1
|
Qiao L, Wang W, Liu Y, Tang C, Zhang Y, Su R, Huang R. Changes and influencing factors of phytoplankton in the Tianjin coastal waters of Bohai Bay at the early stage of COVID-19 outbreak. MARINE POLLUTION BULLETIN 2025; 211:117496. [PMID: 39719786 DOI: 10.1016/j.marpolbul.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
We studied the characteristics of plankton community and its response to water environmental factors at the early stage of COVID-19 outbreak (2019-2020) in the Tianjin coastal waters of Bohai Bay. The water quality showed a good trend during this period, due to the reduction of pollution brought by the runoff rivers and water exchange driven by the circulation. In the survey area, 68 species of diatomata and dinoflagellata phytoplankton were found, where diatomata was the dominant population. The number of phytoplankton increased from 636,000 in 2019 to 1,642,600 in 2020. Compared with 2019, the impact factors of water environment in the surveyed area changed greatly, where nitrogen was the main impact factor in 2020. The adjustment of production and lifestyle in the early stage of COVID-19 outbreak suddenly slowed down the growth of the secondary industry, which contributed a lot to the improvement of water quality in 2020.'
Collapse
Affiliation(s)
- Lili Qiao
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Research Institute for Environmental Innovation, Tianjin 300450, China
| | - Weimin Wang
- Zhejiang Institute of Tianjin University, Ningbo 315200, China.
| | - Yiran Liu
- Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Changyuan Tang
- Research Institute for Environmental Innovation, Tianjin 300450, China
| | - Yizhang Zhang
- Research Institute for Environmental Innovation, Tianjin 300450, China.
| | - Rongxin Su
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Lu Z, Gao N, Zhan J, Wang S, Ji C, Zhang L, Wu H. Comparative investigations on the metabolomic responses to cadmium in clams Ruditapes philippinarum from the Bohai Sea and South China Sea. MARINE POLLUTION BULLETIN 2024; 209:117100. [PMID: 39413473 DOI: 10.1016/j.marpolbul.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Cadmium (Cd) is a typical heavy metal contaminant along China coasts. Clams Ruditapes philippinarum are widely distributed in multiple climatic zones. However, few research has been conducted on the different responses to Cd in clams from different climatic zones. In this study, the temperate zone Bohai Sea (BS) and tropical zone South China Sea (SCS) clams exhibited distinct background metabolome profiles, characterized by different strategies of osmotic regulation, energy metabolism, and anaerobiosis tendencies, suggesting different tolerance and enrichment capacities to Cd. After Cd treatments, the BS clams demonstrated quicker and higher accumulations of Cd than the SCS clams. Despite differences in their background metabolomes, both BS and SCS clams displayed similar metabolomic responses to Cd, such as anaerobiosis inhibition and increased energy demands. Overall, these findings suggested that the inconsistency of biological responses induced by geographic conditions should be considered in ecotoxicological studies. CAPSULE ABSTRACT: This study elucidated the biological differences in clams Ruditapes philippinarum from the Bohai Sea and South China Sea, and the metabolomic responses in these two clam populations after Cd (200 μg/L) treatments.
Collapse
Affiliation(s)
- Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Na Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Junfei Zhan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
3
|
Yin L, Zheng W, Shi H, Wang M, Wang W, Wang Y, Ding D. A deep learning-based model for estimating pollution fluxes from rivers into the sea and its optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175434. [PMID: 39128526 DOI: 10.1016/j.scitotenv.2024.175434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Pollution fluxes from rivers into the sea are currently the main source of pollutants in nearshore areas. Based on the source-sink process of the basin-estuary-coastal waters system, the pollution fluxes into the sea and their spatiotemporal heterogeneity were estimated. A deep learning-based model was established to simplify the estimation of pollution fluxes into the sea, with socio-economic drivers and meteorological data as input variables. A method for estimating the contribution rate of pollution fluxes from different spatial gradient was proposed. In this study, we found that (1) the pollution fluxes into the sea of total nitrogen (TN) and total phosphorus (TP) from the Bohai Sea Rim Basin (BSRB) in 1980, 1990, 2000, 2010, and 2020 were 25.38 × 104, 26.12 × 104, 27.27 × 104, 29.82 × 104, 25.31 × 104 and 1.32 × 104, 2.14 × 104, 2.09 × 104, 1.87 × 104, 1.68 × 104 tons, respectively. (2) The proportion of rural life and livestock to the TN was the highest, accounting for 39.18 % and 21.19 %, respectively. The proportion of livestock to the TP was the highest, accounting for 39.20 %, followed by rural life, accounting for 24.72 %. The results indicated that the pollution fluxes in the BSRB were related to human economic activities and relevant environmental protection measures. (3) The deep learning-based model established to estimate runoff pollution fluxes into the sea had the accuracy of over 90 %. (4) As for contribution rate, in terms of the elevation, the range of 0-100 m had the highest proportion, accounting for 39.65 %. The range of 50-100 km from the coastline had the highest proportion, accounting for 18.11 %. In terms of the district, coastal area has the highest proportion, accounting for 38.00 %. This study revealed the changing trends and driving mechanisms of pollution fluxes into the sea over the past 40 years and established a simplified deep learning-based model for estimating pollution fluxes into the sea. Then, we identified regions with high pollution contribution rate. The results can provide scientific references for the adaptive management of the nearshore areas based on the ecosystem.
Collapse
Affiliation(s)
- Liting Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | | | - Ming Wang
- Laoshan Laboratory, Qingdao 266237, China
| | | | - Yongzhi Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewen Ding
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
4
|
Wu J, Wang Z, Tian J, Li N, Wang K, Song L, Song G, Xu X. Seasonal and long-term variations of nutrients in Liaodong Bay, China: Influencing factors and ecological effects. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106815. [PMID: 39467368 DOI: 10.1016/j.marenvres.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Nutrients are essential for marine primary productivity and have a critical role in maintaining the structure and function of marginal. Variations in nutrient levels in sea ecosystems can influence ecological disturbances significantly. The Liaodong Bay (LDB) is a semi-enclosed marginal sea in northern China. It has experienced severe eutrophication since the 1990s, leading to considerable environmental challenges. Understanding of seasonal and long-term nutrient dynamics in the LDB is limited. We examined seasonal datasets collected in May (spring), August (summer), November (autumn), and March (winter) of 2019, and analyzed long-term trends through historical records spanning multiple decades. Nutrients accumulated during autumn/winter but were depleted during spring/summer. A low concentration of dissolved inorganic phosphate led to an increased nitrogen ratio exceeding the Redfield ratio (>16) during winter, spring, and summer, driven by phytoplankton growth. In late-autumn, nutrient concentrations increased, with ratios approaching the Redfield ratio. Phosphorus limitation prevailed in spring, summer, and winter, while silicon limitation dominated in autumn. Dissolved inorganic nitrogen and nitrogen ratios in the LDB increased sharply since the 1980s, peaking before declining after 2013. Dissolved silica and silicon ratios decreased steadily, stabilizing in recent years. These trends imply a shift from nitrogen-to-phosphorus limitation, influenced by riverine inputs and atmospheric deposition. These nutrient fluctuations may have significant ecological effects, including dinoflagellate abundance, algal blooms, and jellyfish blooms. Our analyses highlight the complexity of nutrient dynamics and positive impact of local nutrient-reduction policies implemented in recent years in improving the environmental quality of the LDB.
Collapse
Affiliation(s)
- Jinhao Wu
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China; Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, China
| | - Zhaohui Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jiashen Tian
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Nan Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Kun Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Lun Song
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China.
| | - Guangjun Song
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xuemei Xu
- National Marine Environmental Monitoring Center, Dalian, Liaoning, 116023, China.
| |
Collapse
|
5
|
Ma Q, Liang S, Sun J, Ahmad S, Wang Z, Hou W, Sun Z, Liu B, Huang W. Quantitatively unveiling the role of coastal wetlands in regulating eutrophication and enhancing water environmental capacity. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106787. [PMID: 39406170 DOI: 10.1016/j.marenvres.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
Human activities have intensified the global challenge of coastal eutrophication. Recently, water resource managers have encountered difficulties in formulating precise pollutant reduction strategies to mitigate coastal eutrophication. Despite the recognized importance of coastal wetlands and pollution sources in influencing coastal nutrient levels, accurately quantifying their impact remains difficult. To address this challenge, this study introduces a novel approach for optimizing water environmental capacity. A coupled model integrating hydrodynamics, water quality, and wetland nutrient mechanisms was developed to simulate the spatio-seasonal distribution of water, sediment, and vegetation nutrients in a semi-enclosed bay (Liaodong Bay, China) and a large-scale coastal wetland (Liaohe estuary wetland, China). Model parameters and simulation results were calibrated and validated using extensive long-term field investigations and laboratory experiments. The average root mean square errors between simulated and observed values for all validation points were as follows: 0.80 mg L-1, 0.53 mg L-1, 0.08 mg L-1, 6.70 μg L-1, and 0.50 μg L-1 for dissolved oxygen, chemical oxygen demand, dissolved inorganic nitrogen, dissolved inorganic phosphorus, and chlorophyll-a, respectively. The total nitrogen (TN) and total phosphorus (TP) in the sediment were 0.10 g kg-1 and 0.05 g kg-1, respectively. For Suaeda salsa, the TN and TP were 2.91 g kg -1 and 0.08 g kg -1, respectively. For Phragmites australis, the TN and TP were 114.22 g kg -1 and 6.21 g kg -1, respectively. The results suggest that excessive river discharge and a stable residual circulation structure contribute to the persistent eutrophication in Liaodong Bay. The Liaohe estuary wetland enhances the environmental capacity of dissolved inorganic nitrogen and dissolved inorganic phosphorus in Liaodong Bay to 271 ± 31 t yr-1 and 8 ± 1 t yr-1, respectively, accounting for 1.8 ± 0.2% and 1.3 ± 0.2% of their respective environmental capacities. The reduction in dissolved inorganic nitrogen concentration is significant, with a maximum decrease of 0.17 mg L-1. The maximum contributions of atmospheric deposition and aquaculture wastewater to dissolved inorganic nitrogen concentration are 0.08 mg L-1 and 0.03 mg L-1, respectively, with higher contributions in spring and summer than in fall and winter. These findings highlight the critical role of coastal wetlands in mitigating eutrophication and underscore the need for spatio-seasonal water management programs. This work serves as a model for effectively reducing global coastal pollution emissions.
Collapse
Affiliation(s)
- Qiaofeng Ma
- School of Ecology, Hainan University, Haikou, 570228, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuxiu Liang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jiawen Sun
- National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Shahid Ahmad
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Zhenhua Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenhao Hou
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhaochen Sun
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bijin Liu
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
| | - Wenguo Huang
- Ocean Monitoring and Forecasting Center of Hainan Province, Haikou, 570226, China
| |
Collapse
|
6
|
Guo C, Lan W, Guo M, Lv X, Xu X, Lei K. Spatiotemporal distribution patterns and coupling effects of aquatic environmental factors in the dry-wet season over a decade from the Beibu Gulf, South China Sea. MARINE POLLUTION BULLETIN 2024; 205:116596. [PMID: 38905738 DOI: 10.1016/j.marpolbul.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Since the 21st century, the Beibu Gulf area has been affected by increasing anthropogenic activities, which makes the coastal aquatic ecosystem extremely concerning. However, the comprehensive exploration and analysis of the long-term scale behavior change characteristics of various water quality environment factors is still limited. Through comprehensively detecting coastal surface water environmental behavior information from 33 locations in the Beibu Gulf from 2005 to 2015, we revealed and quantified mutual response characteristics and patterns of various environmental indicators. The main environmental pollution indicators (e.g., COD, NH4+, NO3-, and DIP) showed a gradual decrease in concentration from the coast to the offshore sea area, and significantly increases during the wet season. The semi-enclosed Maowei Sea exhibited the most prominent performance with significant differences compared to other regions in Beibu Gulf. The average Chlorophyll-a (Chla) content in the coastal area of the Beibu Gulf during the wet season was more than twice that of the dry season, yet the interaction pattern between Chla and environmental factors in the two seasons was opposite to its concentration behavior, accompanied by a closely significant relationship with thermohaline structure and the input of nitrogen and phosphorous nutrients. The multivariate statistical analysis results of total nutrient dynamics suggested that the Beibu Gulf was clearly divided into different regions in both dry and wet season clusters. The present study can provide a comprehensive perspective for the spatial and temporal migration patterns and transformation laws of coastal water environmental factor, which should contribute to improve the prevention countermeasure of nutrient pollution in coastal environment.
Collapse
Affiliation(s)
- Chaochen Guo
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Meixiu Guo
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Xubo Lv
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangqin Xu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Lei
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
8
|
Zhang X, Li H, Wang X, Kuang X, Zhang Y, Xiao K, Xu C. A comprehensive analysis of submarine groundwater discharge and nutrient fluxes in the Bohai Sea, China. WATER RESEARCH 2024; 253:121320. [PMID: 38382290 DOI: 10.1016/j.watres.2024.121320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Groundwater discharge and associated nutrient fluxes in the Bohai Sea, China has attracted great attention, but most studies lacked high spatial resolution for the whole sea. As the largest semi-enclosed sea in China, the Bohai Sea is confronted with strong environmental pollution problems such as eutrophication induced by terrestrial nutrient inputs. However, the role of SGD has not been evaluated well for the whole Bohai Sea. In this study, stable isotopes (hydrogen and oxygen), radioactive isotope (228Ra), salinity, and temperature were combined to trace the diluted seawater. Mass balances of 228Ra, oxygen isotope, and salinity were used to quantify SGD and nutrient fluxes to the Bohai Sea. The estimated submarine fresh groundwater discharge (SFGD) and SGD to the Bohai Sea were (6.0 ± 0.5) × 109 and (2.7 ± 1.6) × 1011 m3 a-1, respectively. SFGD represents 10 % to 11 % of the total river discharge and SGD is about 2 to 8 folds of the total river discharge to the sea. Moreover, SGD derived dissolved nutrients to the Bohai Sea were (4.8 ± 4.0) × 1010 mol a-1 for dissolved inorganic nitrogen, (1.9 ± 1.7) × 1010 mol a-1 for dissolved inorganic phosphorus, and (6.7 ± 5.5) × 1010 mol a-1 for silicon. These nutrient inputs were about 10 to 20 folds of the total riverine inputs. Overall, this study underscores the importance of evaluating SGD to better understand the terrestrial imported nutrients in regional scale.
Collapse
Affiliation(s)
- Xiaolang Zhang
- Department of Geosciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xuejing Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xingxing Kuang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zhang
- State Key Laboratory of Biogeology and Environmental Geology and School of Water Resources and Environment, China University of Geosciences-Beijing, Beijing 100083, China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Xu
- Department of Geosciences, Texas Tech University, Texas 79409, USA
| |
Collapse
|
9
|
Jin H, Zhang C, Meng S, Wang Q, Ding X, Meng L, Zhuang Y, Yao X, Gao Y, Shi F, Mock T, Gao H. Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas. Nat Commun 2024; 15:658. [PMID: 38291022 PMCID: PMC10828365 DOI: 10.1038/s41467-024-44838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
In coastal seas, the role of atmospheric deposition and river runoff in dissolved organic phosphorus (DOP) utilization is not well understood. Here, we address this knowledge gap by combining microcosm experiments with a global approach considering the relationship between the activity of alkaline phosphatases and changes in phytoplankton biomass in relation to the concentration of dissolved inorganic phosphorus (DIP). Our results suggest that the addition of aerosols and riverine water stimulate the biological utilization of DOP in coastal seas primarily by depleting DIP due to increasing nitrogen concentrations, which enhances phytoplankton growth. This "Anthropogenic Nitrogen Pump" was therefore identified to make DOP an important source of phosphorus for phytoplankton in coastal seas but only when the ratio of chlorophyll a to DIP [Log10 (Chl a / DIP)] is larger than 1.20. Our study therefore suggests that anthropogenic nitrogen input might contribute to the phosphorus cycle in coastal seas.
Collapse
Affiliation(s)
- Haoyu Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| | - Siyu Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Qin Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ling Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Feng Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| |
Collapse
|