1
|
Wolska J, Rapacz D, Smolińska-Kempisty K. Core-shell molecularly imprinted polymers for the monitoring of dimethyl phthalate in the children's toys 1. Talanta 2025; 293:128075. [PMID: 40188673 DOI: 10.1016/j.talanta.2025.128075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Plastic materials contain many additives, among which plasticizers from the group of phthalates are added during the production of everyday products, including children's toys. Even if the European Union and many other regions, for example Canada and the United States, have established restrictions on phthalate esters in children's toys or food contact materials and electronic and electrical products, there is still a danger that products imported from regions where there are no such restrictions can contain these dangerous compounds belonging to the group of endocrine disruptors. The additives introduced into plastics are not chemically bound to the polymer chain, so they can easily migrate to the external environment. This paper presents the process of synthesis of the core-shell type of molecularly imprinted polymers (MIPs) toward dimethyl phthalate (DMP). The most suitable polymerization mixture, which was selected to obtain the MIP layer, was prepared from the 4:6 wt ratio of methyl methacrylate and ethylene glycol dimethacrylate in the n-octane environment and with the addition of 5 wt% of the template. This material was characterized with the highest value of DMP removal, the maximum sorption capacity of this thin layer of MIP was about 3.0 mg/L. Additionally, DMP was about 3 times and about 5 times more efficient sorbed by core-shell MIP, than diethyl phthalate (DEP) and dibutyl phthalate (DBP), respectively. The best sorbed core-shell molecularly imprinted polymer was used as a column filler for solid phase extraction and was used to identify the phthalates present from rubber duck extraction solutions, showing the presence of this compound in the analyzed samples. The method developed in this work has a low limit of detection (LOD) and a low limit of quantification (LOQ) and a wide linear range, allowing DMP to be determined at both at trace levels (0.151 mg/L) and at higher concentrations.
Collapse
Affiliation(s)
- Joanna Wolska
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Dominika Rapacz
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Katarzyna Smolińska-Kempisty
- Wroclaw University of Science and Technology, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Carter LJ, Adams B, Berman T, Cohen N, Cytryn E, Elder FCT, Garduño-Jiménez AL, Greenwald D, Kasprzyk-Hordern B, Korach-Rechtman H, Lahive E, Martin I, Ben Mordechay E, Murray AK, Murray LM, Nightingale J, Radian A, Rubin AE, Sallach B, Sela-Donenfeld D, Skilbeck O, Sleight H, Stanton T, Zucker I, Chefetz B. Co-contaminant risks in water reuse and biosolids application for agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126219. [PMID: 40210163 DOI: 10.1016/j.envpol.2025.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Agriculture made the shift toward resource reuse years ago, incorporating materials such as treated wastewater and biosolids. Since then, research has documented the widespread presence of contaminants of emerging concern in agricultural systems. Chemicals such as pesticides, pharmaceuticals and poly- and -perfluoroalkyl substances (PFASs); particulate matter such as nanomaterials and microplastics; and biological agents such as antibiotic resistance genes (ARGs) and bacteria (ARB) are inadvertently introduced into arable soils where they can be taken up by crops and introduced to the food-web. Thus, concern about the presence of contaminants in agricultural environments has grown in recent years with evidence emerging linking agricultural exposure and accumulation in crops to ecosystem and human health effects. Our current assessment of risk is siloed by working within disciplines (i.e., chemistry and microbiology) and mostly focused on individual chemical classes. By not acknowledging the fact that contaminants are mostly introduced as a mixture, with the potential for interactions, with each other and with environmental factors, we are limiting our current approach to evaluate the real potential for ecosystem and human health effects. By uniting expertise across disciplines to integrate recent understanding regarding the risks posed by a range of chemically diverse contaminants in resources destined for reuse, this review provides a holistic perspective on the current regulatory challenges to ensure safe and sustainable reuse of wastewater and biosolids to support a sanitation-agriculture circular economy.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK.
| | - Beth Adams
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK; Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Israel
| | - Nririt Cohen
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Eddie Cytryn
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - F C T Elder
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | | | - Danny Greenwald
- The Israeli Water and Sewerage Authority, Jerusalem, 9195021, Israel
| | | | | | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, OX10 8BB, UK
| | - Ian Martin
- Environment Agency, Aqua House, 20 Lionel Street, Birmingham, B3 1AQ, UK
| | - Evyatar Ben Mordechay
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - Laura M Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - John Nightingale
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Brett Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Dalit Sela-Donenfeld
- Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Olivia Skilbeck
- School of Design, Faculty of Arts, Humanities and Cultures, University of Leeds, LS2 9JT, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Thomas Stanton
- Department of Geography and Environment, Loughborough University, LE11 3TU, UK
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chefetz
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
3
|
Bu N, Du Q, Xiao T, Jiang Z, Lin J, Chen W, Fan B, Wang J, Xia H, Cheng C, Bian Q, Liu Q. Mechanism of S-Palmitoylation in Polystyrene Nanoplastics-Induced Macrophage Cuproptosis Contributing to Emphysema through Alveolar Epithelial Cell Pyroptosis. ACS NANO 2025; 19:18708-18728. [PMID: 40335889 DOI: 10.1021/acsnano.5c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
More than microplastics, nanoplastics may pose a greater toxic effect on humans due to their unique physicochemical properties. Currently, research on lung diseases caused by respiratory exposure to nanoplastics is scarce, with epigenetic mechanisms warranting further investigation. In the present study, we exposed rats to polystyrene nanoplastics (PS-NPs) via an oral-nasal exposure system and found that PS-NPs exposure resulted in emphysema. Mechanistically, PS-NPs entered macrophages and competitively bound to sigma nonopioid intracellular receptor 1 (SIGMAR1), leading to an increase in free zDHHC palmitoyltransferase 14 (zDHHC14). This, in turn, caused elevated palmitoylation of solute carrier family 31 member 1 (SLC31A1) in macrophages, inhibiting its ubiquitination and degradation, thereby enhancing SLC31A1 expression. The increased expression of SLC31A1 promoted cuproptosis of macrophages and elevated tumor necrosis factor-α (TNF-α) secretion, which activated the NLR family pyrin domain containing 3/matrix metallopeptidase 9 (NLRP3/MMP-9) pathway in alveolar epithelial cells (AECs). This process mediated pyroptosis and degradation of extracellular matrix (ECM), resulting in the destruction of alveolar structure and development of emphysema. The findings demonstrate a previously unknown molecular mechanism by which PS-NPs induce emphysema. The findings have implications for the prevention and treatment of respiratory system damage caused by nanoparticles.
Collapse
Affiliation(s)
- Ning Bu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qing Du
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Zhenhao Jiang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Bowen Fan
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jingyuan Wang
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166,Jiangsu, People's Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Pan B, Tian H, Liang QF, Huang HJ, Huang YT, Liu BL, Li YW, Xiang L, Zhao HM, Cai QY, Feng NX, Mo CH. Microbial augmented aerobic composting for effective phthalates degradation in activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124630. [PMID: 39986162 DOI: 10.1016/j.jenvman.2025.124630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Phthalate esters (PAEs) accumulated in activated sludge posed serious threats to agroecosystems and environment. Traditional aerobic (AE) and anaerobic (AN) composting were limited in achieving sustained PAEs degradation due to the single structure of microbial community. Here, the effectiveness and microbiological mechanisms of bacterial-augmented aerobic composting (AEB) in reducing activated sludge PAEs were investigated, with comparison of anaerobic composting (ANB). Results showed that AEB treatments significantly enhanced PAEs degradation efficiency through batch degradation experiments and microbial community analysis. At initial PAEs contamination levels of 50 mg/kg and 100 mg/kg, di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) removal rates increased by 2.11-3.93-fold and 2.18-3.36-fold, respectively. Notably, AEB treatment reshaped bacterial community structure, forming communities dominated by efficient PAEs-degrading bacteria. Network analysis revealed a more complex microbial interaction networks under AE treatment, with the numbers of node and connectivity being 1.5 and 1.8 times than that of AN treatment. Functional gene prediction indicated increased abundances of PAEs degradation-related functional groups. Environmental factor analysis demonstrated optimized conditions through pH control, oxygen supply, and active carbon-nitrogen metabolism. These findings provided important supports for safe activated sludge disposal and resource utilization.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| | - Hong Tian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Qi-Feng Liang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Ming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
5
|
Estoppey N, Knight ER, Allan IJ, Ndungu K, Slinde GA, Rundberget JT, Ylivainio K, Hernandez-Mora A, Sørmo E, Arp HPH, Cornelissen G. PFAS, PCBs, PCDD/Fs, PAHs and extractable organic fluorine in bio-based fertilizers, amended soils and plants: Exposure assessment and temporal trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177347. [PMID: 39505025 DOI: 10.1016/j.scitotenv.2024.177347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste contribute to closed-loop nutrient cycles and circular agriculture. However, persistent organic contaminants, such as per- and poly-fluoroalkyl substances (PFAS), polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), as well as polyaromatic hydrocarbons (PAHs) can be present in organic waste or be formed during valorization processes. Consequently, these hazardous substances may be introduced into agricultural soils and the food chain via BBFs. This study assessed the exposure of 84 target substances and extractable organic fluorine (EOF) in 19 BBFs produced from different types of waste, including agricultural and food industrial waste, sewage sludge, and biowaste, and through various types of valorization methods, including hygienization at low temperatures (<150 °C) as well as pyrolysis and incineration at elevated temperatures (150-900 °C). The concentrations in BBFs (ΣPFOS & PFOA: <30 μg kg-1, Σ6PCBs: <15 μg kg-1, Σ11PAHs: <3 mg kg-1, Σ17PCDD/Fs: <4 ng TEQ kg-1) were found to be below the strictest thresholds used in individual EU countries, with only one exception (pyrolyzed sewage sludge, Σ11PAHs: 5.9 mg kg-1). Five BBFs produced from sewage sludge or chicken manure contained high concentrations of EOF (>140 μg kg-1), so monitoring of more PFAS is recommended. The calculated expected concentrations in soils after one BBF application (e.g. PFOS: <0.05 μg kg-1) fell below background contamination levels (PFOS: 2.7 μg kg-1) elsewhere in the literature. This was confirmed by the analysis of BBF-amended soils from field experiments (Finland and Austria). Studies on target legacy contaminants in sewage sludge were reviewed, indicating a general decreasing trend in concentration with an apparent half-life ranging from 4 (PFOS) to 9 (PCDD/Fs) years. Modelled cumulative concentrations of the target contaminants in agricultural soils indicated low long-term risks. Concentrations estimated and analyzed in cereal grains were low, indicating that exposure by cereal consumption is well below tolerable daily intakes.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Emma R Knight
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Ian J Allan
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Kuria Ndungu
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Kari Ylivainio
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| | - Alicia Hernandez-Mora
- University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria; AGRANA Research & Innovation Center (ARIC), Reitherstrasse 21-23, 3430 Tulln an der Donau, Austria
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
6
|
Sharma S, Bindraban PS, Dimkpa CO, Pandey R. Phosphorus fertilizer: from commodity to speciality - from fertilizing the field to fertilizing the plant. Curr Opin Biotechnol 2024; 90:103198. [PMID: 39278023 DOI: 10.1016/j.copbio.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Phosphatic fertilizers are indispensable for sustainable agriculture, but phosphorus (P) scarcity has drawn global attention with respect to research and policy discussions. Soil conditions (pH, organic matter, metal oxides), P-fertilizer form and its application methods, and plant growth mechanisms influence plant P availability. Given the nonrenewable nature and low use efficiency of P, the development of speciality P-fertilizers and improved application methods are essential for reducing environmental P losses and increasing plant P uptake, thereby improving P use efficiency (PUE). This paper explores strategies for using innovative P-fertilizers targeting plant physiological processes instead of conventional bulk field applications to enhance PUE.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Prem S Bindraban
- International Fertilizer Development Center, Muscle Shoals, AL 35662, USA
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
7
|
Guo S, Xiao G, Chen Y, Zhang J, Zhang B, Ru S, Zhao M. Unraveling the characteristics of microplastics in agricultural soils upon long-term organic fertilizer application: A comprehensive study using diversity indices. CHEMOSPHERE 2024; 364:143235. [PMID: 39218259 DOI: 10.1016/j.chemosphere.2024.143235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microplastics negatively impact soil health and productivity. Organic fertilizers constitute significant contributors of microplastics in agricultural soils. Nevertheless, comprehensive data on the diversity of microplastics in long-term fertilized soils remain unavailable. In this study, we assessed the presence of microplastics in soils subjected to application of three different organic fertilizers (pig manure, chicken manure, and sludge composts) over 12 years, and evaluated the potential ecological risks posed by microplastic accumulation. The average microplastic abundance in soil was 368.88 ± 207.97 (range: 90-910) items/kg. Microplastic abundance differed among fertilization treatments, with substantial increases of 16.67%, 71.67%, and 61.43% upon low to high application of the three treatments, respectively. Overall, the microplastics predominantly comprised fibers (70.94%) and fragments (25.25%), of which a substantial proportion constituted light-colored microplastics (transparent and white). The size of microplastics was mainly concentrated in the 1-2 mm range (39.96%), with rayon, polypropylene, polyester, and polyethylene being identified as the major types. The risk assessment indices of the three treatments were 229.38, 257.64, and 175.89, respectively, and were all classified as level 4 (high risk). The microplastic diversity integrated index and principal component analysis revealed that microplastics were uniformly distributed throughout the 0-20 cm soil depth consequent to tillage activity. Together, these findings provide a comprehensive assessment of microplastic pollution in long-term fertilized soils and serve as a scientific basis for reducing microplastic contamination in agricultural soils.
Collapse
Affiliation(s)
- Sen Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guangmin Xiao
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Baogui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuhua Ru
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
8
|
Jin X, Pan J, Zhang C, Cao X, Wang C, Yue L, Li X, Liu Y, Wang Z. Toxic mechanism in Daphnia magna due to phthalic acid esters and CuO nanoparticles co-exposure: The insight of physiological, microbiomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116338. [PMID: 38640799 DOI: 10.1016/j.ecoenv.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/31/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 μg/L) for 21 days significantly enhanced the toxicity of DBP (100 μg/L) and BBP (100 μg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junlan Pan
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|