1
|
Vass Á, Farkas K, Lányi O, Kói T, Csukly G, Réthelyi JM, Baradits M. Current status of EEG microstate in psychiatric disorders: a systematic review and meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00128-4. [PMID: 40220957 DOI: 10.1016/j.bpsc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND EEG microstates are promising biomarkers for psychiatric conditions, though prior meta-analyses mainly focused on schizophrenia and mood disorders. This study expands the analysis to a wider range of mental disorders, examining microstate variations across the psychosis and mood spectra and assessing medication effects on schizophrenia. METHODS Following PRISMA guidelines, we conducted a comprehensive literature search, identifying 24 studies meeting inclusion criteria. Analyses were performed across two psychiatric subgroups: psychotic disorders and mood disorders. We further conducted a subgroup analysis within the schizophrenia spectrum to examine differences in microstate properties between medicated and unmedicated patients. RESULTS Microstate C demonstrated significant increase in coverage, and occurrence in patients with schizophrenia, first episode psychosis and high risk for psychosis, and increased duration in schizophrenia. The absence of increased occurrence in medicated schizophrenia patients suggests that this feature may be state-dependent or modulated by treatment. In contrast, microstate D exhibited significant decreases in duration and coverage in unmedicated schizophrenia patients, indicating potential links with acute psychotic states. CONCLUSIONS Our findings suggest that microstates C and D could serve as potential biomarkers in schizophrenia, with microstate D alterations linked to acute psychotic symptoms and microstate C potentially reflecting a chronic course or treatment effects. These results emphasize the clinical potential of microstate analysis in psychotic disorder diagnosis and treatment monitoring. The literature on microstate variations in neurodevelopmental and mood disorders is limited, highlighting the need for further research to determine their biomarker potential in these conditions.
Collapse
Affiliation(s)
- Ágota Vass
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| | - Orsolya Lányi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Institute of Behavioral Science, Feinstein Institutes for Medical Research, New York
| |
Collapse
|
2
|
Hao X, Ma M, Meng F, Liang H, Liang C, Liu X, Zhang B, Ju Y, Liu S, Ming D. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis. J Affect Disord 2025; 373:227-236. [PMID: 39743145 DOI: 10.1016/j.jad.2024.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder characterized by excessive, uncontrollable worry and physical symptoms such as difficulty concentrating and sleep disturbances. Although functional magnetic resonance imaging (fMRI) studies have reported aberrant network-level activity related to cognition and emotion in GAD, its low temporal resolution restricts its ability to capture the rapid neural activity in mental processes. EEG microstate analysis offers millisecond-resolution for tracking the dynamic changes in brain electrical activity, thereby illuminating the neurophysiological mechanisms underlying the cognitive and emotional dysfunctions in GAD. This study collected 64-channel resting-state EEG data from 28 GAD patients and 28 healthy controls (HC), identifying five microstate classes (A-E) in both groups. Results showed that GAD patients exhibited significantly lower duration (p < 0.01), occurrence (p < 0.05), and coverage (p < 0.01) of microstate class D, potentially reflecting deficits in attention-related networks. Such alterations may contribute to the impairments in attention maintenance and cognitive control. Additionally, GAD patients displayed reduced transition probabilities in A → D, B → D, C → D, and E → D (all corrected p < 0.05), but increased in C → E (corrected p < 0.05) and E → C (corrected p < 0.01). These results highlight a significant reduction in the brain's ability to transition into microstate class D, alongside overactivity in switching between the default mode network and the salience network. Such neurophysiological changes may underlie cognitive control deficits, increased spontaneous rumination, and emotional regulation challenges observed in GAD. Together, these insights provide a new perspective for understanding the neurophysiological and pathological mechanisms underlying GAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fanyu Meng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hui Liang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chunyu Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Bo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Ling S, Du L, Tan X, Tang G, Che Y, Song S. EEG Microstate Dynamics during Different Physiological Developmental Stages and the Effects of Medication in Schizophrenia. J Integr Neurosci 2025; 24:27059. [PMID: 40152574 DOI: 10.31083/jin27059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is associated with abnormal neural activities and brain connectivity. Electroencephalography (EEG) microstate is a voltage topographical representation of temporary brain network activations. Most research on EEG microstates in SCZ has focused on differences between patients and healthy controls (HC). However, changes in EEG microstates among SCZ patients across various stages of physiological and cognitive development have not been thoroughly assessed. Consequently, we stratified patients with SCZ into four age-specific cohorts (20-29 years (brain maturation), 30-39 years (stabilization), 40-49 years (early aging), and 50-59 years (advanced aging)) to evaluate EEG microstate alterations. Additionally, we assessed changes in EEG microstates in first-episode psychosis (FEP) before and after an 8-week treatment period. METHODS We acquired 19-channel resting-state EEG from 140 chronic SCZ patients, aged 20 to 59 years, as well as from 19 FEP and 20 healthy controls. FEP patients underwent an 8-week inpatient follow-up. After pre-processing, EEG data from different groups were subjected to microstate analysis, and the K-Means clustering algorithm was applied to classify the data into 4 microstates. Subsequently, templates of these microstates were used to fit EEG signals from each patient, and the collected microstate parameters were analyzed. RESULTS Patients with SCZ aged 20 to 29 years demonstrated an increased time coverage of microstate class D compared to other age cohorts. In individuals aged 30-39 years, the parameters of microstate class B-specifically time coverage and occurrence-exhibited significant reductions relative to those in the 40-49 and 50-59 years age groups. Compared to healthy controls, microstates class A parameters were significantly reduced in SCZ patients, while microstates class C parameters were prolonged; after 8 weeks of treatment, microstates class A parameters increased and microstates class C parameters decreased. CONCLUSIONS Alterations in microstate dynamics were observed among SCZ patients across developmental stages, suggesting potential changes in brain activity patterns. Changes in microstates A and C may serve as potential biomarkers for evaluating treatment efficacy, establishing a foundation for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Shihai Ling
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, 643002 Zigong, Sichuan, China
- Artificial Intelligence Key Laboratory of Sichuan Province, 644000 Yibin, Sichuan, China
| | - Lingyan Du
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, 643002 Zigong, Sichuan, China
- Artificial Intelligence Key Laboratory of Sichuan Province, 644000 Yibin, Sichuan, China
| | - Xi Tan
- Zigong Institute of Brain Science, Zigong Mental Health Center, The Zigong Affiliated Hospital of Southwest Medical University, 643020 Zigong, Sichuan, China
| | - Guozhi Tang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, 643002 Zigong, Sichuan, China
- Artificial Intelligence Key Laboratory of Sichuan Province, 644000 Yibin, Sichuan, China
| | - Yue Che
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, 643002 Zigong, Sichuan, China
- Artificial Intelligence Key Laboratory of Sichuan Province, 644000 Yibin, Sichuan, China
| | - Shirui Song
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, 643002 Zigong, Sichuan, China
- Artificial Intelligence Key Laboratory of Sichuan Province, 644000 Yibin, Sichuan, China
| |
Collapse
|
4
|
Feng R, Yang J, Huang H, Chen Z, Feng R, Hameed NUF, Zhang X, Hu J, Chen L, Lu S. Spatiotemporal Microstate Dynamics of Spike-Free Scalp EEG Offer a Potential Biomarker for Refractory Temporal Lobe Epilepsy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:574-587. [PMID: 39222448 DOI: 10.1109/tmi.2024.3453377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Refractory temporal lobe epilepsy (TLE) is one of the most frequently observed subtypes of epilepsy and endangers more than 50 million people world-wide. Although electroencephalogram (EEG) had been widely recognized as a classic tool to screen and diagnose epilepsy, for many years it heavily relied on identifying epileptic discharges and epileptogenic zone localization, which however, limits the understanding of refractory epilepsy due to the network nature of this disease. This work hypothesizes that the microstate dynamics based on resting-state scalp EEG can offer an additional network depiction of the disease and provide potential complementary evaluation tool for the TLE even without detectable epileptic discharges on EEG. We propose a novel framework for EEG microstate spatial-temporal dynamics (EEG-MiSTD) analysis based on machine learning to comprehensively model millisecond-changing whole-brain network dynamics. With only 100 seconds of resting-state EEG even without epileptic discharges, this approach successfully distinguishes TLE patients from healthy controls and is related to the lateralization of epileptic focus. Besides, microstate temporal and spatial features are found to be widely related to clinical parameters, which further demonstrate that TLE is a network disease. A preliminary exploration suggests that the spatial topography is sensitive to the following surgical outcomes. From such a new perspective, our results suggest that spatiotemporal microstate dynamics is potentially a biomarker of the disease. The developed EEG-MiSTD framework can probably be considered as a general tool to examine dynamical brain network disruption in a user-friendly way for other types of epilepsy.
Collapse
|
5
|
SA A, C S, P D, PS S, ML A, Kumar D, Thomas SV, Menon RN. Resting state EEG microstate profiling and a machine-learning based classifier model in epilepsy. Cogn Neurodyn 2024; 18:2419-2432. [PMID: 39555277 PMCID: PMC11564422 DOI: 10.1007/s11571-024-10095-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 11/19/2024] Open
Abstract
Electroencephalography-based (EEG) microstate analysis is a promising and widely studied method in which spontaneous cerebral activity is segmented into sub second level quasi-stable states and analyzed. Currently it is being widely explored due to increasing evidence of the association of microstates with cognitive functioning and large-scale brain networks identified by functional magnetic resonance imaging (fMRI). In our study using the four archetypal microstates (A, B, C and D), we investigated the changes in resting state EEG microstate dynamics in persons with temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) compared to healthy controls (HC). Machine learning was applied to study its feasibility in differentiating between different groups using microstate statistics. We found significant differences in all parameters related to Microstate D (fronto-parietal network) in TLE patients and Microstate B (visual processing) in IGE patients compared to HCs. Occurrence, duration and time coverage of Microstate B was highest in IGE when compared to the other groups. We also found significant deviations in transition probabilities for both epilepsy groups, particularly into Microstate C (salience network) in IGE. Classification accuracy into clinical groups was found to exceed 70% using microstate parameters which improved on incorporating neuropsychological test differences. To the best of our knowledge, the current study is the first to compare and validate the use of microstate features to discriminate between two disparate epilepsy syndromes (TLE, IGE) and HCs using machine learning suggesting that resting state EEG microstates can be used for endophenotyping and to study resting state dysfunction in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10095-z.
Collapse
Affiliation(s)
- Asha SA
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Sudalaimani C
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Devanand P
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Subodh PS
- Centre For Development of Advanced Computing (CDAC), Thiruvananthapuram, Kerala India
| | - Arya ML
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Devika Kumar
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Sanjeev V Thomas
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| | - Ramshekhar N Menon
- Department of Neurology, R Madhavan Nayar Centre for Comprehensive Epilepsy Care, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala 695011 India
| |
Collapse
|
6
|
Chen J, Jin L, Lin N. Utilization of EEG microstates as a prospective biomarker for assessing the impact of ketogenic diet in GLUT1-DS. Neurol Sci 2024; 45:4539-4547. [PMID: 38589768 DOI: 10.1007/s10072-024-07519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE The aim of the study is to analyze microstate patterns in GLUT1-DS, both before and after the ketogenic diet (KD). METHODS We conducted microstate analysis of a patient with GLUT-1 DS and 27 healthy controls. A systematic literature review and meta-analysis was done. We compared the parameters of the patients with those of healthy controls and the incorporating findings in literature. RESULTS The durations of the patient were notably shorter, and the occurrence rates were longer than those of healthy controls and incorporating findings from the review. After 10 months of KD, the patient's microstate durations exhibited an increase from 53.05 ms, 57.17 ms, 61.80 ms, and 49.49 ms to 60.53 ms, 63.27 ms, 71.11 ms, and 66.55 ms. The occurrence rates changed from 4.0774 Hz, 4.9462 Hz, 4.8006 Hz, and 4.0579 Hz to 3.3354 Hz, 3.7893 Hz, 3.5956 Hz, and 4.1672 Hz. In healthy controls, the durations of microstate class A, B, C, and D were 61.86 ms, 63.58 ms, 70.57 ms, and 72.00 ms, respectively. CONCLUSIONS Our findings suggest EEG microstates may be a promising biomarker for monitoring the effect of KD. Administration of KD may normalize the dysfunctional patterns of temporal parameters.
Collapse
Affiliation(s)
- Jianhua Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Liri Jin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Nan Lin
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| |
Collapse
|
7
|
Tomescu MI, Van der Donck S, Perisanu EM, Berceanu AI, Alaerts K, Boets B, Carcea I. Social functioning predicts individual changes in EEG microstates following intranasal oxytocin administration: A double-blind, cross-over randomized clinical trial. Psychophysiology 2024; 61:e14581. [PMID: 38594888 DOI: 10.1111/psyp.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Oxytocin (OXT) modulates social behaviors. However, the administration of exogenous OXT in humans produces inconsistent behavioral changes, affecting future consideration of OXT as a treatment for autism and other disorders with social symptoms. Inter-individual variability in social functioning traits might play a key role in how OXT changes brain activity and, therefore, behavior. Here, we investigated if inter-individual variability might dictate how single-dose intranasal OXT administration (IN-OXT) changes spontaneous neural activity during the eyes-open resting state. We used a double-blinded, randomized, placebo-controlled, cross-over design on 30 typically developing young adult men to investigate the dynamics of EEG microstates corresponding to activity in defined neural networks. We confirmed previous reports that, at the group level, IN-OXT increases the representation of the attention and salience microstates. Furthermore, we identified a decreased representation of microstates associated with the default mode network. Using multivariate partial least square statistical analysis, we found that social functioning traits associated with IN-OXT-induced changes in microstate dynamics in specific spectral bands. Correlation analysis further revealed that the higher the social functioning, the more IN-OXT increased the appearance of the visual network-associated microstate, and suppressed the appearance of a default mode network-related microstate. The lower the social functioning, the more IN-OXT increases the appearance of the salience microstate. The effects we report on the salience microstate support the hypothesis that OXT regulates behavior by enhancing social salience. Moreover, our findings indicate that social functioning traits modulate responses to IN-OXT and could partially explain the inconsistent reports on IN-OXT effects.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Bucharest, Romania
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Bucharest, Bucharest, Romania
| | - Stephanie Van der Donck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Emanuela M Perisanu
- Institute of Cardiovascular Diseases, Timisoara, Romania
- Faculty of Medicine, University of Sibiu, Sibiu, Romania
| | - Alexandru I Berceanu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Kaat Alaerts
- Neuromodulation Laboratory, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Ioana Carcea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
8
|
Tomescu MI, Papasteri C, Sofonea A, Berceanu AI, Carcea I. Personality Moderates Intra-Individual Variability in EEG Microstates and Spontaneous Thoughts. Brain Topogr 2024; 37:524-535. [PMID: 38038786 PMCID: PMC11199214 DOI: 10.1007/s10548-023-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Variability in brain activity that persists after accounting for overt behavioral and physiological states is often considered noise and controlled as a covariate in research. However, studying intra-individual variability in brain function can provide valuable insights into the dynamic nature of the brain. To explore this, we conducted a study on 43 participants analyzing the EEG microstate dynamics and self-reported spontaneous mental activity during five-minute resting-state recordings on two separate days with a twenty days average delay between recordings. Our results showed that the associations between EEG microstates and spontaneous cognition significantly changed from one day to another. Moreover, microstate changes were associated with changes in spontaneous cognition. Specifically, inter-day changes in Verbal thoughts about Others and future Planning were positively related to bottom-up sensory network-related microstate changes and negatively associated with top-down, attention, and salience network-related microstates. In addition, we find that personality traits are related to inter-day changes in microstates and spontaneous thoughts. Specifically, extraversion, neuroticism, agreeableness, and openness to experience moderated the relationship between inter-day changes in EEG microstates and spontaneous thoughts. Our study provides valuable information on the dynamic changes in the EEG microstate-spontaneous cognition organization, which could be essential for developing interventions and treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Department of Psychology, Faculty of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania.
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania.
| | - Claudiu Papasteri
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Alexandru I Berceanu
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Ioana Carcea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, New Jersey, NJ, USA
| |
Collapse
|
9
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
10
|
Chivu A, Pascal SA, Damborská A, Tomescu MI. EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis. Brain Topogr 2024; 37:357-368. [PMID: 37615799 PMCID: PMC11026263 DOI: 10.1007/s10548-023-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
Collapse
Affiliation(s)
- Alina Chivu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Simona A Pascal
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania.
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
11
|
Mazzeo A, Cerulli Irelli E, Leodori G, Mancuso M, Morano A, Giallonardo AT, Di Bonaventura C. Resting-state electroencephalography microstates as a marker of photosensitivity in juvenile myoclonic epilepsy. Brain Commun 2024; 6:fcae054. [PMID: 38444911 PMCID: PMC10914451 DOI: 10.1093/braincomms/fcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Juvenile myoclonic epilepsy is an idiopathic generalized epilepsy syndrome associated with photosensitivity in approximately 30-40% of cases. Microstates consist of a brief period of time during which the topography of the whole resting-state electroencephalography signal is characterized by a specific configuration. Previous neurophysiological and neuroimaging studies have suggested that Microstate B may represent activity within the visual network. In this case-control study, we aimed to investigate whether anatomical and functional alterations in the visual network observed in individuals with photosensitivity could lead to changes in Microstate B dynamics in photosensitive patients with juvenile myoclonic epilepsy. Resting-state electroencephalography microstate analysis was performed on 28 patients with juvenile myoclonic epilepsy. Of these, 15 patients exhibited photosensitivity, while the remaining 13 served as non-photosensitive controls. The two groups were carefully matched in terms of age, sex, seizure control and anti-seizure medications. Multivariate analysis of variance and repeated-measures analysis of variance were performed to assess significant differences in microstate metrics and syntax between the photosensitive and the non-photosensitive group. Post hoc false discovery rate adjusted unpaired t-tests were used to determine differences in specific microstate classes between the two groups. The four classical microstates (Classes A, B, C and D) accounted for 72.8% of the total electroencephalography signal variance in the photosensitive group and 75.64% in the non-photosensitive group. Multivariate analysis of variance revealed a statistically significant class-group interaction on microstate temporal metrics (P = 0.021). False discovery rate adjusted univariate analyses of variance indicated a significant class-group interaction for both mean occurrence (P = 0.002) and coverage (P = 0.03), but not for mean duration (P = 0.14). Post hoc false discovery rate adjusted unpaired t-tests showed significantly higher coverage (P = 0.02) and occurrence (P = 0.04) of Microstate B in photosensitive patients compared with non-photosensitive participants, along with an increased probability of transitioning from Microstates C (P = 0.04) and D (P = 0.02) to Microstate B. No significant differences were found concerning the other microstate classes between the two groups. Our study provides novel insights on resting-state electroencephalography microstate dynamics underlying photosensitivity in patients with juvenile myoclonic epilepsy. The increased representation of Microstate B in these patients might reflect the resting-state overactivation of the visual system underlying photosensitivity. Further research is warranted to investigate microstate dynamics in other photosensitive epilepsy syndromes.
Collapse
Affiliation(s)
- Adolfo Mazzeo
- Department of Human Neurosciences, Sapienza University, Rome 00185, Italy
| | | | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University, Rome 00185, Italy
- IRCCS Neuromed, Pozzilli 86077, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University, Rome 00185, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, Sapienza University, Rome 00185, Italy
| | | | | |
Collapse
|
12
|
Deodato M, Seeber M, Mammeri K, Michel CM, Vuilleumier P. Combined effects of neuroticism and negative emotional context on spontaneous EEG dynamics. Soc Cogn Affect Neurosci 2024; 19:nsae012. [PMID: 38334689 PMCID: PMC10873851 DOI: 10.1093/scan/nsae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/03/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Neuroticism is a personality trait with great clinical relevance, defined as a tendency to experience negative affect, sustained self-generated negative thoughts and impaired emotion regulation. Here, we investigated spontaneous brain dynamics in the aftermath of negative emotional events and their links with neuroticism in order to shed light on the prolonged activity of large-scale brain networks associated with the control of affect. We recorded electroencephalography (EEG) from 36 participants who were asked to rest after watching neutral or fearful video clips. Four topographic maps (i.e. microstates classes A, B, C and D) explained the majority of the variance in spontaneous EEG. Participants showed greater presence of microstate D and lesser presence of microstate C following exposure to fearful stimuli, pointing to changes in attention- and introspection-related networks previously associated with these microstates. These emotional effects were more pronounced for participants with low neuroticism. Moreover, neuroticism scores were positively correlated with microstate C and negatively correlated with microstate D, regardless of previous emotional stimulation. Our results reveal distinctive effects of emotional context on resting-state EEG, consistent with a prolonged impact of negative affect on the brain, and suggest a possible link with neuroticism.
Collapse
Affiliation(s)
- Michele Deodato
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University Medical School of Geneva, Geneva 1202, Switzerland
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, Geneva 1201, Switzerland
| | - Kevin Mammeri
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University Medical School of Geneva, Geneva 1202, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva 1202, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, Geneva 1201, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Lausanne 1015, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University Medical School of Geneva, Geneva 1202, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva 1202, Switzerland
| |
Collapse
|
13
|
D’Andrea A, Croce P, O’Byrne J, Jerbi K, Pascarella A, Raffone A, Pizzella V, Marzetti L. Mindfulness meditation styles differently modulate source-level MEG microstate dynamics and complexity. Front Neurosci 2024; 18:1295615. [PMID: 38370436 PMCID: PMC10869546 DOI: 10.3389/fnins.2024.1295615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background The investigation of mindfulness meditation practice, classically divided into focused attention meditation (FAM), and open monitoring meditation (OMM) styles, has seen a long tradition of theoretical, affective, neurophysiological and clinical studies. In particular, the high temporal resolution of magnetoencephalography (MEG) or electroencephalography (EEG) has been exploited to fill the gap between the personal experience of meditation practice and its neural correlates. Mounting evidence, in fact, shows that human brain activity is highly dynamic, transiting between different brain states (microstates). In this study, we aimed at exploring MEG microstates at source-level during FAM, OMM and in the resting state, as well as the complexity and criticality of dynamic transitions between microstates. Methods Ten right-handed Theravada Buddhist monks with a meditative expertise of minimum 2,265 h participated in the experiment. MEG data were acquired during a randomized block design task (6 min FAM, 6 min OMM, with each meditative block preceded and followed by 3 min resting state). Source reconstruction was performed using eLORETA on individual cortical space, and then parcellated according to the Human Connect Project atlas. Microstate analysis was then applied to parcel level signals in order to derive microstate topographies and indices. In addition, from microstate sequences, the Hurst exponent and the Lempel-Ziv complexity (LZC) were computed. Results Our results show that the coverage and occurrence of specific microstates are modulated either by being in a meditative state or by performing a specific meditation style. Hurst exponent values in both meditation conditions are reduced with respect to the value observed during rest, LZC shows significant differences between OMM, FAM, and REST, with a progressive increase from REST to FAM to OMM. Discussion Importantly, we report changes in brain criticality indices during meditation and between meditation styles, in line with a state-like effect of meditation on cognitive performance. In line with previous reports, we suggest that the change in cognitive state experienced in meditation is paralleled by a shift with respect to critical points in brain dynamics.
Collapse
Affiliation(s)
- Antea D’Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Jordan O’Byrne
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Karim Jerbi
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Annalisa Pascarella
- Institute for the Applications of Calculus “M. Picone”, National Research Council, Rome, Lazio, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Lazio, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Abruzzo, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Abruzzo, Italy
| |
Collapse
|
14
|
Thirioux B, Langbour N, Bokam P, Wassouf I, Guillard-Bouhet N, Wangermez C, Leblanc PM, Doolub D, Harika-Germaneau G, Jaafari N. EEG microstate co-specificity in schizophrenia and obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:207-225. [PMID: 37421444 DOI: 10.1007/s00406-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive-compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France.
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France.
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre Hospitalier Nord Deux-Sèvres, Parthenay, France
| | - Nathalie Guillard-Bouhet
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Carole Wangermez
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Réhabilitation et d'Activités Thérapeutiques Intersectorial de la Vienne, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| | - Pierre-Marie Leblanc
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
| | - Damien Doolub
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021, Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 370 Avenue Jacques Coeur, 86021, Poitiers, France
- Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, CNRS 7295, 86021, Poitiers, France
- Centre Médico-Psychologique, Centre Hospitalier Henri Laborit, 86021, Poitiers, France
| |
Collapse
|
15
|
Peng RJ, Fan Y, Li J, Zhu F, Tian Q, Zhang XB. Abnormalities of electroencephalography microstates in patients with depression and their association with cognitive function. World J Psychiatry 2024; 14:128-140. [PMID: 38327889 PMCID: PMC10845229 DOI: 10.5498/wjp.v14.i1.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND A growing number of recent studies have explored underlying activity in the brain by measuring electroencephalography (EEG) in people with depression. However, the consistency of findings on EEG microstates in patients with depression is poor, and few studies have reported the relationship between EEG microstates, cognitive scales, and depression severity scales. AIM To investigate the EEG microstate characteristics of patients with depression and their association with cognitive functions. METHODS A total of 24 patients diagnosed with depression and 32 healthy controls were included in this study using the Structured Clinical Interview for Disease for The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. We collected information relating to demographic and clinical characteristics, as well as data from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS; Chinese version) and EEG. RESULTS Compared with the controls, the duration, occurrence, and contribution of microstate C were significantly higher [depression (DEP): Duration 84.58 ± 24.35, occurrence 3.72 ± 0.56, contribution 30.39 ± 8.59; CON: Duration 72.77 ± 10.23, occurrence 3.41 ± 0.36, contribution 24.46 ± 4.66; Duration F = 6.02, P = 0.049; Occurrence F = 6.19, P = 0.049; Contribution F = 10.82, P = 0.011] while the duration, occurrence, and contribution of microstate D were significantly lower (DEP: Duration 70.00 ± 15.92, occurrence 3.18 ± 0.71, contribution 22.48 ± 8.12; CON: Duration 85.46 ± 10.23, occurrence 3.54 ± 0.41, contribution 28.25 ± 5.85; Duration F = 19.18, P < 0.001; Occurrence F = 5.79, P = 0.050; Contribution F = 9.41, P = 0.013) in patients with depression. A positive correlation was observed between the visuospatial/constructional scores of the RBANS scale and the transition probability of microstate class C to B (r = 0.405, P = 0.049). CONCLUSION EEG microstate, especially C and D, is a possible biomarker in depression. Patients with depression had a more frequent transition from microstate C to B, which may relate to more negative rumination and visual processing.
Collapse
Affiliation(s)
- Rui-Jie Peng
- Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Yu Fan
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jin Li
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Feng Zhu
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Qing Tian
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
16
|
Iftimovici A, Marchi A, Férat V, Pruvost-Robieux E, Guinard E, Morin V, Elandaloussi Y, D’Halluin A, Krebs MO, Chaumette B, Gavaret M. Electroencephalography microstates imbalance across the spectrum of early psychosis, autism, and mood disorders. Eur Psychiatry 2023; 66:e41. [PMID: 37246142 PMCID: PMC10305759 DOI: 10.1192/j.eurpsy.2023.2414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Electroencephalography (EEG) microstates translate resting-state temporal dynamics of neuronal networks throughout the brain and could constitute possible markers of psychiatric disorders. We tested the hypothesis of an increased imbalance between a predominant self-referential mode (microstate C) and a decreased attentional mode (microstate D) in psychosis, mood, and autism spectrum disorders. METHODS We retrospectively included 135 subjects from an early psychosis outpatient unit, with available eyes-closed resting-state 19 electrodes EEG. Individual-level then group-level modified K-means clustering in controls provided four microstate maps that were then backfitted to all groups. Differences between microstate parameters (occurrence, coverage, and mean duration) were computed between controls and each group, and between disease groups. RESULTS Microstate class D parameters were systematically decreased in disease groups compared with controls, with an effect size increasing along the psychosis spectrum, but also in autism. There was no difference in class C. C/D ratios of mean duration were increased only in SCZ compared with controls. CONCLUSIONS The decrease in microstate class D may be a marker of stage of psychosis, but it is not specific to it and may rather reflect a shared dimension along the schizophrenia-autism spectrum. C/D microstate imbalance may be more specific to schizophrenia.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Angela Marchi
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Victor Férat
- Functional Brain Mapping Laboratory, University of Geneva, Geneva, Switzerland
| | - Estelle Pruvost-Robieux
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Eléonore Guinard
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Valentine Morin
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Arnaud D’Halluin
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Martine Gavaret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, Institutde psychiatrie, CNRS GDR 3557, France
- Neurophysiology and Epileptology department, GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
17
|
Thirioux B, Langbour N, Bokam P, Renaudin L, Wassouf I, Harika-Germaneau G, Jaafari N. Microstates imbalance is associated with a functional dysregulation of the resting-state networks in obsessive-compulsive disorder: a high-density electrical neuroimaging study using the TESS method. Cereb Cortex 2023; 33:2593-2611. [PMID: 35739579 DOI: 10.1093/cercor/bhac229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/14/2022] Open
Abstract
The dysfunctional patterns of microstates dynamics in obsessive-compulsive disorder (OCD) remain uncertain. Using high-density electrical neuroimaging (EEG) at rest, we explored microstates deterioration in OCD and whether abnormal microstates patterns are associated with a dysregulation of the resting-state networks interplay. We used EEG microstates analyses, TESS method for sources reconstruction, and General Linear Models to test for the effect of disease severity on neural responses. OCD patients exhibited an increased contribution and decreased duration of microstates C and D, respectively. Activity was decreased in the Salience Network (SN), associated with microstate C, but increased in the Default Mode Network (DMN) and Executive Control Network (ECN), respectively, associated with microstates E and D. The hyperactivity of the right angular gyrus in the ECN correlated with the symptoms severity. The imbalance between microstates C and D invalidates the hypothesis that this electrophysiological pattern is specific to psychosis. Demonstrating that the SN-ECN dysregulation manifests as abnormalities in microstates C and D, we confirm that the SN deterioration in OCD is accompanied by a failure of the DMN to deactivate and aberrant compensatory activation mechanisms in the ECN. These abnormalities explain typical OCD clinical features but also detachment from reality, shared with psychosis.
Collapse
Affiliation(s)
- Bérangère Thirioux
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Nicolas Langbour
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Prasanth Bokam
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Léa Renaudin
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
| | - Issa Wassouf
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
| | - Ghina Harika-Germaneau
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France
- CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage, Université de Poitiers, 86021 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86021 Poitiers, France
| |
Collapse
|
18
|
Chen C, Han J, Zheng S, Zhang X, Sun H, Zhou T, Hu S, Yan X, Wang C, Wang K, Hu Y. Dynamic Changes of Brain Activity in Different Responsive Groups of Patients with Prolonged Disorders of Consciousness. Brain Sci 2022; 13:brainsci13010005. [PMID: 36671987 PMCID: PMC9856292 DOI: 10.3390/brainsci13010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As medical technology continues to improve, many patients diagnosed with brain injury survive after treatments but are still in a coma. Further, multiple clinical studies have demonstrated recovery of consciousness after transcranial direct current stimulation. To identify possible neurophysiological mechanisms underlying disorders of consciousness (DOCs) improvement, we examined the changes in multiple resting-state EEG microstate parameters after high-definition transcranial direct current stimulation (HD-tDCS). Because the left dorsolateral prefrontal cortex is closely related to consciousness, it is often chosen as a stimulation target for tDCS treatment of DOCs. A total of 21 patients diagnosed with prolonged DOCs were included in this study, and EEG microstate analysis of resting state EEG datasets was performed on all patients before and after interventions. Each of them underwent 10 anodal tDCS sessions of the left dorsolateral prefrontal cortex over 5 consecutive working days. According to whether the clinical manifestations improved, DOCs patients were divided into the responsive (RE) group and the non-responsive (N-RE) group. The dynamic changes of resting state EEG microstate parameters were also analyzed. After multiple HD-tDCS interventions, the duration and coverage of class C microstates in the RE group were significantly increased. This study also found that the transition between microstates A and C increased, while the transition between microstates B and D decreased in the responsive group. However, these changes in EEG microstate parameters in the N-RE group have not been reported. Our findings suggest that EEG neural signatures have the potential to assess consciousness states and that improvement in the dynamics of brain activity was associated with the recovery of DOCs. This study extends our understanding of the neural mechanism of DOCs patients in consciousness recovery.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Jinying Han
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Shuang Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Xintong Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
| | - Haibo Sun
- The First Clinical College of Anhui Medical University, Hefei 230032, China
| | - Ting Zhou
- Department of Neurology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230001, China
| | - Shunyin Hu
- Department of Neurorehabilitation, Hefei Anhua Trauma Rehabilitation Hospital, Hefei 230011, China
| | - Xiaoxiang Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Changqing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei 230032, China
| | - Yajuan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: ; Tel.: +139-5691-2105
| |
Collapse
|
19
|
Keihani A, Sajadi SS, Hasani M, Ferrarelli F. Bayesian Optimization of Machine Learning Classification of Resting-State EEG Microstates in Schizophrenia: A Proof-of-Concept Preliminary Study Based on Secondary Analysis. Brain Sci 2022; 12:1497. [PMID: 36358423 PMCID: PMC9688063 DOI: 10.3390/brainsci12111497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2024] Open
Abstract
Resting-state electroencephalography (EEG) microstates reflect sub-second, quasi-stable states of brain activity. Several studies have reported alterations of microstate features in patients with schizophrenia (SZ). Based on these findings, it has been suggested that microstates may represent neurophysiological biomarkers for the classification of SZ. To explore this possibility, machine learning approaches can be employed. Bayesian optimization is a machine learning approach that selects the best-fitted machine learning model with tuned hyperparameters from existing models to improve the classification. In this proof-of-concept preliminary study based on secondary analysis, 20 microstate features were extracted from 14 SZ patients and 14 healthy controls' EEG signals. These parameters were then ranked as predictors based on their importance, and an optimized machine learning approach was applied to evaluate the performance of the classification. SZ patients had altered microstate features compared to healthy controls. Furthermore, Bayesian optimization outperformed conventional multivariate analyses and showed the highest accuracy (90.93%), AUC (0.90), sensitivity (91.37%), and specificity (90.48%), with reliable results using just six microstate predictors. Altogether, in this proof-of-concept study, we showed that machine learning with Bayesian optimization can be utilized to characterize EEG microstate alterations and contribute to the classification of SZ patients.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Seyed Saman Sajadi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mahsa Hasani
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran 1985717443, Iran
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Research on Top Archer’s EEG Microstates and Source Analysis in Different States. Brain Sci 2022; 12:brainsci12081017. [PMID: 36009079 PMCID: PMC9405655 DOI: 10.3390/brainsci12081017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The electroencephalograph (EEG) microstate is a method used to describe the characteristics of the EEG signal through the brain scalp electrode potential’s spatial distribution; as such, it reflects the changes in the brain’s functional state. The EEGs of 13 elite archers from China’s national archery team and 13 expert archers from China’s provincial archery team were recorded under the alpha rhythm during the resting state (with closed eyes) and during archery aiming. By analyzing the differences between the EEG microstate parameters and the correlation between these parameters with archery performance, as well as by combining our findings through standardized low-resolution brain electromagnetic tomography source analysis (sLORETA), we explored the changes in the neural activity of professional archers of different levels, under different states. The results of the resting state study demonstrated that the duration, occurrence, and coverage in microstate D of elite archers were significantly higher than those of expert archers and that their other microstates had the greatest probability of transferring to microstate D. During the archery aiming state, the average transition probability of the other microstates transferring to microstate in the left temporal region was the highest observed in the two groups of archers. Moreover, there was a significant negative correlation between the duration and coverage of microstates in the frontal region of elite archers and their archery performance. Our findings indicate that elite archers are more active in the dorsal attention system and demonstrate a higher neural efficiency during the resting state. When aiming, professional archers experience an activation of brain regions associated with archery by suppressing brain regions unrelated to archery tasks. These findings provide a novel theoretical basis for the study of EEG microstate dynamics in archery and related cognitive motor tasks, particularly from the perspective of the subject’s mental state.
Collapse
|
21
|
Guo Y, Li R, Zhang R, Liu C, Zhang L, Zhao D, Shan Q, Wang X, Hu Y. Dynamic Changes of Brain Activity in Patients With Disorders of Consciousness During Recovery of Consciousness. Front Neurosci 2022; 16:878203. [PMID: 35720697 PMCID: PMC9201077 DOI: 10.3389/fnins.2022.878203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
The disorder of brain activity dynamics is one of the main characteristics leading to disorders of consciousness (DOC). However, few studies have explored whether the dynamics of brain activity can be modulated, and whether the dynamics of brain activity can help to evaluate the state of consciousness and the recovery progress of consciousness. In current study, 20 patients with minimally conscious state (MCS) and 13 patients with vegetative state (VS) were enrolled, and resting state electroencephalogram (EEG) data and the coma recovery scale-revised (CRS-R) scores were collected three times before and after high-definition transcranial direct current stimulation (HD-tDCS) treatment. The patients were divided into the improved group and the unimproved group according to whether the CRS-R scores were improved after the treatment, and the dynamic changes of resting state EEG microstate parameters during treatment were analyzed. The results showed the occurrence per second (OPS) of microstate D was significantly different between the MCS group and VS group, and it was positively correlated with the CRS-R before the treatment. After 2 weeks of the treatment, the OPS of microstate D improved significantly in the improved group. Meanwhile, the mean microstate duration (MMD), ratio of time coverage (Cov) of microstate C and the Cov of microstate D were significantly changed after the treatment. Compared with the microstates parameters before the treatment, the dynamic changes of parameters with significant difference in the improved group showed a consistent trend after the treatment. In contrast, the microstates parameters did not change significantly after the treatment in the unimproved group. The results suggest that the dynamics of EEG brain activity can be modulated by HD-tDCS, and the improvement in brain activity dynamics is closely related to the recovery of DOC, which is helpful to evaluate the level of DOC and the progress of recovery of consciousness.
Collapse
Affiliation(s)
- Yongkun Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Prevention and Treatment of Brain Injury, Zhengzhou, China
| | - Ruiqi Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Chunying Liu
- Henan Engineering Research Center for Prevention and Treatment of Brain Injury, Zhengzhou, China
| | - Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Dexiao Zhao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiao Shan
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Prevention and Treatment of Brain Injury, Zhengzhou, China
| | - Xinjun Wang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Prevention and Treatment of Brain Injury, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Yuxia Hu,
| |
Collapse
|
22
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
23
|
Artoni F, Maillard J, Britz J, Seeber M, Lysakowski C, Bréchet L, Tramèr MR, Michel CM. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. Neuroimage 2022; 256:119156. [PMID: 35364276 DOI: 10.1016/j.neuroimage.2022.119156] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland.
| | - Julien Maillard
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Christopher Lysakowski
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Lucie Bréchet
- CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland.
| |
Collapse
|
24
|
Tomescu MI, Papasteri CC, Sofonea A, Boldasu R, Kebets V, Pistol CAD, Poalelungi C, Benescu V, Podina IR, Nedelcea CI, Berceanu AI, Carcea I. Spontaneous thought and microstate activity modulation by social imitation. Neuroimage 2022; 249:118878. [PMID: 34999201 DOI: 10.1016/j.neuroimage.2022.118878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
The human mind wanders spontaneously and frequently, revisiting the past and imagining the future of self and of others. External and internal factors can influence wandering spontaneous thoughts, whose content predicts subsequent emotional states. We propose that social imitation, an action that increases well-being and closeness by poorly understood mechanisms, impacts behavioural states in part by modulating post-imitation mind-wandering. In 43 young subjects, we find that imitating the arm movements of an actor alters the dynamics and the content of subsequent resting-state spontaneous thoughts. Imitation-sensitive features of spontaneous thoughts correlate with behavioural states and personality traits. EEG microstate analysis reveals that global patterns of correlated neuronal activity predict imitation-induced changes in spontaneous thoughts. Exploratory analyses indicate a possible modulatory effect of social imitation via the endogenous release of oxytocin. Thus, social imitation can induce selective modulations of ongoing activity in specific neural networks to change spontaneous thought patterns as a function of personality traits, and to ultimately orchestrate behavioural states.
Collapse
Affiliation(s)
- Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania; Department of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania
| | - Claudiu C Papasteri
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Romina Boldasu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Valeria Kebets
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Constantin A D Pistol
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Catalina Poalelungi
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Biology, University of Bucharest, Bucharest, Romania
| | - Vlad Benescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Ioana R Podina
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Catalin I Nedelcea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandru I Berceanu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Ioana Carcea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Pharmacology, Physiology and Neuroscience, Rutgers Brain Health Institute, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
25
|
Hebel T, Langguth B, Schecklmann M, Schoisswohl S, Staudinger S, Schiller A, Ustohal L, Sverak T, Horky M, Kasparek T, Skront T, Hyza M, Poeppl T, Riester M, Schwemmer L, Zimmermann S, Sakreida K. Rationale and study design of a trial to assess rTMS add-on value for the amelioration of negative symptoms of schizophrenia (RADOVAN). Contemp Clin Trials Commun 2022; 26:100891. [PMID: 35128142 PMCID: PMC8804178 DOI: 10.1016/j.conctc.2022.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/21/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Background Methods Discussion Trial registration number Data dissemination
Collapse
Affiliation(s)
- T. Hebel
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
- Corresponding author.
| | - B. Langguth
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - M. Schecklmann
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - S. Schoisswohl
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - S. Staudinger
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - A. Schiller
- Department of Psychiatry and Psychotherapy, Regensburg University Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - L. Ustohal
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
- Applied Neurosciences Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Kamenice 753/5, 625 00, Brno, Czech Republic
| | - T. Sverak
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - M. Horky
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - T. Kasparek
- Department of Psychiatry, Masaryk University and University Hospital Brno, Jihlavska 20, 625 00, Brno, Czech Republic
| | - T. Skront
- Department of Psychiatry, University Hospital in Ostrava, 17. Listopadu 1790, 708 52, Ostrava, Czech Republic
| | - M. Hyza
- Department of Psychiatry, University Hospital in Ostrava, 17. Listopadu 1790, 708 52, Ostrava, Czech Republic
| | - T.B. Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - M.L. Riester
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - L. Schwemmer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - S. Zimmermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| | - K. Sakreida
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, 52066, Aachen, Germany
| |
Collapse
|
26
|
Lin G, Wu Z, Chen B, Zhang M, Wang Q, Liu M, Zhang S, Yang M, Ning Y, Zhong X. Altered Microstate Dynamics and Spatial Complexity in Late-Life Schizophrenia. Front Psychiatry 2022; 13:907802. [PMID: 35832599 PMCID: PMC9271628 DOI: 10.3389/fpsyt.2022.907802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resting-state EEG microstate and omega complexity analyses have been widely used to explore deviant brain function in various neuropsychiatric disorders. This study aimed to investigate the features of microstate dynamics and spatial complexity in patients with late-life schizophrenia (LLS). METHOD Microstate and omega complexity analyses were performed on resting-state EEG data from 39 in patients with LLS and compared with 40 elderly normal controls (NCs). RESULT The duration of microstate classes A and D were significantly higher in patients with LLS compared with NCs. The occurrence of microstate classes A, B, and C was significantly lower in patients with LLS compared with NCs. LLS patients have a lower time coverage of microstate class A and a higher time coverage of class D than NCs. Transition probabilities from microstate class A to B and from class A to C were significantly lower in patients with LLS compared with NCs. Transition probabilities between microstate class B and D were significantly higher in patients with LLS compared with NCs. Global omega complexity and anterior omega complexity were significantly higher in patients with LLS compared with NCs. CONCLUSION This study revealed an altered pattern of microstate dynamics and omega complexity in patients with LLS. This may reflect the disturbed neural basis underlying LLS and enhance the understanding of the pathophysiology of LLS.
Collapse
Affiliation(s)
- Gaohong Lin
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ben Chen
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang Wang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Liu
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhang
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingfeng Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuping Ning
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaomei Zhong
- Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Sun Q, Zhao L, Tan L. Abnormalities of Electroencephalography Microstates in Drug-Naïve, First-Episode Schizophrenia. Front Psychiatry 2022; 13:853602. [PMID: 35360139 PMCID: PMC8964053 DOI: 10.3389/fpsyt.2022.853602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Microstate analysis is a powerful tool to probe the brain functions, and changes in microstates under electroencephalography (EEG) have been repeatedly reported in patients with schizophrenia. This study aimed to investigate the dynamics of EEG microstates in drug-naïve, first-episode schizophrenia (FE-SCH) and to test the relationship between EEG microstates and clinical symptoms. METHODS Resting-state EEG were recorded for 23 patients with FE-SCH and 23 healthy controls using a 64-channel cap. Three parameters, i.e., contribution, duration, and occurrence, of the four microstate classes were calculated. Group differences in EEG microstates and their clinical symptoms [assessed using the Positive and Negative Syndrome Scale (PANSS)] were analyzed. RESULTS Compared with healthy controls, patients with FE-SCH showed increased duration, occurrence and contribution of microstate class C and decreased contribution and occurrence of microstate class D. In addition, the score of positive symptoms in PANSS was negatively correlated with the occurrence of microstate D. CONCLUSION Our findings showed abnormal patterns of EEG microstates in drug-naïve, first-episode schizophrenia, which might help distinguish individuals with schizophrenia in the early stage and develop early intervention strategies.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liwen Tan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Coquelet N, De Tiège X, Roshchupkina L, Peigneux P, Goldman S, Woolrich M, Wens V. Microstates and power envelope hidden Markov modeling probe bursting brain activity at different timescales. Neuroimage 2021; 247:118850. [PMID: 34954027 PMCID: PMC8803543 DOI: 10.1016/j.neuroimage.2021.118850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
State modeling of whole-brain electroencephalography (EEG) or magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical events. Two widely-used techniques are the microstate analysis of EEG signals and hidden Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state lifetimes on the 100 ms timescale, suggesting a common neural basis. To investigate whether microstates and power envelope HMM states describe the same neural dynamics, we used simultaneous MEG/EEG recordings at rest and compared the spatial signature and temporal activation dynamics of microstates and power envelope HMM states obtained separately from EEG and MEG. Results showed that microstates and power envelope HMM states differ both spatially and temporally. Microstates reflect sharp events of neural synchronization, whereas power envelope HMM states disclose network-level activity with 100–200 ms lifetimes. Further, MEG microstates do not correspond to the canonical EEG microstates but are better interpreted as split HMM states. On the other hand, both MEG and EEG HMM states involve the (de)activation of similar functional networks. Microstate analysis and power envelope HMM thus appear sensitive to neural events occurring over different spatial and temporal scales. As such, they represent complementary approaches to explore the fast, sub-second scale bursting electrophysiological dynamics in spontaneous human brain activity.
Collapse
Affiliation(s)
- N Coquelet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - X De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| | - L Roshchupkina
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - P Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - S Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| | - M Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - V Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles, Brussels 1070, Belgium; Magnetoencephalography Unit, Service of Translational Neuroimaging, CUB - Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
29
|
Bochet A, Sperdin HF, Rihs TA, Kojovic N, Franchini M, Jan RK, Michel CM, Schaer M. Early alterations of large-scale brain networks temporal dynamics in young children with autism. Commun Biol 2021; 4:968. [PMID: 34400754 PMCID: PMC8367954 DOI: 10.1038/s42003-021-02494-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Autism spectrum disorders (ASD) are associated with disruption of large-scale brain network. Recently, we found that directed functional connectivity alterations of social brain networks are a core component of atypical brain development at early developmental stages in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal networks at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG microstate approach. We first determined the predominant microstates using established clustering methods. We identified five predominant microstate (labeled as microstate classes A-E) with significant differences in the temporal dynamics of microstate class B between the groups in terms of increased appearance and prolonged duration. Using Markov chains, we found differences in the dynamic syntax between several maps in toddlers and preschoolers with ASD compared to their TD peers. Finally, exploratory analysis of brain-behavioral relationships within the ASD group suggested that the temporal dynamics of some maps were related to conditions comorbid to ASD during early developmental stages.
Collapse
Affiliation(s)
- Aurélie Bochet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | | | - Tonia Anahi Rihs
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Nada Kojovic
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | | | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Christoph Martin Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Mishra A, Marzban N, Cohen MX, Englitz B. Dynamics of Neural Microstates in the VTA-Striatal-Prefrontal Loop during Novelty Exploration in the Rat. J Neurosci 2021; 41:6864-6877. [PMID: 34193560 PMCID: PMC8360694 DOI: 10.1523/jneurosci.2256-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity at the large-scale population level has been suggested to be consistent with a sequence of brief, quasistable spatial patterns. These "microstates" and their temporal dynamics have been linked to myriad cognitive functions and brain diseases. Most of this research has been performed using EEG, leaving many questions, such as the existence, dynamics, and behavioral relevance of microstates at the level of local field potentials (LFPs), unaddressed. Here, we adapted the standard EEG microstate analysis to triple-area LFP recordings from 192 electrodes in rats to investigate the mesoscopic dynamics of neural microstates within and across brain regions during novelty exploration. We performed simultaneous recordings from the prefrontal cortex, striatum, and ventral tegmental area in male rats during awake behavior (object novelty and exploration). We found that the LFP data can be accounted for by multiple, recurring microstates that were stable for ∼60-100 ms. The simultaneous microstate activity across brain regions revealed rhythmic patterns of coactivations, which we interpret as a novel indicator of inter-regional, mesoscale synchronization. Furthermore, these rhythmic coactivation patterns across microstates were modulated by behavioral states such as movement and exploration of a novel object. These results support the existence of a functional mesoscopic organization across multiple brain areas and present a possible link of the origin of macroscopic EEG microstates to zero-lag neuronal synchronization within and between brain areas, which is of particular interest to the human research community.SIGNIFICANCE STATEMENT The coordination of neural activity across the entire brain has remained elusive. Here we combine large-scale neural recordings at fine spatial resolution with the analysis of microstates (i.e., short-lived, recurring spatial patterns of neural activity). We demonstrate that the local activity in different brain areas can be accounted for by only a few microstates per region. These microstates exhibited temporal dynamics that were correlated across regions in rhythmic patterns. We demonstrate that these microstates are linked to behavior and exhibit different properties in the frequency domain during different behavioral states. In summary, LFP microstates provide an insightful approach to studying both mesoscopic and large-scale brain activation within and across regions.
Collapse
Affiliation(s)
- Ashutosh Mishra
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Nader Marzban
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Michael X Cohen
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Chen J, Li H, Ma L, Bo H, Soong F, Shi Y. Dual-Threshold-Based Microstate Analysis on Characterizing Temporal Dynamics of Affective Process and Emotion Recognition From EEG Signals. Front Neurosci 2021; 15:689791. [PMID: 34335165 PMCID: PMC8318040 DOI: 10.3389/fnins.2021.689791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, emotion classification from electroencephalogram (EEG) data has attracted much attention. As EEG is an unsteady and rapidly changing voltage signal, the features extracted from EEG usually change dramatically, whereas emotion states change gradually. Most existing feature extraction approaches do not consider these differences between EEG and emotion. Microstate analysis could capture important spatio-temporal properties of EEG signals. At the same time, it could reduce the fast-changing EEG signals to a sequence of prototypical topographical maps. While microstate analysis has been widely used to study brain function, few studies have used this method to analyze how brain responds to emotional auditory stimuli. In this study, the authors proposed a novel feature extraction method based on EEG microstates for emotion recognition. Determining the optimal number of microstates automatically is a challenge for applying microstate analysis to emotion. This research proposed dual-threshold-based atomize and agglomerate hierarchical clustering (DTAAHC) to determine the optimal number of microstate classes automatically. By using the proposed method to model the temporal dynamics of auditory emotion process, we extracted microstate characteristics as novel temporospatial features to improve the performance of emotion recognition from EEG signals. We evaluated the proposed method on two datasets. For public music-evoked EEG Dataset for Emotion Analysis using Physiological signals, the microstate analysis identified 10 microstates which together explained around 86% of the data in global field power peaks. The accuracy of emotion recognition achieved 75.8% in valence and 77.1% in arousal using microstate sequence characteristics as features. Compared to previous studies, the proposed method outperformed the current feature sets. For the speech-evoked EEG dataset, the microstate analysis identified nine microstates which together explained around 85% of the data. The accuracy of emotion recognition achieved 74.2% in valence and 72.3% in arousal using microstate sequence characteristics as features. The experimental results indicated that microstate characteristics can effectively improve the performance of emotion recognition from EEG signals.
Collapse
Affiliation(s)
- Jing Chen
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Haifeng Li
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Lin Ma
- School of Computer Science and Technology, Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Hongjian Bo
- Shenzhen Academy of Aerospace Technology, Shenzhen, China
| | - Frank Soong
- Speech Group, Microsoft Research Asia, Beijing, China
| | - Yaohui Shi
- Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
32
|
Characterization of the Functional Dynamics in the Neonatal Brain during REM and NREM Sleep States by means of Microstate Analysis. Brain Topogr 2021; 34:555-567. [PMID: 34258668 PMCID: PMC8384814 DOI: 10.1007/s10548-021-00861-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies—the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states—AS and QS—in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.
Collapse
|
33
|
Teipel SJ, Brüggen K, Temp AGM, Jakobi K, Weber MA, Berger C. Simultaneous Assessment of Electroencephalography Microstates and Resting State Intrinsic Networks in Alzheimer's Disease and Healthy Aging. Front Neurol 2021; 12:637542. [PMID: 34220668 PMCID: PMC8249002 DOI: 10.3389/fneur.2021.637542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Electroencephalography (EEG) microstate topologies may serve as building blocks of functional brain activity in humans. Here, we studied the spatial and temporal correspondences between simultaneously acquired EEG microstate topologies and resting state functional MRI (rs-fMRI) intrinsic networks in 14 patients with Alzheimer's disease (AD) and 14 healthy age and sex matched controls. We found an anteriorisation of EEG microstates' topologies in AD patients compared with controls; this corresponded with reduced spatial expression of default mode and increased expression of frontal lobe networks in rs-fMRI. In a hierarchical cluster analysis the time courses of the EEG microstates were associated with the time courses of spatially corresponding rs-fMRI networks. We found prevalent negative correlations of time courses between anterior microstate topologies and posterior rs-fMRI components as well as between posterior microstate topology and anterior rs-fMRI components. These negative correlations were significantly more expressed in controls than in AD patients. In conclusion, our data support the notion that the time courses of EEG microstates underlie the temporal expression of rs-fMRI networks. Furthermore, our findings indicate that the anterior-to-posterior connectivity of microstates and rs-fMRI components may be reduced in AD, indicative of a break-down of long-reaching intrahemispheric connections.
Collapse
Affiliation(s)
- Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katharina Brüggen
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | | | - Kristina Jakobi
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
34
|
Kim K, Duc NT, Choi M, Lee B. EEG microstate features for schizophrenia classification. PLoS One 2021; 16:e0251842. [PMID: 33989352 PMCID: PMC8121321 DOI: 10.1371/journal.pone.0251842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
Collapse
Affiliation(s)
- Kyungwon Kim
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Nguyen Thanh Duc
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnel Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Min Choi
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Gwangju, South Korea
| |
Collapse
|
35
|
The Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Chronic Schizophrenia: Insights from EEG Microstates. Psychiatry Res 2021; 299:113866. [PMID: 33735740 DOI: 10.1016/j.psychres.2021.113866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/07/2021] [Indexed: 02/01/2023]
Abstract
The objective of this study was to investigate the effects of 10 Hz repetitive transcranial magnetic stimulation (rTMS) in patients with schizophrenia using EEG microstates. Thirty-eight patients with chronic schizophrenia were included in a double-blind, randomized and sham-controlled trial (19 participants in the active group and 19 participants in the sham group) and received 10 Hz active or sham rTMS stimulation to the left dorsolateral prefrontal cortex (left DLPFC) 5 days per week over for 4 weeks. Four classical microstate classes (i.e., classes A, B, C and D) were identified by clustering, and the parameters (i.e., duration, occurrence and contribution) of each class were computed. Our results showed that (1) after stimulation, the positive and negative syndrome scale (PANSS) positive scores decreased significantly in the active group; (2) the duration of the microstate of class C derived from EEG data decreased significantly in the active group; and (3) the change of the duration of class D in the active group was significantly higher than that in the sham group. Our findings demonstrated that 10 Hz active rTMS stimulation was beneficial to improving the positive symptoms of patients with chronic schizophrenia, and the EEG microstate could be an effective indicator of symptom improvements.
Collapse
|
36
|
Resting-State EEG Microstates Parallel Age-Related Differences in Allocentric Spatial Working Memory Performance. Brain Topogr 2021; 34:442-460. [PMID: 33871737 PMCID: PMC8195770 DOI: 10.1007/s10548-021-00835-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
Abstract
Alterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.
Collapse
|
37
|
Zhang K, Shi W, Wang C, Li Y, Liu Z, Liu T, Li J, Yan X, Wang Q, Cao Z, Wang G. Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states. Neuroimage 2021; 231:117861. [PMID: 33592245 DOI: 10.1016/j.neuroimage.2021.117861] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Electroencephalogram (EEG) microstate analysis is a promising and effective spatio-temporal method that can segment signals into several quasi-stable classes, providing a great opportunity to investigate short-range and long-range neural dynamics. However, there are still many controversies in terms of reproducibility and reliability when selecting different parameters or datatypes. In this study, five electrode configurations (91, 64, 32, 19, and 8 channels) were used to measure the reliability of microstate analysis at different electrode densities during propofol-induced sedation. First, the microstate topography and parameters at five different electrode densities were compared in the baseline (BS) condition and the moderate sedation (MD) condition, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were introduced to quantify the consistency of the microstate parameters. Second, statistical analysis and classification between BS and MD were performed to determine whether the microstate differences between different conditions remained stable at different electrode densities, and ICC was also calculated between the different conditions to measure the consistency of the results in a single condition. The results showed that in both the BS or MD condition, respectively, there were few significant differences in the microstate parameters among the 91-, 64-, and 32-channel configurations, with most of the differences observed between the 19- or 8-channel configurations and the other configurations. The ICC and CV data also showed that the consistency among the 91-, 64-, and 32-channel configurations was better than that among all five electrode configurations after including the 19- and 8-channel configurations. Furthermore, the significant differences between the conditions in the 91-channel configuration remained stable at the 64- and 32-channel resolutions, but disappeared at the 19- and 8-channel resolutions. In addition, the classification and ICC results showed that the microstate analysis became unreliable with fewer than 20 electrodes. The findings of this study support the hypothesis that microstate analysis of different brain states is more reliable with higher electrode densities; the use of a small number of channels is not recommended.
Collapse
Affiliation(s)
- Kexu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Wen Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; The Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Chang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Yamin Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Tun Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China; Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China; Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiangguo Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zehong Cao
- School of Information and Communication Technology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an 710049, China.
| |
Collapse
|
38
|
Kim K, Duc NT, Choi M, Lee B. EEG microstate features according to performance on a mental arithmetic task. Sci Rep 2021; 11:343. [PMID: 33431963 PMCID: PMC7801706 DOI: 10.1038/s41598-020-79423-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we hypothesized that task performance could be evaluated applying EEG microstate to mental arithmetic task. This pilot study also aimed at evaluating the efficacy of microstates as novel features to discriminate task performance. Thirty-six subjects were divided into good and poor performers, depending on how well they performed the task. Microstate features were derived from EEG recordings during resting and task states. In the good performers, there was a decrease in type C and an increase in type D features during the task compared to the resting state. Mean duration and occurrence decreased and increased, respectively. In the poor performers, occurrence of type D feature, mean duration and occurrence showed greater changes. We investigated whether microstate features were suitable for task performance classification and eleven features including four archetypes were selected by recursive feature elimination (RFE). The model that implemented them showed the highest classification performance for differentiating between groups. Our pilot findings showed that the highest mean Area Under Curve (AUC) was 0.831. This study is the first to apply EEG microstate features to specific cognitive tasks in healthy subjects, suggesting that EEG microstate features can reflect task achievement.
Collapse
Affiliation(s)
- Kyungwon Kim
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Nguyen Thanh Duc
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Min Choi
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
39
|
Creaser J, Ashwin P, Postlethwaite C, Britz J. Noisy network attractor models for transitions between EEG microstates. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2021; 11:1. [PMID: 33394133 PMCID: PMC7782644 DOI: 10.1186/s13408-020-00100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The brain is intrinsically organized into large-scale networks that constantly re-organize on multiple timescales, even when the brain is at rest. The timing of these dynamics is crucial for sensation, perception, cognition, and ultimately consciousness, but the underlying dynamics governing the constant reorganization and switching between networks are not yet well understood. Electroencephalogram (EEG) microstates are brief periods of stable scalp topography that have been identified as the electrophysiological correlate of functional magnetic resonance imaging defined resting-state networks. Spatiotemporal microstate sequences maintain high temporal resolution and have been shown to be scale-free with long-range temporal correlations. Previous attempts to model EEG microstate sequences have failed to capture this crucial property and so cannot fully capture the dynamics; this paper answers the call for more sophisticated modeling approaches. We present a dynamical model that exhibits a noisy network attractor between nodes that represent the microstates. Using an excitable network between four nodes, we can reproduce the transition probabilities between microstates but not the heavy tailed residence time distributions. We present two extensions to this model: first, an additional hidden node at each state; second, an additional layer that controls the switching frequency in the original network. Introducing either extension to the network gives the flexibility to capture these heavy tails. We compare the model generated sequences to microstate sequences from EEG data collected from healthy subjects at rest. For the first extension, we show that the hidden nodes 'trap' the trajectories allowing the control of residence times at each node. For the second extension, we show that two nodes in the controlling layer are sufficient to model the long residence times. Finally, we show that in addition to capturing the residence time distributions and transition probabilities of the sequences, these two models capture additional properties of the sequences including having interspersed long and short residence times and long range temporal correlations in line with the data as measured by the Hurst exponent.
Collapse
Affiliation(s)
- Jennifer Creaser
- Department of Mathematics and EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK.
| | - Peter Ashwin
- Department of Mathematics and EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | | | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
40
|
Wang F, Hujjaree K, Wang X. Electroencephalographic Microstates in Schizophrenia and Bipolar Disorder. Front Psychiatry 2021; 12:638722. [PMID: 33716831 PMCID: PMC7952514 DOI: 10.3389/fpsyt.2021.638722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SCH) and bipolar disorder (BD) are characterized by many types of symptoms, damaged cognitive function, and abnormal brain connections. The microstates are considered to be the cornerstones of the mental states shown in EEG data. In our study, we investigated the use of microstates as biomarkers to distinguish patients with bipolar disorder from those with schizophrenia by analyzing EEG data measured in an eyes-closed resting state. The purpose of this article is to provide an electron directional physiological explanation for the observed brain dysfunction of schizophrenia and bipolar disorder patients. Methods: We used microstate resting EEG data to explore group differences in the duration, coverage, occurrence, and transition probability of 4 microstate maps among 20 SCH patients, 26 BD patients, and 35 healthy controls (HCs). Results: Microstate analysis revealed 4 microstates (A-D) in global clustering across SCH patients, BD patients, and HCs. The samples were chosen to be matched. We found the greater presence of microstate B in BD patients, and the less presence of microstate class A and B, the greater presence of microstate class C, and less presence of D in SCH patients. Besides, a greater frequent switching between microstates A and B and between microstates B and A in BD patients than in SCH patients and HCs and less frequent switching between microstates C and D and between microstates D and C in BD patients compared with SCH patients. Conclusion: We found abnormal features of microstate A, B in BD patients and abnormal features of microstate A, B, C, and D in SCH patients. These features may indicate the potential abnormalities of SCH patients and BD patients in distributing neural resources and influencing opportune transitions between different states of activity.
Collapse
Affiliation(s)
- Fanglan Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Khamlesh Hujjaree
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
41
|
Sun Q, Zhou J, Guo H, Gou N, Lin R, Huang Y, Guo W, Wang X. EEG Microstates and Its Relationship With Clinical Symptoms in Patients With Schizophrenia. Front Psychiatry 2021; 12:761203. [PMID: 34777062 PMCID: PMC8581189 DOI: 10.3389/fpsyt.2021.761203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex and devastating disorder with unclear pathogenesis. Electroencephalogram (EEG) microstates have been suggested as a potential endophenotype for this disorder. However, no clear dynamic pattern of microstates has been found. This study aims to identify the dynamics of EEG microstates in schizophrenia and to test whether schizophrenia patients with altered clinical symptoms severity showed different microstates abnormalities compared with healthy controls. Resting-state EEG data in 46 individuals who met the ICD-10 diagnostic criteria for schizophrenia and 39 healthy controls was recorded. The patients with schizophrenia were divided into subgroups based on the level of their negative or positive symptoms assessed using the Positive and Negative Syndrome Scale. Microstate parameters (contribution, occurrence, and duration) of four prototypical microstate classes (A-D) were investigated. Compared with healthy controls, individuals with schizophrenia showed increased duration and contribution of microstate class C, decreased contribution and occurrence of microstate class B. Different microstate patterns were found between subgroups and healthy controls. Results in this study support the consistent observation of abnormal EEG microstates patterns in patients with schizophrenia and highlight the necessity to divide subjects into subgroups according to their clinical symptoms.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiansong Zhou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huijuan Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ningzhi Gou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruoheng Lin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Huang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weilong Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoping Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
42
|
Steullet P. Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 2020; 226:147-157. [PMID: 31147286 DOI: 10.1016/j.schres.2019.05.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Identification of reliable biomarkers of prognosis in subjects with high risk to psychosis is an essential step to improve care and treatment of this population of help-seekers. Longitudinal studies highlight some clinical criteria, cognitive deficits, patterns of gray matter alterations and profiles of blood metabolites that provide some levels of prediction regarding the conversion to psychosis. Further effort is warranted to validate these results and implement these types of approaches in clinical settings. Such biomarkers may however fall short in entangling the biological mechanisms underlying the disease progression, an essential step in the development of novel therapies. Circuit-based approaches, which map on well-identified cerebral functions, could meet these needs. Converging evidence indicates that thalamus abnormalities are central to schizophrenia pathophysiology, contributing to clinical symptoms, cognitive and sensory deficits. This review highlights the various thalamus-related anomalies reported in individuals with genetic risks and in the different phases of the disorder, from prodromal to chronic stages. Several anomalies are potent endophenotypes, while others exist in clinical high-risk subjects and worsen in those who convert to full psychosis. Aberrant functional coupling between thalamus and cortex, low glutamate content and readouts from resting EEG carry predictive values for transition to psychosis or functional outcome. In this context, thalamus-related anomalies represent a valuable entry point to tackle circuit-based alterations associated with the emergence of psychosis. This review also proposes that longitudinal surveys of neuroimaging, EEG readouts associated with circuits encompassing the mediodorsal, pulvinar in high-risk individuals could unveil biological mechanisms contributing to this psychiatric disorder.
Collapse
Affiliation(s)
- Pascal Steullet
- Center of Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
43
|
Transcutaneous Vagus Nerve Stimulation Modulates EEG Microstates and Delta Activity in Healthy Subjects. Brain Sci 2020; 10:brainsci10100668. [PMID: 32992726 PMCID: PMC7599782 DOI: 10.3390/brainsci10100668] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an alternative non-invasive method for the electrical stimulation of the vagus nerve with the goal of treating several neuropsychiatric disorders. The objective of this study is to assess the effects of tVNS on cerebral cortex activity in healthy volunteers using resting-state microstates and power spectrum electroencephalography (EEG) analysis. Eight male subjects aged 25–45 years were recruited in this randomized sham-controlled double-blind study with cross-over design. Real tVNS was administered at the left external acoustic meatus, while sham stimulation was performed at the left ear lobe, both of them for 60 min. The EEG recording lasted 5 min and was performed before and 60 min following the tVNS experimental session. We observed that real tVNS induced an increase in the metrics of microstate A mean duration (p = 0.039) and an increase in EEG power spectrum activity in the delta frequency band (p < 0.01). This study confirms that tVNS is an effective way to stimulate the vagus nerve, and the mechanisms of action of this activation can be successfully studied using scalp EEG quantitative metrics. Future studies are warranted to explore the clinical implications of these findings and to focus the research of the prognostic biomarkers of tVNS therapy for neuropsychiatric diseases.
Collapse
|
44
|
da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, Figueiredo P, Herzog MH. EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun 2020; 11:3089. [PMID: 32555168 PMCID: PMC7303216 DOI: 10.1038/s41467-020-16914-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Electroencephalogram microstates are recurrent scalp potential configurations that remain stable for around 90 ms. The dynamics of two of the four canonical classes of microstates, commonly labeled as C and D, have been suggested as a potential endophenotype for schizophrenia. For endophenotypes, unaffected relatives of patients must show abnormalities compared to controls. Here, we examined microstate dynamics in resting-state recordings of unaffected siblings of patients with schizophrenia, patients with schizophrenia, healthy controls, and patients with first episodes of psychosis (FEP). Patients with schizophrenia and their siblings showed increased presence of microstate class C and decreased presence of microstate class D compared to controls. No difference was found between FEP and chronic patients. Our findings suggest that the dynamics of microstate classes C and D are a candidate endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Janir Ramos da Cruz
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute for Systems and Robotics-Lisbon (LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Ophélie Favrod
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maya Roinishvili
- Laboratory of Vision Physiology, Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - Eka Chkonia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
- Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | - Andreas Brand
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christine Mohr
- Faculté des Sciences Sociales et Politiques, Institut de Psychologie, Bâtiment Geopolis, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics-Lisbon (LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
45
|
Shi W, Li Y, Liu Z, Li J, Wang Q, Yan X, Wang G. Non-Canonical Microstate Becomes Salient in High Density EEG During Propofol-Induced Altered States of Consciousness. Int J Neural Syst 2020; 30:2050005. [PMID: 31969080 DOI: 10.1142/s0129065720500057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamically assessing the level of consciousness is still challenging during anesthesia. With the help of Electroencephalography (EEG), the human brain electric activity can be noninvasively measured at high temporal resolution. Several typical quasi-stable states are introduced to represent the oscillation of the global scalp electric field. These so-called microstates reflect spatiotemporal dynamics of coherent neural activities and capture the switch of brain states within the millisecond range. In this study, the microstates of high-density EEG were extracted and investigated during propofol-induced transition of consciousness. To analyze microstates on the frequency domain, a novel microstate-wise spectral analysis was proposed by the means of multivariate empirical mode decomposition and Hilbert–Huang transform. During the transition of consciousness, a map with a posterior central maximum denoted as microstate F appeared and became salient. The current results indicated that the coverage, occurrence, and power of microstate F significantly increased in moderate sedation. The results also demonstrated that the transition of brain state from rest to sedation was accompanied by significant increase in mean energy of all frequency bands in microstate F. Combined with studies on the possible cortical sources of microstates, the findings reveal that non-canonical microstate F is highly associated with propofol-induced altered states of consciousness. The results may also support the inference that this distinct topography can be derived from canonical microstate C (anterior-posterior orientation). Finally, this study further develops pertinent methodology and extends possible applications of the EEG microstate during propofol-induced anesthesia.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yamin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, 555 Youyi East Road, Xi’an, Shaanxi 710054, P. R. China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, P. R. China
| | - Xiangguo Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, P. R. China
- The Key Laboratory of Neuro-Informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
46
|
Mackintosh AJ, Borgwardt S, Studerus E, Riecher-Rössler A, de Bock R, Andreou C. EEG Microstate Differences in Medicated vs. Medication-Naïve First-Episode Psychosis Patients. Front Psychiatry 2020; 11:600606. [PMID: 33329154 PMCID: PMC7732503 DOI: 10.3389/fpsyt.2020.600606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
There has been considerable interest in the role of synchronous brain activity abnormalities in the pathophysiology of psychotic disorders and their relevance for treatment; one index of such activity are EEG resting-state microstates. These reflect electric field configurations of the brain that persist over 60-120 ms time periods. A set of quasi-stable microstates classes A, B, C, and D have been repeatedly identified across healthy participants. Changes in microstate parameters coverage, duration and occurrence have been found in medication-naïve as well as medicated patients with psychotic disorders compared to healthy controls. However, to date, only two studies have directly compared antipsychotic medication effects on EEG microstates either pre- vs. post-treatment or between medicated and unmedicated chronic schizophrenia patients. The aim of this study was therefore to directly compare EEG resting-state microstates between medicated and medication-naïve (untreated) first-episode (FEP) psychosis patients (mFEP vs. uFEP). We used 19-channel clinical EEG recordings to compare temporal parameters of four prototypical microstate classes (A-D) within an overall sample of 47 patients (mFEP n = 17; uFEP n = 30). The results demonstrated significant decreases of microstate class A and significant increases of microstate class B in mFEP compared to uFEP. No significant differences between groups were found for microstate classes C and D. Further studies are needed to replicate these results in longitudinal designs that assess antipsychotic medication effects on neural networks at the onset of the disorder and over time during illness progression. As treatment response and compliance in FEP patients are relatively low, such studies could contribute to better understand treatment outcomes and ultimately improve treatment strategies.
Collapse
Affiliation(s)
- Amatya J Mackintosh
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- University Psychiatric Clinics (UPK) Basel, University of Basel, Basel, Switzerland.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Erich Studerus
- Division of Personality and Developmental Psychology, Department of Psychology, University of Basel, Basel, Switzerland
| | | | - Renate de Bock
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Basel, Switzerland.,University Psychiatric Clinics (UPK) Basel, University of Basel, Basel, Switzerland
| | - Christina Andreou
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Basel, Switzerland.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
47
|
Zöller D, Sandini C, Karahanoğlu FI, Padula MC, Schaer M, Eliez S, Van De Ville D. Large-Scale Brain Network Dynamics Provide a Measure of Psychosis and Anxiety in 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:881-892. [DOI: 10.1016/j.bpsc.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022]
|
48
|
Damborská A, Piguet C, Aubry JM, Dayer AG, Michel CM, Berchio C. Altered Electroencephalographic Resting-State Large-Scale Brain Network Dynamics in Euthymic Bipolar Disorder Patients. Front Psychiatry 2019; 10:826. [PMID: 31803082 PMCID: PMC6873781 DOI: 10.3389/fpsyt.2019.00826] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
Background: Neuroimaging studies provided evidence for disrupted resting-state functional brain network activity in bipolar disorder (BD). Electroencephalographic (EEG) studies found altered temporal characteristics of functional EEG microstates during depressive episode within different affective disorders. Here we investigated whether euthymic patients with BD show deviant resting-state large-scale brain network dynamics as reflected by altered temporal characteristics of EEG microstates. Methods: We used high-density EEG to explore between-group differences in duration, coverage, and occurrence of the resting-state functional EEG microstates in 17 euthymic adults with BD in on-medication state and 17 age- and gender-matched healthy controls. Two types of anxiety, state and trait, were assessed separately with scores ranging from 20 to 80. Results: Microstate analysis revealed five microstates (A-E) in global clustering across all subjects. In patients compared to controls, we found increased occurrence and coverage of microstate A that did not significantly correlate with anxiety scores. Conclusion: Our results provide neurophysiological evidence for altered large-scale brain network dynamics in BD patients and suggest the increased presence of A microstate to be an electrophysiological trait characteristic of BD.
Collapse
Affiliation(s)
- Alena Damborská
- Functional Brain Mapping Laboratory, Campus Biotech, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Camille Piguet
- Service of Psychiatric Specialties, Mood Disorders, Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Michel Aubry
- Service of Psychiatric Specialties, Mood Disorders, Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Alexandre G Dayer
- Service of Psychiatric Specialties, Mood Disorders, Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Campus Biotech, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Lemanic Biomedical Imaging Centre (CIBM), Geneva, Switzerland
| | - Cristina Berchio
- Functional Brain Mapping Laboratory, Campus Biotech, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Service of Psychiatric Specialties, Mood Disorders, Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
49
|
Jia H, Yu D. Aberrant Intrinsic Brain Activity in Patients with Autism Spectrum Disorder: Insights from EEG Microstates. Brain Topogr 2018; 32:295-303. [PMID: 30382452 DOI: 10.1007/s10548-018-0685-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) involves aberrant organization and functioning of large-scale brain networks. The aim of this study was to examine whether the resting-state EEG microstate analysis could provide novel insights into the abnormal temporal and spatial properties of intrinsic brain activities in patients with ASD. To achieve this goal, EEG microstate analysis was conducted on the resting-state EEG datasets of 15 patients with ASD and 18 healthy controls from the Healthy Brain Network. The parameters (i.e., duration, occurrence rate, time coverage and topographical configuration) of four classical microstate classes (i.e., class A, B, C and D) were statistically tested between two groups. The results showed that: (1) the occurrence rate and time coverage of microstate class B in ASD group were significantly larger than those in control group; (2) the duration of microstate class A, the duration and time coverage of microstate class C were significantly smaller than those in control group; (3) the map configuration and occurrence rate differed significantly between two groups for microstate class D. These results suggested that EEG microstate analysis could be used to detect the deviant functions of large-scale cortical activities in ASD, and may provide indices that could be used in clinical researches of ASD.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
50
|
Giordano GM, Koenig T, Mucci A, Vignapiano A, Amodio A, Di Lorenzo G, Siracusano A, Bellomo A, Altamura M, Monteleone P, Pompili M, Galderisi S, Maj M. Neurophysiological correlates of Avolition-apathy in schizophrenia: A resting-EEG microstates study. NEUROIMAGE-CLINICAL 2018; 20:627-636. [PMID: 30202724 PMCID: PMC6128100 DOI: 10.1016/j.nicl.2018.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/12/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022]
Abstract
Background The “Avolition-apathy” domain of the negative symptoms was found to include different symptoms by factor analytic studies on ratings derived by different scales. In particular, the relationship of anhedonia with this domain is controversial. Recently introduced negative symptom rating scales provide a better assessment of anhedonia, allowing the distinction of anticipatory and consummatory aspects, which might be related to different psychopathological dimensions. The study of associations with external validators, such as electrophysiological, brain imaging or cognitive indices, might shed further light on the status of anhedonia within the Avolition-apathy domain. Objectives We used brain electrical microstates (MSs), which represent subsecond periods of quasi-stable scalp electrical field, associated with resting-state neural networks (and thus with global patterns of functional connectivity), to test whether the component symptoms of Avolition-apathy share the same correlates. Method We analyzed multichannel resting EEGs in 142 individuals with schizophrenia (SCZ) and in 64 healthy controls (HC), recruited within the add-on EEG study of the Italian Network for Research on Psychoses. Relative time contribution, duration and occurrence of four MS classes (MS-A/-B/-C/−D) were calculated. Group differences on MS parameters (contribution and duration) and their associations with negative symptom domains (assessed using the Brief Negative Symptoms Scale) were investigated. Results SCZ, in comparison to HC, showed increased contribution and duration of MS-C. The contribution of MS-A positively correlated with Avolition-apathy, but not with Expressive deficit. Within the Avolition-apathy domain, anticipatory anhedonia, avolition and asociality, but not consummatory anhedonia, showed the same correlations with MS-A contribution. Conclusion Our findings support the existence of distinct electrophysiological correlates of Avolition-apathy with respect to Expressive deficit, and lend support to the hypothesis that only the anticipatory component of anhedonia shares the same pathophysiological underpinnings of the Avolition-apathy domain. Microstate C contribution and duration were increased in SCZ compared to HC. Avolition-apathy was correlated with the contribution of microstate A. Avolition-apathy might be associated with sensory processing deficit.
Collapse
Affiliation(s)
- Giulia M Giordano
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Annarita Vignapiano
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella Amodio
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neurosciences, University of Salerno, Salerno, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant' Andrea Hospital, Sapienza University of Rome, Rome
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|