1
|
D'Amico M, Wania F, Breivik K, Skov H, Spolaor A, Sørensen LL, Gambaro A, Vecchiato M. Are ingredients of personal care products likely to undergo long-range transport to remote regions? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1277-1290. [PMID: 40266692 DOI: 10.1039/d5em00131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Personal care products (PCPs) contain contaminants of emerging concern. Despite increasing reports of their presence in polar regions, the behavior of PCP ingredients under cold environmental conditions remains poorly understood. Snow collected around Villum Research Station at Station Nord, Greenland, between December 2018 and June 2019 was extracted in a stainless steel clean-room and analyzed for seven fragrance materials, four organic UV-filters and an antioxidant using gas chromatography-tandem mass spectrometry. All twelve target PCPs were detected, with elevated concentrations during two sampling events potentially tied to air mass transport from northern Europe and the northern coasts of Russia. To contextualize the presence of these PCP chemicals in high Arctic snow, we estimated their (i) partitioning properties as a function of temperature, (ii) equilibrium phase distribution and dominant deposition processes in the atmosphere at temperatures above and below freezing, and (iii) potential for long-range environmental transport (LRET). Even though most PCPs are deemed to be gas phase chemicals predominantly deposited as vapors, rapid atmospheric degradation is expected to limit their LRET. On the other hand, the less volatile octocrylene is expected to be sorbed to atmospheric particles, removed via wet and dry particle deposition, and possibly exhibit a higher potential for LRET by being protected from attack by photooxidants. The contrast between consistent detection of PCP chemicals in high Arctic snow and relatively low estimated LRET potential emphasizes the need for further research on their real-world atmospheric behavior under cold conditions.
Collapse
Affiliation(s)
- Marianna D'Amico
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics (DAIS), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Knut Breivik
- Norwegian Institute for Air Research, P.O. Box 100, Kjeller, NO-2027, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033, Oslo, NO-0315, Norway
| | - Henrik Skov
- Aarhus University, Department of Environmental Science, ARC, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Andrea Spolaor
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics (DAIS), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
- Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Lise Lotte Sørensen
- Aarhus University, Department of Environmental Science, ARC, Frederiksborgvej 399, Roskilde, 4000, Denmark
| | - Andrea Gambaro
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics (DAIS), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| | - Marco Vecchiato
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics (DAIS), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| |
Collapse
|
2
|
Gomes IB. The overlooked interaction of emerging contaminants and microbial communities: a threat to ecosystems and public health. J Appl Microbiol 2025; 136:lxaf064. [PMID: 40118512 DOI: 10.1093/jambio/lxaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
CONTEXT AND AIMS Emerging contaminants (ECs) and microbial communities should not be viewed in isolation, but through the One Health perspective. Both ECs and microorganisms lie at the core of this interconnected framework, as they directly influence the health of humans, animals, and the environment.The interactions between ECs and microbial communities can have profound implications for public health, affecting all three domains. However, these ECs-microorganism interactions remain underexplored, potentially leaving significant public health and ecological risks unrecognized. Therefore, this article seeks to alert the scientific community to the overlooked interactions between ECs and microbial communities, emphasizing the pivotal role these interactions may play in the management of 'One Health.' RESULTS The most extensively studied interaction between ECs and microbial communities is biodegradation. However, other more complex and concerning interactions demand attention, such as the impact of ECs on microbial ecology (disruptions in ecosystem balance affecting nutrient and energy cycles) and the rise and spread of antimicrobial resistance (a growing global health crisis). Although these ECs-microbial interactions had not been extensively studied, there are scientific evidence that ECs impact on microbial communities may be concerning for public health and ecosystem balance. CONCLUSIONS So, this perspective summarizes the impact of ECs through a One Health lens and underscores the urgent need to understand their influence on microbial communities, while highlighting the key challenges researchers must overcome. Tackling these challenges is vital to mitigate potential long-term consequences for both ecosystems and public health.
Collapse
Affiliation(s)
- Inês B Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical and Biological Engineeirng, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Nino-Suastegui S, Painter E, Sprankle JW, Morrison JJ, Faust JA, Gray R. Non-targeted analysis and suspect screening of organic contaminants in temperate snowfall using liquid chromatography high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2025; 266:120494. [PMID: 39622354 DOI: 10.1016/j.envres.2024.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Contaminants released into the atmosphere that undergo regional and long-range transport can deposit back to Earth through snowfall. When snow melts, these contaminants re-enter the environment, sometimes far from their original emission sources. Here we present the first comprehensive characterization of organic contaminants in snow from North America. Fresh snowfall samples were collected in the central United States over a three-year period and measured by liquid chromatography high-resolution mass spectrometry for suspect screening and non-targeted analysis. The resulting data set was screened against experimental MS/MS libraries and underwent supplemental in silico MS/MS analysis. In total, 91 possible compounds were tentatively identified in snow, and 17 were successfully confirmed and semi-quantified with reference standards. These contaminants were mostly anthropogenic in origin and included six herbicides, three insect repellants, one insecticide metabolite, and one fungicide. The most prominent compounds present in all samples were N-cyclohexylformamide (known contaminant in tire leachate), DEET (insect repellent), and dimethyl phthalate (plasticizer), with median deposition fluxes of 4032, 284, and 262 ng m-2, respectively. Three additional compounds were detected in 100% of samples: coumarin (phytochemical and fragrance additive), 5-methylbenzotriazole (antifreeze component), and quinoline (heterocyclic aromatic). The Peto-Peto test revealed statistically significant differences in deposition fluxes for these six contaminants (p < 0.05), with weak but statistically significant positive associations between coumarin and DEET and between coumarin and quinoline according to a Kendall's tau correlation analysis. These findings demonstrate the utility of in silico analysis to complement MS/MS matching with experimental databases. Even so, thousands of unidentified features remained in the data set, highlighting the limitations of current strategies in non-targeted analysis of environmental samples.
Collapse
Affiliation(s)
| | - Eve Painter
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Jameson W Sprankle
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; The College of Wooster, Department of Earth Sciences, 944 College Mall, Wooster, OH, 44691, USA
| | - Jillian J Morrison
- The Ohio State University, Department of Statistics, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Jennifer A Faust
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Rebekah Gray
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; Goucher College, Department of Chemistry, 1021 Dulaney Valley Rd, Baltimore, MD, 21204, USA.
| |
Collapse
|
4
|
Zhang Y, Chang F, Junaid M, Ju H, Qin Y, Yin L, Liu J, Zhang J, Diao X. Distribution, sources, ecological and human health risks of organic ultraviolet filters in coastal waters and beach deposits in Hainan, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124610. [PMID: 39053805 DOI: 10.1016/j.envpol.2024.124610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Organic ultraviolet filters (OUVFs) are extensively incorporated into both cosmetic items and industrial products and have been commonly found in water ecosystems. This study aims to examine the environmental levels, sources, ecological and human health risks of 14 commonly used OUVFs both in coastal water and beach deposit samples collected from the nearshore regions of Hainan Island and the South China Sea. This is first study highlighting the contamination of OUVFs in Hainan Island and utilizing economic and tourism data to confirm the potential source of OUVF pollution in costal aquatic and coastal ecosystem. Along the coastal tourist regions of Hainan Island, the median concentrations in coastal waters and beach deposits of these OUVFs fall within the range from 1.2 to 53.2 ng/L and 0.2-17.0 ng/g dw, respectively. In coastal water and beach deposit, the concentration of BP-3 was the highest, with median concentrations of 53.2 ng/L and 17.0 ng/g dw, respectively. Regarding human health risks, the daily intake of all 14 OUVFs through swimming was found to be 40-48 ng/kg/day. Ecological risk assessment indicates that BP-3 presents a medium risk for marine microalgae with a concurrent low risk for corals. The correlation analysis underscores a substantial interrelation of OUVFs in both coastal waters and beach deposits with various economic indicators, including annual rainfall, overnight tourists, total hotel rooms (unit), room occupancy rate, and sewage treatment capacity.
Collapse
Affiliation(s)
- Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Xiaoping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Rosso B, Scoto F, Hallanger IG, Larose C, Gallet JC, Spolaor A, Bravo B, Barbante C, Gambaro A, Corami F. Characteristics and quantification of small microplastics (<100 µm) in seasonal svalbard snow on glaciers and lands. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133723. [PMID: 38359761 DOI: 10.1016/j.jhazmat.2024.133723] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Small microplastics (SMPs < 100 µm) can easily be transported over long distances far from their sources through the atmospheric pathways and reach even remote regions, including the Arctic. However, these sizes of MPs are mostly overlooked due to different analytical challenges; besides, their pathways through atmospheric depositions, such as snow depositions, are mostly unknown. The spatial variability in bulk snow samples was investigated for the first time in distinct sites (e.g., glaciers) near Ny Ålesund, the world-known northernmost permanent research settlement in the Svalbard Islands, to better comprehend the presence of SMP pollution in snow. Seasonal snow deposited over the tundra and the summits of different glaciers were also sampled. A sampling procedure was designed to obtain representative samples while minimizing plastic contamination, thanks to rigorous quality assurance and quality control protocol. SMPs' weight (µg SMP L-1) and deposition load (mg SMPs m-2) result from being lower in the remote glaciers, where they may be subject to long-range transport. The SMPs' minimum length was 20 µm, with the majority less than 100 µm. Regarding their size distribution, there was an increase in the size length deriving from the local input of the human presence near the scientific settlement. The presence of some polymers might be site-specific in relation to the pathways that affect their distribution at the sites studied. Also, from the snow surface layer collected at the same sites to evaluate the variability of SMPs during specific atmospheric deposition events, the results confirmed their higher weight and load in surface snow near the scientific settlement compared to the glaciers. The results will enhance the limited knowledge of the SMPs in polar atmospheric compartments and deposition processes.
Collapse
Affiliation(s)
- Beatrice Rosso
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Federico Scoto
- Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, CNR-ISAC, Lecce, Italy
| | | | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | | | - Andrea Spolaor
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4, 20090 Rodano, MI, Italy
| | - Carlo Barbante
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Fabiana Corami
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| |
Collapse
|