1
|
Wang P, Hu J, Zhang Q, Ma W, Tian L, Liu T, Zheng H, Han G. Risk assessment and contamination drivers for heavy metals in kindergarten resuspended dust. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137757. [PMID: 40048790 DOI: 10.1016/j.jhazmat.2025.137757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
It is essential for effective health risk management to precisely evaluate the health risks (HRs) associated with heavy metals (HM) contamination in kindergarten-resuspended dust (KRD) smaller than 100 μm and to identify the driving factors of contamination. The contamination levels and drivers of HM in KRD were investigated in a typical mega-city, and the content- and source-oriented HRs associated with the bio-accessibility (BA) of HM were evaluated. The results show that KRD is heavily polluted by Cd, Cr, and Ni. Furthermore, the BA in gastric solution is higher than that in intestinal solution due to the greater solubility of HM in the acidic environment. Industrial sources are the primary contributors to carcinogenic risks, with Cr and Ni being the main contributors. Notably, HRs based on total HM concentrations are greatly overestimated, so considering the BA of HM can provide more precise risk assessment results. Additionally, the spatial variations of Cr and Ni are primarily influenced by road density and industrial output, while the spatial variation of Cd is mainly affected by elevation, population density, and road density. This work underscores the critical importance of precisely assessing health risks and identifying the drivers of HM contamination in KRD.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jian Hu
- State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenmin Ma
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, PR China
| | - Houyi Zheng
- China National Administration of Coal Geology, Beijing 100038, PR China
| | - Guilin Han
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
2
|
Vesković J, Onjia A. Two-dimensional Monte Carlo simulation coupled with multilinear regression modeling of source-specific health risks from groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137309. [PMID: 39874762 DOI: 10.1016/j.jhazmat.2025.137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Effective protection of groundwater requires an accurate health risk assessment of contaminants; however, the diversity of pollution sources, variability, and uncertainties in exposure parameters present significant challenges in this assessment. In this study, groundwater risk estimates associated with NO3-, and F-, along with fourteen heavy metal(loid)s (V, Cr, Mn, Fe, Ni, Cu, As, Co, Cd, Se, Pb, Hg, Zn, and Al) in an agricultural area were optimized by implementing positive matrix factorization (PMF), multilinear regression, and two-dimensional Monte Carlo simulations to characterize source-specific health risks. Groundwater pollution was analyzed considering regional variations, including differences in elevation, land use and land cover, and soil types. Three pollution sources were identified: agricultural practices, traffic, and natural processes. Moreover, the results revealed NO3- from an agricultural source as the primary control contaminant. Additionally, both adults and children in the study area face significant non-carcinogenic health risks. To mitigate these risks, this study recommends maximum consumption levels of 1.44 L/day for adults and 0.35 L/day for children. Furthermore, adults weighing > 68.1 kg and children weighing > 15.9 kg are likely to be at reduced risk of experiencing adverse health effects. Compared to deterministic health risk assessment and one-dimensional Monte Carlo simulation of health risks, two-dimensional Monte Carlo simulation showed improved performance, providing better accuracy and higher precision in health risk assessment results. Thus, this research is expected to enhance the understanding of health risk assessment related to groundwater and to provide valuable guidance for managing groundwater pollution.
Collapse
Affiliation(s)
- Jelena Vesković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11120, Serbia
| | - Antonije Onjia
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11120, Serbia.
| |
Collapse
|
3
|
Liu X, Wang C, Wang W, Qiu Y, Tang Y, Wang C, Li H, Li G, An T. Combined pollution of heavy metals and polycyclic aromatic hydrocarbons in non-ferrous metal smelting wastewater treatment plant: Distribution profiles, removal efficiency, and ecological risks to receiving river. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137118. [PMID: 39787851 DOI: 10.1016/j.jhazmat.2025.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Combined pollution status of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) from non-ferrous metal smelting (NFMS) industry is crucial but has not been explored. Herein, the co-distribution of HMs and PAHs in a NFMS wastewater treatment plant and the impacts on the receiving river were investigated. Cu, As, and Ni were found to be the characteristic HMs, while Acenaphthylene was the characteristic PAHs in the NFMS wastewater. The removal of HMs and PAHs in wastewater showed a strong positive correlation (R2 > 0.84, p < 0.05) with removal efficiency of 90.7 % and 94.1 %, respectively. It was estimated 547.5 kg HMs and 13.3 kg PAHs were discharged into the receiving river annually. The average concentration of HMs and PAHs in downstream was respective 1.6 and 2.7 times higher than that in upstream, and the sites near discharge outlet had significant spatial autocorrelation (p < 0.05), suggesting the discharge of NFMS wastewater had significantly influenced the receiving river. Aquatic organisms were posed to moderate chronic ecological risk (RQC > 0.1) and surrounding residents were posed to probable carcinogenic risk (TCR > 10-5). This work provides new insights into understanding the combined pollution and corresponding ecological risks from key industrial sectors globally.
Collapse
Affiliation(s)
- Xinyuan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yue Qiu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Congqing Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Aihemaitijiang G, Zhang L, Li M, Chen Y, Zhang J, Zhang F, Zhao C. PAH Contamination, Sources and Health Risks in Black Soil Region of Jilin Province, China. TOXICS 2024; 12:937. [PMID: 39771152 PMCID: PMC11728673 DOI: 10.3390/toxics12120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Soils in the Black Soil Zone of northeast China are experiencing pollution from polycyclic aromatic hydrocarbons (PAHs) as the region undergoes urbanization. In this study, 119 topsoil samples were collected from the black soil agricultural area in Jilin Province, China to investigate the characteristics and spatial distribution of 16 PAHs. The total concentration of ∑16 PAHs in the agricultural soils ranged from 2.546 to 33.993 mg/kg, with a mean value of 9.99 mg/kg. Positive matrix factorization (PMF) analysis indicated that vehicle exhaust and oil combustion were identified as the main contributors to traffic- and energy-related pollution. The inherited lifetime carcinogenicity risk (ILCR) was found to be relatively low, indicating a low potential risk in this region, with adults (1.34 × 10-5) exhibiting a higher risk than adolescents (8.62 × 10-6) and children (7.49 × 10-6). The highest values for intake, skin contact, and inhalation routes were observed in the adult group, suggesting that adult residents in certain areas may be at increased health risk. This study enhances our understanding of the pathways through which PAHs enter agricultural soils in Jilin Province and provides insights that could aid in addressing PAH pollution in black soil, ultimately contributing to more sustainable agricultural practices in the region.
Collapse
Affiliation(s)
- Guzailinuer Aihemaitijiang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.A.); (L.Z.); (M.L.); (Y.C.)
| | - Lujuan Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.A.); (L.Z.); (M.L.); (Y.C.)
| | - Mingtang Li
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.A.); (L.Z.); (M.L.); (Y.C.)
| | - Yanan Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.A.); (L.Z.); (M.L.); (Y.C.)
- College of Jilin Management, Changchun Institute of Technology, Changchun 130012, China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China;
| | - Feng Zhang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.A.); (L.Z.); (M.L.); (Y.C.)
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Pang K, Luo K, Zhang S, Hao L. Source-oriented health risk assessment of groundwater based on hydrochemistry and two-dimensional Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135666. [PMID: 39217947 DOI: 10.1016/j.jhazmat.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Accurately assessing the health risks posed by major contaminants is essential for protecting groundwater. However, the complexity of pollution sources and the uncertainty of parameters pose challenges for quantitative health risk assessment. In this study, a source-oriented groundwater risk evaluation process was improved by screening key pollutants, employing a combined hydrochemical and positive matrix factorization (PMF) approach for source apportionment, and incorporating two-dimensional Monte Carlo simulation for risk characterization. The application of this process to groundwater assessment in Central Jiangxi Province identified NO3-, F-, Se and Mn as the key pollutants. The pollution sources were anthropogenic activities, rock dissolution, regional geological processes, and ion exchange. Anthropogenic sources contributed 36.8 % and 28.8 % of the pollution during the wet season and dry season, respectively, and accounted for more than half of the health risks. NO3- from anthropogenic sources was the primary controlling pollutant. Additionally, the risk assessment indicated that children were at the highest health risk during the dry season, with ingestion rate suggested to be controlled below 1.062 L·day-1 to make the health risk within an acceptable range. The improved assessment methodology could provide more accurate results and recommended intakes.
Collapse
Affiliation(s)
- Kuo Pang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunli Luo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shixi Zhang
- School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Litao Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Wang C, Wang W, Liu X, Tang Y, Wang F, Li H, Wen M, Li G, An T. Aqueous VOCs in complex water environment of oil exploitation sites: Spatial distribution, migration flux, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135121. [PMID: 38981233 DOI: 10.1016/j.jhazmat.2024.135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Pollution of the aqueous environment by volatile organic compounds (VOCs) has caused increasing concerns. However, the occurrence and risks of aqueous VOCs in oil exploitation areas remain unclear. Herein, spatial distribution, migration flux, and environmental risks of VOCs in complex surface waters (including River, Estuary, Offshore and Aquaculture areas) were investigated at a typical coastal oil exploitation site. Among these surface waters, River was the most polluted area, and 1,2-Dichloropropane-which emerges from oil extraction activities-was the most prevalent VOC. Positive matrix factorization showed that VOCs pollution sources changed from oil exploitation to offshore disinfection activities along River, Estuary, Offshore and Aquaculture areas. Annual volatilization of VOCs to the atmosphere was predicted to be ∼34.42 tons, and rivers discharge ∼23.70 tons VOCs into the Bohai Sea annually. Ecological risk assessment indicated that Ethylbenzene and Bromochloromethane posed potential ecological risks to the aquatic environment, while olfactory assessment indicated that VOCs in surface waters did not pose an odor exposure risk. This study provides the first assessment of the pollution characteristics of aqueous VOCs in complex aqueous environments of oil exploitation sites, highlighting that oil exploitation activities can have nonnegligible impacts on VOCs pollution profiles.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyuan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Deng W, Wen M, Xiong J, Wang C, Huang J, Guo Z, Wang W, An T. Atmospheric occurrences and bioavailability health risk of PAHs and their derivatives surrounding a non-ferrous metal smelting plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134200. [PMID: 38593661 DOI: 10.1016/j.jhazmat.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Non-ferrous metal smelting emits large amounts of organic compounds into the atmosphere. Herein, 20 parent polycyclic aromatic hydrocarbons (PPAHs), 9 nitrated PAHs (NPAHs), 14 chlorinated PAHs (ClPAHs), and 6 alkylated PAHs (APAHs) in atmospheric samples from a typical non-ferrous metal smelting plant (NMSP) and residential areas were detected. In NMSP, benzo[a]pyrene, dibenz[a,h]anthracene, 6-nitrochrysene, 9-chlorofluorene, and 1-methylfluorene were the predominant compounds in the particulate phase, while phenanthrene constituted 57.3% in the gaseous phase. The concentration of PAHs in residential areas around NMSP was 1.8 times higher than that in the control area. Additionally, there was a significant negative correlation between the concentration and the distance from the NMSP. In terms of health risks, although the skin penetration coefficient of PM2.5 is smaller than that of the gaseous phase, dermal absorption of PM2.5 posed a greater threat to the population, the incremental lifetime cancer risk (ILCR) of NMSP was 1.8 × 10-4. After considering bioavailability, BILCR decreased by 1-2 orders of magnitude in different regions, and dermal absorption decreased more than inhalation intake. Nevertheless, the dermal absorption of PM2.5 in NMSP still presents a probable carcinogenic risk. This study provides a necessary reference for the subsequent control of NMSP contamination.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhao Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|