earth and Environmental Sciences, Rutgers University, Newark, United States; Meadowlands Research and Restoration Institute, New Jersey Sports and Exposition Authority, Lyndhurst, United States
| | - Xinting Wang
- Department of Earth and Environmental Sciences, Rutgers University, Newark, United States
| | - Fangzhou Liu
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, United States
| | - Francisco J Artigas
- Department of Earth and Environmental Sciences, Rutgers University, Newark, United States; Meadowlands Research and Restoration Institute, New Jersey Sports and Exposition Authority, Lyndhurst, United States
| | - Yuan Gao
- Department of Earth and Environmental Sciences, Rutgers University, Newark, United States.
| |
Collapse
|
5
|
Svobodová P, Jílková SR, Kohoutek J, Audy O, Šenk P, Melymuk L. High levels of flame retardants in vehicle dust indicate ongoing use of brominated and organophosphate flame retardants in vehicle interiors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:396. [PMID: 40088345 PMCID: PMC11910445 DOI: 10.1007/s10661-025-13822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Vehicles are unique indoor environments, with interiors dominated by plastic/synthetic materials and exposure to extremes of temperature and radiation, leading to substantial potential for emissions of plastic additives from vehicle materials and subsequent exposure to drivers and passengers. Flame retardants (FRs) and per- and polyfluoroalkyl substances (PFAS) were measured in 30 dust samples collected from dashboards, seats, and trunks of cars of the same make and model (year of manufacture 1996-2021) to evaluate levels in dust and time patterns in additive use across cars of different ages. PFAS were detected in all dust samples at low levels, while FRs were detected in all samples, with some compounds consistently exceeding µg/g levels, especially tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and decabromodiphenyl ether (BDE-209), substantially higher than in other indoor environments. Although cars were of the same model, large variations were observed in FR concentrations in dust between cars, emphasizing the challenge in generalizing FR exposures from vehicle dust. Concentrations of BDE-209 in vehicle dust did not decrease over the 1996-2021 period, suggesting that restrictions on DecaBDE have had limited impact, likely due to exemptions in regulations for the automotive industry. The high FR levels indicate ongoing use of both organophosphate and brominated FRs in vehicles on the European market, although flammability standards for interior car materials are not mandated by European regulations, and the continued presence of long-restricted FRs suggests the presence of recycled plastics in vehicles; this potential exposure source may be increasing as vehicle producers aim to improve material circularity.
Collapse
Affiliation(s)
- Petra Svobodová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Ondřej Audy
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czechia.
| |
Collapse
|
6
|
Lyons SD, Zelikoff JT. Artificial turf: What are the long-lasting effects of artificial turf in our communities and on community health? . Explore (NY) 2025; 21:103112. [PMID: 39826175 DOI: 10.1016/j.explore.2025.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
- Shannon Doherty Lyons
- NYU Grossman School of Medicine, Department of Medicine, Division of Environmental Medicine, NY, USA.
| | - Judith T Zelikoff
- NYU Grossman School of Medicine, Department of Medicine, Division of Environmental Medicine, NY, USA
| |
Collapse
|
7
|
Sabba F, Kassar C, Zeng T, Mallick SP, Downing L, McNamara P. PFAS in landfill leachate: Practical considerations for treatment and characterization. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136685. [PMID: 39674787 DOI: 10.1016/j.jhazmat.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS. The purpose of this review is to understand the most appropriate treatment technology combinations for mitigating PFAS in landfill leachate. The first objective is to understand the unique chemical characteristics of landfill leachate. The second objective is to establish the role and importance of known and emerging analytical techniques for PFAS characterization in leachate, including quantification of precursor compounds. Next, an overview of technologies that concentrate PFAS and technologies that destroy PFAS is provided, including fundamental background content and key operating parameters. Finally, practical considerations for PFAS treatment technologies are reviewed, and recommendations for PFAS treatment trains are described. Both pros and cons of treatment trains are noted. In summary, the complex matrix of leachate requires a separation treatment step first, such as foam fractionation, for example, to concentrate the PFAS into a lower-volume stream. Then, a degradation treatment step can be applied to the concentrated PFAS stream.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Christian Kassar
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Synthia P Mallick
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Patrick McNamara
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| |
Collapse
|
8
|
Collins A, Krause MJ, Bessler SM, Brougham A, McKnight T, Strock T, Ateia M. City-scale impacts of PFAS from normal and elevated temperature landfill leachates on wastewater treatment plant influent. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136270. [PMID: 39461289 PMCID: PMC11645521 DOI: 10.1016/j.jhazmat.2024.136270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The influence of elevated temperatures on PFAS leaching in municipal solid waste (MSW) landfills has not been well characterized in the published scientific literature. This study systematically examined the compositions and concentrations of per- and polyfluoroalkyl substances (PFAS) and precursors content in both normal temperature landfill and elevated temperature landfill (ETLF) leachates and compared to a municipal wastewater and to a WWTP influent with and without introduced leachates. The characterization of the samples involved the analysis of 71 PFAS target compounds before and after applying the total oxidizable precursor (TOP) assay, along with measuring fluorotelomer alcohols (FTOHs) and adsorbable organofluorine (AOF) levels. Summed PFAS concentrations in leachates were driven largely by fluorotelomer carboxylic acids (FTCAs), short-chain and ultrashort-chain perfluorinated carboxylic acids and sulfonic acids. Summed PFAS concentrations in ETLF leachate were significantly higher than in normal leachate for precursors and terminal PFAS products. TOP assay data demonstrated that ETLF leachate contained significantly higher concentrations of oxidizable PFAS precursors than normal leachate. PFAS profiles in leachates were distinct from municipal wastewater and from WWTP influent, suggesting diverse PFAS inputs to the WWTP. The presence of unknown precursors revealed by the TOP assay and AOF analyses highlights the complexity of PFAS sources impacting sewer networks, warranting further study to better characterize PFAS inputs to the WWTP on a city-wide scale.
Collapse
Affiliation(s)
- Ashton Collins
- Oak Ridge Associated Universities, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Max J Krause
- Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Scott M Bessler
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, OH 45204, USA.
| | - Andrew Brougham
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, OH 45204, USA
| | - Taryn McKnight
- Eurofins Environment Testing, 880 Riverside Parkway, West Sacramento, CA 95605, USA
| | - Troy Strock
- Office of Land and Emergency Management, US Environmental Protection Agency, Washington, D.C., USA
| | - Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
10
|
Wang X, Huang X, Zhi Y, Liu X, Wang Q, Yue D, Wang X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135658. [PMID: 39226686 DOI: 10.1016/j.jhazmat.2024.135658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingyao Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Kebede MM, Terry LG, Clement TP, Mekonnen MM. Mapping Per- and Polyfluoroalkyl Substance Footprint from Cosmetics and Carpets across the Continental United States. ACS ES&T WATER 2024; 4:3882-3892. [PMID: 39296622 PMCID: PMC11407301 DOI: 10.1021/acsestwater.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) released from common consumer products, such as cosmetics and carpets, are nonpoint sources of environmental contamination. However, detailed information on PFAS mass and emission rates from these products is limited. Here, we propose a methodology to develop PFAS footprint from the manufacturing and supply chain data of cosmetics and carpets. Our analysis combines geospatial and statistical assessments to understand how the production and consumption of these products contribute to existing PFAS contamination hotspots in the Continental United States (CONUS). Statewide mass estimations revealed that North Carolina and New York contribute to the major PFAS mass released from cosmetics, while Georgia and California contribute to the major PFAS mass released from carpets. The average per capita PFAS footprint from carpets and cosmetics is about 103 mg/year. Upon disposal, over 60% of the mass eventually ends up in landfills. The accumulation of PFAS stocks in landfills, primarily from carpets and to some extent from cosmetics, highlights the critical need to cease the production and use of PFAS in consumer products. Coastal counties are particularly vulnerable due to higher population and therefore higher consumption of these PFAS-tainted consumer products. Additionally, counties with densely populated areas and with preexisting contamination sources would face increased vulnerability to PFAS contamination released from various consumer products.
Collapse
Affiliation(s)
- Mahlet M Kebede
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Leigh G Terry
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - T Prabhakar Clement
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mesfin M Mekonnen
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
12
|
Cerlanek AR, Timshina AS, Robey N, Lin AM, Solo-Gabriele HM, Townsend TG, Bowden JA. Investigating the partitioning behavior of per- and polyfluoroalkyl substances (PFAS) during thermal landfill leachate evaporation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134500. [PMID: 38714054 DOI: 10.1016/j.jhazmat.2024.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Thermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor. In this study, feed leachate, residual evaporated leachate, sludge, and condensed vapor were sampled at two active full-scale thermal landfill leachate evaporators and from a laboratory-scale leachate evaporation experiment. Samples were analyzed for 91 PFAS via ultra-high pressure liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Similar trends were observed from Evaporator 1, Evaporator 2, and the laboratory-scale evaporator; ∑PFAS were concentrated in the residual evaporated leachate during evaporation by a factor of 5.3 to 20. All condensed vapors sampled (n = 5) contained PFAS, predominantly 5:3 fluorotelomer carboxylic acid (5:3FTCA), (full-scale vapors 729 - 4087 ng/L PFAS; lab-scale vapor 61.0 ng/L PFAS). For Evaporators 1 and 2, an estimated 9 - 24% and 10%, respectively, of the PFAS mass entering the evaporators in leachate was released with vapor during the days of sample collection. '.
Collapse
Affiliation(s)
- Allison R Cerlanek
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Alina S Timshina
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Nicole Robey
- Innovative Waste Consulting Services LLC, Gainesville, FL 32606 USA
| | - Ashley M Lin
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - Helena M Solo-Gabriele
- University of Miami, Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL 33146 USA
| | - Timothy G Townsend
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA
| | - John A Bowden
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611 USA; University of Florida, Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL 32611 USA.
| |
Collapse
|
13
|
Liu Y, Lin A, Thompson J, Bowden JA, Townsend TG. Per- and polyfluoroalkyl substances (PFAS) in construction and demolition debris (CDD): discerning sources and fate during waste management. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134567. [PMID: 38735190 DOI: 10.1016/j.jhazmat.2024.134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
As regulatory frameworks for per- and polyfluoroalkyl substances (PFAS) evolve, the solid waste community seeks to manage PFAS risks effectively. Despite extensive research on PFAS in municipal solid waste (MSW) and wastewater sludge, there is limited information on a major global waste stream which seldom gleans regulatory oversight - construction and demolition debris (CDD). This study sampled a CDD processing facility to provide material-specific information on the PFAS profile within CDD. The bulk CDD accepted by this facility was separated into major categories, representatively sampled, then characterized for total available PFAS (∑92PFAS). As reprocessed CDD is ultimately recycled or landfilled, often unencapsulated or in unlined landfills, the PFAS leaching potential was also examined using two leaching procedures. Among the categories assessed for total PFAS, carpeting, carpet padding, and gypsum drywall showed elevated concentrations compared to other components, with most of the PFAS mass contributed by precursor species. However, materials with the highest total PFAS, such as carpeting, did not necessarily exhibit the highest leaching, and leachate was predominantly composed of terminal species rather than precursors. Extrapolating these findings with national CDD generation and management data inventories suggests that despite MSW having higher total available PFAS concentrations, the leachability of PFAS from landfilled CDD is comparable, raising legitimate concerns with CDD disposal practices, particularly in unlined CDD landfills.
Collapse
Affiliation(s)
- Yalan Liu
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - Ashley Lin
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - Jake Thompson
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - John A Bowden
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA; Department of Department of Physiological Sciences, University of Florida, 1333 Center Drive, Basic Science Building, Room 324, Gainesville, FL 32610, USA
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
14
|
Robey NM, Liu Y, Crespo-Medina M, Bowden JA, Solo-Gabriele HM, Townsend TG, Tolaymat TM. Characterization of per- and polyfluoroalkyl substances (PFAS) and other constituents in MSW landfill leachate from Puerto Rico. CHEMOSPHERE 2024; 358:142141. [PMID: 38677605 PMCID: PMC11200199 DOI: 10.1016/j.chemosphere.2024.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Elevated per- and polyfluoroalkyl substance (PFAS) concentrations have been reported in municipal solid waste (MSW) landfill leachate with higher levels in wet and warmer subtropical climates. Information about landfill leachate characteristics is much more limited in tropical climates. In this study, 20 landfill leachate samples were collected from three MSW landfills on the tropical island of Puerto Rico and results were compared against landfills nationally and within Florida, USA. The samples collected in Puerto Rico underwent physical-chemical analysis, as well as a quantitative analysis of 92 PFAS. Samples described in this study include discrete leachate types, such as leachate, gas condensate, and leachate which has undergone on-site treatment (e.g., RO treatment, phytoremediation, lagoons). A total of 51 PFAS were detected above quantitation limits, including perfluorohexylphosphonic acid, a perfluoroalkyl acid (PFAA) which has not been reported previously in landfill leachate. ∑PFAS concentrations in this study (mean: 38,000 ng L-1), as well as concentrations of individual PFAS, are significantly higher than other reported MSW landfill leachate concentrations. The profiles of leachates collected from on-site treatment systems indicate possible transformation of precursor PFAS as a result of treatment processes - oxidizing conditions, for example, may facilitate aerobic transformation, increase the concentrations of PFAAs, and possibly increase the apparent ∑PFAS concentration. Extreme climate events, including rising temperatures and more frequent hurricanes, have placed additional strain on the solid waste management infrastructure on the island - adding complexity to an already challenging PFAS management issue. As concern grows over PFAS contamination in drinking water, these findings should inform solid waste and leachate management decisions in order to minimize PFAS emissions in island environments.
Collapse
Affiliation(s)
- Nicole M Robey
- Innovative Technical Solutions, LLC, Gainesville, FL, 32606, USA; University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - Yalan Liu
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - Melitza Crespo-Medina
- Center for Environmental Education, Conservation and Research (CECIA), Inter-American University of Puerto Rico, San Germán, PR, 00683, USA
| | - John A Bowden
- University of Florida, Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, 32610, USA
| | - Helena M Solo-Gabriele
- University of Miami, Department of Chemical, Environmental, and Materials Engineering, Coral Gables, FL, 33146-0630, USA
| | - Timothy G Townsend
- Innovative Technical Solutions, LLC, Gainesville, FL, 32606, USA; University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL, 32611, USA
| | - Thabet M Tolaymat
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, 45268, USA.
| |
Collapse
|
15
|
Cerlanek A, Liu Y, Robey N, Timshina AS, Bowden JA, Townsend TG. Assessing construction and demolition wood-derived biochar for in-situ per- and polyfluoroalkyl substance (PFAS) removal from landfill leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:382-389. [PMID: 38101234 DOI: 10.1016/j.wasman.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
With regulations for per-and polyfluoroalkyl substances (PFAS) impending, the abundance of these chemicals of emerging concern in municipal solid waste (MSW) landfill leachate increasingly challenges landfill operators to seek on-site leachate pre-treatment options. This two-staged study explores the potential reuse of biochar derived from construction and demolition debris (CDD) wood as an in-situ PFAS sorbent for application within MSW landfill leachate collection systems. Batch leaching tests were first used to examine the feasibility of capturing PFAS from landfill leachate using two sources of CDD-wood-derived biochar. Then, columns were used to test the in-situ sorption capabilities of the same biochars under simulated landfill conditions. All leachates were characterized for pH, chemical oxygen demand, ammonia-nitrogen, and 92 PFAS. Seventeen PFAS were detected in the batch leaching experiment, and nine PFAS were detected in column leachates. In the batch leaching scenario, Biochar 1 achieved a maximum of 29% PFAS reduction compared to controls. Columns containing Biochar 1 generated leachates with PFAS concentrations 50% to 80% higher than those in control columns for the duration of the experiment. Columns containing Biochar 2 generated leachates with PFAS concentrations 44% less than controls in week 1 and similar concentrations in weeks 2, 3, and 4. In this study, PFAS removal from landfill leachate using biochar derived from CDD wood was not significant. Further research on biochar derived from CDD wood is needed before it can be recommended as an in-situ landfill leachate pre-treatment method.
Collapse
Affiliation(s)
- Allison Cerlanek
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611, USA
| | - Yalan Liu
- Florida Atlantic University, Department of Civil, Environmental and Geomatics Engineering, Boca Raton, FL 33431, USA
| | - Nicole Robey
- Innovative Technical Solutions, Gainesville, FL 32606, USA
| | - Alina S Timshina
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611, USA
| | - John A Bowden
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611, USA; University of Florida, Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - Timothy G Townsend
- University of Florida, Department of Environmental Engineering Sciences, College of Engineering, Gainesville, FL 32611, USA.
| |
Collapse
|