1
|
Władziński A, Kosowska M, Wityk P, Łuczkiewicz A, Gnyba M, Szczerska M. Biomarker Detection in the Wastewater Phantom. JOURNAL OF BIOPHOTONICS 2025:e202500003. [PMID: 40357981 DOI: 10.1002/jbio.202500003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Research trends are focused on developing solutions that monitor public health utilizing sewage surveillance, as wastewater can provide valuable information on the presence of specific biomarkers. Such information can serve as an indication of immune response at the community level, delivering a noninvasive measure of e.g., vaccination effectiveness. In this paper, we present an optical wastewater phantom fabrication, characterization, and comparison to real wastewater samples. Raman spectroscopy was used for the investigation of the molecular compositions of treated wastewater and artificial wastewater phantoms, and the refractometer to investigate refractive index values dependence on temperature. Selected biomarkers concentrations (10-6 to 10-1 mg/mL) were added to the validated phantoms. The selective detection of SARS-CoV-2 immunoglobulin G (IgG) was achieved through specific surface modification of the fiber-optic probe, allowing only targeted biomarkers to attach and influence the measurement signal. Successful detection of 10-6 mg/mL IgG concentration in the wastewater phantom was achieved within 5 min.
Collapse
Affiliation(s)
- Adam Władziński
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
| | - Monika Kosowska
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Marcin Gnyba
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
| | - Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Dinç GG, Saatçi E, Polat İG, Yücel F, Tazebay UH, Akçael E. Design of immunoassay based biosensor platforms for SARS-CoV-2 detection using highly specific monoclonal antibodies. Diagn Microbiol Infect Dis 2025; 111:116644. [PMID: 39647223 DOI: 10.1016/j.diagmicrobio.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The global expand of SARS-CoV-2 has highlighted the importance of early and rapid detection to control the spread of a pandemic. In this study, specific and high-affinity monoclonal antibodies (mAbs) were developed against the conserved nucleocapsid protein of the virus among variants. Appropriate antibody pairs were selected to develop a lateral flow immunoassay (LFIA) and an unconventional application of an amperometric biosensor using unmodified screen-printed electrodes and external magnetic bead preparation. In the study, the LFIA we developed detected the SARS-CoV-2 virus at 104 PFU/mL, while the amperometric biosensor enabled sensitive detection of inactivated SARS-CoV-2 with an LOD of 5.5 PFU/mL. After validating the developed systems, it is considered that the mAbs we have obtained will enable the sensitive and selective detection of SARS-CoV-2 in LFIA and amperometric immunosensor platforms for clinical diagnosis.
Collapse
Affiliation(s)
- Göknur Gizem Dinç
- TÜBİTAK Marmara Research Center, 41470, Gebze, Kocaeli, Türkiye; Gebze Technical University, Department of Molecular Biology and Genetics, 41400, Gebze, Kocaeli, Türkiye.
| | - Ebru Saatçi
- Erciyes University, Faculty of Science, Department of Biology, 38039, Kayseri, Türkiye
| | | | - Fatıma Yücel
- TÜBİTAK Marmara Research Center, 41470, Gebze, Kocaeli, Türkiye
| | - Uygar Halis Tazebay
- Gebze Technical University, Department of Molecular Biology and Genetics, 41400, Gebze, Kocaeli, Türkiye; Gebze Technical University, Central Research Laboratory (GTU-MAR), 41400, Gebze, Kocaeli, Türkiye
| | - Esin Akçael
- TÜBİTAK Marmara Research Center, 41470, Gebze, Kocaeli, Türkiye
| |
Collapse
|
3
|
Liu X, Sun Y, Song H, Zhang W, Liu T, Chu Z, Gu X, Ma Z, Jin W. Nanomaterials-based electrochemical biosensors for diagnosis of COVID-19. Talanta 2024; 274:125994. [PMID: 38547841 DOI: 10.1016/j.talanta.2024.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Yifan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Huaiyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Wei Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| |
Collapse
|
4
|
Wei Z, Zhang X, Chen Y, Liu H, Wang S, Zhang M, Ma H, Yu K, Wang L. A new strategy based on a cascade amplification strategy biosensor for on-site eDNA detection and outbreak warning of crown-of-thorns starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172258. [PMID: 38583618 DOI: 10.1016/j.scitotenv.2024.172258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.
Collapse
Affiliation(s)
- Zongwu Wei
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuzhe Zhang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yingzhan Chen
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Honglin Ma
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd., Qionghai 571499, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|