1
|
Chen Y, Yang W, Liu H, Mao W, Zhang J, Wang B, Yang L, Wang S, Zhou H, Zeng P, Wu P. Phosphorus-loaded magnetic biochar for remediation of cadmium contaminated paddy soil: Efficacy and identification of limiting factors. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138162. [PMID: 40184969 DOI: 10.1016/j.jhazmat.2025.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Alleviating cadmium (Cd) risk in paddy soils is a global research hotspot. Although biochar reduces Cd mobility, a holistic perspective on the effects of biochar on Cd fraction distribution in rice rhizosphere and its immobilization mechanisms is lacking. Here, we developed a pathway model that links soil physicochemical properties, IP formation, enzyme activity, microbial biomass, porewater nutrients, and soil Cd fractions to fill knowledge gaps. Results revealed that phosphorus-loaded magnetic biochar (PMLB) application increased soil pH, available phosphorus (AP), total phosphorus (TP), microbial biomass, and TP and Fe contents in porewater while inhibiting soil enzyme activities. Compared with the control, 0.2 %-1 % w/w PMLB treatment reduced soil acetic acid-extractable Cd (Aci-Cd) content during the tillering, filling, and maturity periods by 23.71-32.92 %, 25.45-37.33 %, and 7.39-18.40 %, respectively. Cd content in brown rice was reduced by 44.02-47.86 %. Soil pH, AP and urease activity were the primary drivers of soil Aci-Cd reduction. Soil microbial biomass contributed most to reducing Cd content in rice tissues (total path coefficient: -0.48), followed by enzyme activity and IP. Additionally, PMLB promoted IP formation and altered the immobilization methods of Cd by IP, from coprecipitation with iron (hydr)oxides and phosphate to ternary complex formation with phosphate as a bridge to band Cd and iron (hydr)oxides.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Hongyan Liu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang 550002, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Guo Y, Yang Y, Li Y, Liao X, Li Y. Geographical variation, accumulation risk, and risk management of rice heavy metal(loid) contamination in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 388:126024. [PMID: 40449431 DOI: 10.1016/j.jenvman.2025.126024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/18/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Grain is a crucial source of human nutrition, and its quality is linked to the health of populations and sustainable development of economies and societies worldwide. However, at national and global scales, information on rice quality and safety is relatively limited. To address this knowledge gap, this study constructed a high-resolution nationwide database of heavy metal (HM) pollution in rice across major grain-producing areas in China based on extensive field survey data from 2018 to 2020 (3198 samples). The database was used to evaluate the pollution status, identify hotspot distribution areas, and supplement existing knowledge gaps. The results revealed that the mean concentrations of HM in rice exceeded the standard value in varying degrees across provinces, with Cd, Pb, and Hg being the most prominent pollutants, showing exceedance rates of 18.7 %, 6.4 %, and 4.2 % respectively. Hotspot analysis indicated that the spatial aggregation of HM contaminations was significantly influenced by human activities, with pollution primarily concentrated in industrial and mining clusters or economically developed regions. Moreover, the consumption of contaminated rice poses both carcinogenic risks (eg., Cd, As, or Ni) and non-carcinogenic hazards to human health. These findings highlight the urgent need for action from the government to implement green restoration strategies for HM-contaminated rice.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - You Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyong Liao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghua Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
An L, Zhao L, Wei A, Shi K, Li M, Dawwam GE, Zheng S. Balancing application of plant growth-promoting bacteria and biochar in promoting selenium biofortification and remediating combined heavy metal pollution in paddy soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:80. [PMID: 39969601 DOI: 10.1007/s10653-025-02386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Plant-growth-promoting bacteria (PGPB) and biochar have attracted increasing attention for remediating the combined pollution of arsenic (As) and cadmium (Cd) and promoting selenium (Se) biofortification. However, their differing effects on the bioavailability of As, Cd, and Se and their absorption by rice are still poorly understood. In this study, PGP Agrobacterium sp. T3F4 with Se- oxidizing capacity and corn straw biochar were applied to natively polluted paddy soil. Strain T3F4 reduced the bioavailability of As in soil but increased bioavailable Se, decreasing the As content in rice by 16.8% and improving the Se content of rice by 54.5% (p < .05). Application of 2.5% biochar stimulated iron (Fe) plaque formation of the root and immobilized As and Cd in the soil, decreasing the As and Cd absorption of rice by 14.7% and 40.3%, respectively (p < .05). Application of 5.0% biochar achieved similar mitigation effects for As and Cd but also decreased the Se content in rice by 60.6% by reducing bioavailability. This decrease in Se uptake was mitigated when 5.0% biochar was co-applied with strain T3F4. Notably, applying strain T3F4 also alleviated the oxidative stress on rice plants and enhanced soil enzyme activities, contributing to a substantial increase in grain yield in the polluted paddy soil. The adverse effects of 5.0% biochar on soil health and grain yield were mitigated by the co-application of strain T3F4. Our results provide new insights into applying PGPB and biochar for Se biofortification and As and Cd remediation in paddy soil.
Collapse
Affiliation(s)
- Lijin An
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lipeng Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ao Wei
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
4
|
Chen R, Yang J, Cai X, Liu Z, Huang W, Shi R, Ma T. Assessing soil remediation effect of Cr and Pb based on bioavailability using DGT, BCR and standardized determination method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175947. [PMID: 39260481 DOI: 10.1016/j.scitotenv.2024.175947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
In the field of soil remediation, the importance of bioavailability of pollutants has not received adequate attention, leading to the excessive application of remediation measures. Therefore, to ensure the safe use of farmland soil, a scientific method is needed to assess labile contaminants and their translocation in plants. To evaluate soil remediation effect based on bioavailability, the concentrations of these heavy metals in soil were analyzed using by the method for total metal content, the Community Bureau of Reference (BCR) extraction, and the diffusive gradients in thin films (DGT) technique. The results reveal that the correlation coefficients between metal concentrations measured by DGT and those accumulated in rice grains are the highest (Cr-R2 = 0.8966, Pb-R2 = 0.9045). However, the capability of method for total metal content to evaluate the remediation effect of heavy metals is very limited. In contrast, although Cr and Pb measured by BCR show a high correlation with HMs in rice plants, the method still falls short in precisely assessing bioavailability. Significantly, DGT proves to be more effective, successfully distinguishing the remediation effects of different treatments. Generally, DGT offers a more accurate and simpler assessment method, underscoring its practical significance for monitoring soil remediation and environmental management.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xuying Cai
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zean Liu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
5
|
Su N, Wang K, Zhang Z, Yao L, Chen Z, Han H. Urease-producing bacteria combined with pig manure biochar immobilize Cd and inhibit the absorption of Cd in lettuce (Lactuca sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45537-45552. [PMID: 38967850 DOI: 10.1007/s11356-024-34241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Nannan Su
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Ke Wang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhengtian Zhang
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Zhaojin Chen
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Hui Han
- Collaborative Innovation Center of Water Security for the Water Source Region of the Mid-Line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Peng H, Deng K, Shi Y, Wei W, Liu S, Li C, Zhu J, Dai Y, Song M, Ji X. Rice rhizospheric effects and mechanism on soil cadmium bioavailability during silicon application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172702. [PMID: 38657810 DOI: 10.1016/j.scitotenv.2024.172702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils. Si-induced changes in the rhizosphere also included enhanced dissolved organic carbon and diminished soil Eh, particularly in the Si400 treatment. Meanwhile, the introduction of Si greatly enhanced the Fe2+ and Mn2+ concentrations in the S1 soil, but reduced them in the S2 soil. The rhizosphere effect of Si which enriched Fe2+ and Mn2+ subsequently promoted the formation of Fe and Mn oxides/hydro-oxides near the rice roots. Consequently, the addition of Si significantly reduced the available Cd concentrations in S1, surpassing the reductions in S2 and S3. Moreover, Si-treated rice exhibited increased Fe plaque generation and fixation on soil Cd, resulting in decreased Cd concentrations in rice tissues, accompanied by reduced Cd translocation from roots to shoots and shoots to grains. Structural equation modelling further highlighted that Si is essential in Cd availability in S1 and Fe plaque development, ultimately mitigating Cd accumulation in rice. Si-treated rice also exhibited higher biomass and grain yield than those of control groups. These findings provide valuable insights into Si-based strategies for addressing the Cd contamination of agricultural soils.
Collapse
Affiliation(s)
- Yi Yang
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Kai Deng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Yu Shi
- Xiangxi Station of Soil and Fertilizer, Jishou 416000, China
| | - Wei Wei
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Saihua Liu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Changjun Li
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Jian Zhu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Yanjiao Dai
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Min Song
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| |
Collapse
|
7
|
Wang Y, Yan Y, He C, Feng Y, Darma A, Yang J. The immobilization of cadmium by rape straw derived biochar in alkaline conditions: Sorption isotherm, molecular binding mechanism, and in-situ remediation of Cd-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:123969. [PMID: 38615835 DOI: 10.1016/j.envpol.2024.123969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray absorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubo Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aminu Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, 100081, China
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, 100081, China.
| |
Collapse
|
8
|
Liu M, Xu R, Cui X, Hou D, Zhao P, Cheng Y, Qi Y, Duan G, Fan G, Lin A, Tan X, Xiao Y. Effects of remediation agents on rice and soil in toxic metal(loid)s contaminated paddy fields: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171656. [PMID: 38490416 DOI: 10.1016/j.scitotenv.2024.171656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Toxic metal(loid)s contamination of paddy soil is a nonnegligible issue and threatens food safety considering that it is transmitted via the soil-plant system. Applying remediation agents could effectively inhibit the soil available toxic metal(loid)s and reduce their accumulation in rice. To comprehensively quantify how remediation agents impact the accumulation of Cd/Pb/As in rice, rice growth and yield, the accumulation of available Cd/Pb/As in paddy soil, and soil characteristics, 50 peer-reviewed publications were selected for meta-analysis. Overall, the application of remediation agents exhibited significant positive effects on rice plant length (ES = 0.05, CI = 0.01-0.08), yield (ES = 0.20, CI = 0.13-0.27), peroxidase (ES = 0.56, CI = 0.18-0.31), photosynthetic rate (ES = 0.47, CI = 0.34-0.61), and respiration rate (ES = 0.68, CI = 0.47-0.88). Among the different types of remediation agents, biochar was the most effective in controlling the accumulation of Cd/Pb/As in all portions of rice, and was also superior in inhibiting the accumulation of Pb in rice grains (ES = -0.59, 95 % CI = -1.04-0.13). This study offers an essential contribution for the remediation strategies of toxic metal(loid)s contaminated paddy fields.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanzhao Cheng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yujie Qi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guodong Fan
- Henan ENERGY Storage Technology Co., Ltd., People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Yong Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
9
|
Qin D, Luo G, Qin A, He T, Wu P, Yin D. Selenium-phosphorus modified biochar reduces mercury methylation and bioavailability in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123451. [PMID: 38281574 DOI: 10.1016/j.envpol.2024.123451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Biochar is a frequently employed for solidifying and stabilizing mercury (Hg) contamination in soil. However, it often results in an elevated presence of soil methylmercury (MeHg), which introduces new environmental risks. Consequently, there is a necessity for developing a safer modified biochar for use in Hg-contaminated soil. This study employed sodium selenite (at a safe dosage for soil) and hydroxyapatite to modify straw biochar (BC) based on the interaction between selenium (Se) and phosphorus (P). This process led to the formation of Se-modified biochar (Se-BC), P-modified biochar (P-BC), and Se and P co-modified biochar (Se-P-BC). Additionally, solvent adsorption experiments and pot experiments (BC/soil mass ratio: 0.5 %) were conducted to investigate the impacts of these soil amendments on soil Hg methylation and bioavailability. Se and P co-modification substantially increased the surface area, pore volume, and Hg adsorption capacity of BC. BC treatment increased the simulated gastric acid-soluble Hg, organo-chelated Hg, and MeHg in the soil. Conversely, Se-P-BC significantly reduced these forms of Hg in the soil, indicating that Se-P-BC can transform soil Hg into less bioavailable states. Among the different biochar treatments, Se-P-BC exhibited the most pronounced reductions in soil MeHg, total Hg, and MeHg in water spinach, achieving reductions of 63 %, 71 %, and 70 %, respectively. The co-modification of Se and P displayed a synergistic reduction effect in managing soil Hg pollution, which is associated with the increase of available Se in the soil due to phosphorus addition. The significantly reduced dissolved organic carbon and the abnormally high SO42- concentration in the soil of Se-P-BC treatment also inhibited Hg methylation and bioavailability in the soil. In summary, Se-P-BC substantially increased reduction percentage in plant Hg content while mitigating the risk of secondary pollution arising from elevated soil MeHg.
Collapse
Affiliation(s)
- Dongqiang Qin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Guangjun Luo
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Aming Qin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| |
Collapse
|