1
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
3
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Wysoczynski M, Bolli R. A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. Eur Heart J 2021; 41:2397-2404. [PMID: 31778154 DOI: 10.1093/eurheartj/ehz787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the well-documented capacity of embryonic stem cells (ESCs) to differentiate into cardiomyocytes, transplantation of ESCs or ESC-derived cells is plagued by several formidable problems, including graft rejection, arrhythmias, and potential risk of teratomas. Life-long immunosuppression is a disease in itself. Transplantation of human ESC-derived cells in primates causes life-threatening arrhythmias, and the doses used to show efficacy are not clinically relevant. In contemporary clinical research, the margin of tolerance for such catastrophic effects as malignancies is zero, and although the probability of tumours can be reduced by ESC differentiation, it is unlikely to be completely eliminated, particularly when billions of cells are injected. Although ESCs and ESC-derived cells were touted as capable of long-term regeneration, these cells disappear rapidly after transplantation and there is no evidence of long-term engraftment, let alone regeneration. There is, however, mounting evidence that they act via paracrine mechanisms-just like adult cells. To date, no controlled clinical trial of ESC-derived cells in cardiovascular disease has been conducted or even initiated. In contrast, adult cells have been used in thousands of patients with heart disease, with no significant adverse effects and with results that were sufficiently encouraging to warrant Phase II and III trials. Furthermore, induced pluripotent stem cells offer pluripotency similar to ESCs without the need for lifelong immunosuppression. After two decades, the promise that ESC-derived cells would regenerate dead myocardium has not been fulfilled. The most reasonable interpretation of current data is that ESC-based therapies are not likely to have clinical application for heart disease.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Menasché P. Cell Therapy With Human ESC-Derived Cardiac Cells: Clinical Perspectives. Front Bioeng Biotechnol 2020; 8:601560. [PMID: 33195177 PMCID: PMC7649799 DOI: 10.3389/fbioe.2020.601560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In the ongoing quest for the “ideal” cell type for heart repair, pluripotent stem cells (PSC) derived from either embryonic or reprogrammed somatic cells have emerged as attractive candidates because of their unique ability to give rise to lineage-specific cells and to transplant them at the desired stage of differentiation. The technical obstacles which have initially hindered their clinical use have now been largely overcome and several trials are under way which encompass several different diseases, including heart failure. So far, there have been no safety warning but it is still too early to draw definite conclusions regarding efficacy. In parallel, mechanistic studies suggest that the primary objective of “remuscularizing” the heart with PSC-derived cardiac cells can be challenged by their alternate use as ex vivo sources of a biologically active extracellular vesicle-enriched secretome equally able to improve heart function through harnessing endogenous repair pathways. The exclusive use of this secretome would combine the advantages of a large-scale production more akin to that of a biological medication, the likely avoidance of cell-associated immune and tumorigenicity risks and the possibility of intravenous infusions compatible with repeated dosing.
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France.,PARCC, INSERM, University of Paris, Paris, France
| |
Collapse
|
6
|
Zhang J, Tian X, Peng C, Yan C, Li Y, Sun M, Kang J, Gao E, Han Y. Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem Biophys Res Commun 2018; 503:482-489. [PMID: 29684345 DOI: 10.1016/j.bbrc.2018.04.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
Engraftment of embryonic stem cells (ESC) has been proposed as a potential therapeutic approach for post-infarction cardiac dysfunction. However, only mild function improvement has been achieved due to low survival rate and paracrine dysfunction of transplanted stem cells. Cellular repressor of E1A stimulated genes (CREG) has been reported to be a secreted glycoprotein implicated in promoting survival and differentiation of many cell types. Therefore we hypothesized that transplantation of genetically modified ESC with CREG (CREG-ESC) can improve cardiac function after myocardial infarction in mice. A total of 2 × 105 CREG-ESC or EGFP-ESC were engrafted into the border zone in a myocardial infarction model in mice. Cardiac function, infarct size and fibrosis at 4 weeks, survival of transplanted ESC, apoptosis and cytokine level of heart tissue, and teratoma formation were assessed in vivo. Apoptosis of ESC under inflammatory stimuli and cardiac differentiation of ESC were investigated in vitro. After 4 weeks, we found transplantation of CREG-ESC could significantly improve cardiac function, ameliorate cardiac remodeling, and reduce infarct size and fibrosis area. Transplantation of CREG-ESC remarkably increased ESC survival in the border zone and inhibited apoptosis of cardiomyocytes. Furthermore, the decrease of inflammatory factors (IL-1β, IL-6 and TNF-α) and increase of anti-inflammatory factors (TGF-β, bFGF and VEGF165) in the border zone were higher in CREG-ESC transplanted hearts. Safety evaluation showed that all transplantation at 2 × 105 per heart dose produced no teratoma. Surprisingly, the mice with 3.0 × 106 CREG-ESC transplantation was demonstrated teratoma free without cardiac rhythm disturbances in contrast to 100% teratoma formation and rhythm abnormality for the same dose of EGFP-ESC transplantation. In addition, overexpression of CREG inhibits ESC apoptosis and enhanced their differentiation into cardiomyocytes in vitro. Transplantation of CREG-modified ESC exhibits a favorable survival pattern in infarcted hearts, which translates into a substantial preservation of cardiac function after acute myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Chengfei Peng
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Chenghui Yan
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Yang Li
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Mingyu Sun
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Jian Kang
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yaling Han
- Department of Cardiology, Institute of Cardiovascular Research, General Hospital of Shenyang Military Region, Shenyang 110016, China.
| |
Collapse
|
7
|
Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci Rep 2018; 8:7145. [PMID: 29739982 PMCID: PMC5940892 DOI: 10.1038/s41598-018-25147-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re-entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly influence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk. We therefore tested lentivirus-mediated delivery of the gap-junction protein Connexin 43 (Cx43) into acute myocardial lesions. Cx43 was expressed in (myo)fibroblasts and CD45+ cells within the scar and provided prominent and long lasting arrhythmia protection in vivo. Optical mapping of Cx43 injected hearts revealed enhanced conduction velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes and (myo)fibroblasts. Thus, Cx43 gene therapy, by direct in vivo transduction of non-cardiomyocytes, comprises a simple and clinically applicable biological therapy that markedly reduces post-infarction VT.
Collapse
|
8
|
Applications of genetically engineered human pluripotent stem cell reporters in cardiac stem cell biology. Curr Opin Biotechnol 2018; 52:66-73. [PMID: 29579626 DOI: 10.1016/j.copbio.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
Abstract
The advent of human pluripotent stem cells (hPSCs) has benefited many fields, from regenerative medicine to disease modeling, with an especially profound effect in cardiac research. Coupled with other novel technologies in genome engineering, hPSCs offer a great opportunity to delineate human cardiac lineages, investigate inherited cardiovascular diseases, and assess the safety and efficacy of cell-based therapies. In this review, we provide an overview of methods for generating genetically engineered hPSC reporters and a succinct synopsis of a variety of hPSC reporters, with a particular focus on their applications in cardiac stem cell biology.
Collapse
|
9
|
Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, Tran AQ, Pham HH, Fimbres C, Gershon PD, Botvinick EL, George SC, Hughes CCW. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part A 2017; 22:1016-25. [PMID: 27392582 DOI: 10.1089/ten.tea.2016.0027] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.
Collapse
Affiliation(s)
- Ashley H Fong
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Mónica Romero-López
- 2 Department of Biomedical Engineering, The Henry Samueli School of Engineering , UC Irvine, Irvine, California
| | - Christopher M Heylman
- 2 Department of Biomedical Engineering, The Henry Samueli School of Engineering , UC Irvine, Irvine, California
| | - Mark Keating
- 2 Department of Biomedical Engineering, The Henry Samueli School of Engineering , UC Irvine, Irvine, California
| | - David Tran
- 3 Department of Chemical Engineering and Material Science, The Henry Samueli School of Engineering , UC Irvine, Irvine, California
| | - Agua Sobrino
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Anh Q Tran
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Hiep H Pham
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Cristhian Fimbres
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Paul D Gershon
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California
| | - Elliot L Botvinick
- 2 Department of Biomedical Engineering, The Henry Samueli School of Engineering , UC Irvine, Irvine, California.,4 The Edwards Lifesciences Center for Advanced Cardiovascular Technology , UC Irvine, Irvine, California
| | - Steven C George
- 5 Department of Biomedical Engineering, School of Engineering and Applied Science, Washington University in St. Louis , St. Louis, Missouri
| | - Christopher C W Hughes
- 1 Department of Molecular Biology and Biochemistry, School of Biological Sciences , UC Irvine, Irvine, California.,2 Department of Biomedical Engineering, The Henry Samueli School of Engineering , UC Irvine, Irvine, California.,4 The Edwards Lifesciences Center for Advanced Cardiovascular Technology , UC Irvine, Irvine, California
| |
Collapse
|
10
|
Ottersbach A, Mykhaylyk O, Heidsieck A, Eberbeck D, Rieck S, Zimmermann K, Breitbach M, Engelbrecht B, Brügmann T, Hesse M, Welz A, Sasse P, Wenzel D, Plank C, Gleich B, Hölzel M, Bloch W, Pfeifer A, Fleischmann BK, Roell W. Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials 2017; 155:176-190. [PMID: 29179133 DOI: 10.1016/j.biomaterials.2017.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/05/2017] [Accepted: 11/11/2017] [Indexed: 01/02/2023]
Abstract
Cell replacement in the heart is considered a promising strategy for the treatment of post-infarct heart failure. Direct intramyocardial injection of cells proved to be the most effective application route, however, engraftment rates are very low (<5%) strongly hampering its efficacy. Herein we combine magnetic nanoparticle (MNP) loading of EGFP labeled embryonic cardiomyocytes (eCM) and embryonic stem cell-derived cardiomyocytes (ES-CM) with application of custom designed magnets to enhance their short and long-term engraftment. To optimize cellular MNP uptake and magnetic force within the infarct area, first numerical simulations and experiments were performed in vitro. All tested cell types could be loaded efficiently with SOMag5-MNP (200 pg/cell) without toxic side effects. Application of a 1.3 T magnet at 5 mm distance from the heart for 10 min enhanced engraftment of both eCM and ES-CM by approximately 7 fold at 2 weeks and 3.4 fold (eCM) at 8 weeks after treatment respectively and also strongly improved left ventricular function at all time points. As underlying mechanisms we found that application of the magnetic field prevented the initial dramatic loss of cells via the injection channel. In addition, grafted eCM displayed higher proliferation and lower apoptosis rates. Electron microscopy revealed better differentiation of engrafted eCM, formation of cell to cell contacts and more physiological matrix formation in magnet-treated grafts. These results were corroborated by gene expression data. Thus, combination of MNP-loaded cells and magnet-application strongly increases long-term engraftment of cells addressing a major shortcoming of cardiomyoplasty.
Collapse
Affiliation(s)
- Annika Ottersbach
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany; Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Olga Mykhaylyk
- Institute of Molecular Immunology/ Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Alexandra Heidsieck
- Institute of Medical Engineering (IME.TUM), Boltzmannstr. 11, 85748 Garching b. München, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Katrin Zimmermann
- Institute of Pharmacology and Toxicology, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Martin Breitbach
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Britta Engelbrecht
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Tobias Brügmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Armin Welz
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Christian Plank
- Institute of Molecular Immunology/ Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Bernhard Gleich
- Institute of Medical Engineering (IME.TUM), Boltzmannstr. 11, 85748 Garching b. München, Germany
| | - Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| | - Wilhelm Roell
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
| |
Collapse
|
11
|
Abstract
In this review, we focus on new approaches that could lead to the regeneration of heart muscle and the restoration of cardiac muscle function derived from newly-formed cardiomyocytes. Various strategies for the production of cardiomyocytes from embryonic stem cells, induced pluripotent stem cells, adult bone marrow stem cells and cardiac spheres from human heart biopsies are described. Pathological conditions which lead to atherosclerosis and coronary artery disease often are followed by myocardial infarction causing myocardial cell death. After cell death, there is very little self-regeneration of the cardiac muscle tissue, which is replaced by non-contractile connective tissue, thus weakening the ability of the heart muscle to contract fully and leading to heart failure. A number of experimental research approaches to stimulate heart muscle regeneration with the hope of regaining normal or near normal heart function in the damaged heart muscle have been attempted. Some of these very interesting studies have used a variety of stem cell types in combination with potential cardiogenic differentiation factors in an attempt to promote differentiation of new cardiac muscle for possible future use in the clinical treatment of patients who have suffered heart muscle damage from acute myocardial infarctions or related cardiovascular diseases. Although progress has been made in recent years relative to promoting the differentiation of cardiac muscle tissue from non-muscle cells, much work remains to be done for this technology to be used routinely in translational clinical medicine to treat patients with damaged heart muscle tissue and return such individuals to pre-heart-attack activity levels.
Collapse
Affiliation(s)
- Andrei Kochegarov
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Larry F Lemanski
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
12
|
Skelton RJP, Brady B, Khoja S, Sahoo D, Engel J, Arasaratnam D, Saleh KK, Abilez OJ, Zhao P, Stanley EG, Elefanty AG, Kwon M, Elliott DA, Ardehali R. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells. Stem Cell Reports 2016; 6:95-108. [PMID: 26771355 PMCID: PMC4720015 DOI: 10.1016/j.stemcr.2015.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
The generation of tissue-specific cell types from human embryonic stem cells (hESCs) is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine) and large (porcine) animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications. CD13 and ROR2 separate hESC-derived MIXL1+ mesoderm from MIXL1+ endoderm CD13 and ROR2 select for a population of highly enriched pre-cardiac mesoderm CD13+/ROR2+ cells derived from hESCs engraft into porcine, but not murine hearts CD13+/ROR2+ cells differentiate to all major cardiac lineages in the pig heart
Collapse
Affiliation(s)
- Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Bevin Brady
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suhail Khoja
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Debashis Sahoo
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James Engel
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Deevina Arasaratnam
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Kholoud K Saleh
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Oscar J Abilez
- Bio-X Program, Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Murray Kwon
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine at UCLA, 675 Charles E Young Drive South, Room 3645, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
14
|
Takanari H, Miwa K, Fu X, Nakai J, Ito A, Ino K, Honda H, Tonomura W, Konishi S, Opthof T, van der Heyden MA, Kodama I, Lee JK. A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology. J Cell Physiol 2016; 231:2249-56. [PMID: 26873862 DOI: 10.1002/jcp.25342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 11/07/2022]
Abstract
Skeletal myoblast (SkMB) transplantation has been conducted as a therapeutic strategy for severe heart failure. However, arrhythmogenicity following transplantation remains unsolved. We developed an in vitro model of myoblast transplantation with "patterned" or "randomly-mixed" co-culture of SkMBs and cardiomyocytes enabling subsequent electrophysiological, and arrhythmogenic evaluation. SkMBs were magnetically labeled with magnetite nanoparticles and co-cultured with neonatal rat ventricular myocytes (NRVMs) on multi-electrode arrays. SkMBs were patterned by a magnet beneath the arrays. Excitation synchronicity was evaluated by Ca(2+) imaging using a gene-encoded Ca(2+) indicator, G-CaMP2. In the monoculture of NRVMs (control), conduction was well-organized. In the randomly-mixed co-culture of NRVMs and SkMBs (random group), there was inhomogeneous conduction from multiple origins. In the "patterned" co-culture where an en bloc SKMB-layer was inserted into the NRVM-layer, excitation homogenously propagated although conduction was distorted by the SkMB-area. The 4-mm distance conduction time (CT) in the random group was significantly longer (197 ± 126 ms) than in control (17 ± 3 ms). In the patterned group, CT through NRVM-area did not change (25 ± 3 ms), although CT through the SkMB-area was significantly longer (132 ± 77 ms). The intervals between spontaneous excitation varied beat-to-beat in the random group, while regular beating was recorded in the control and patterned groups. Synchronized Ca(2+) transients of NRVMs were observed in the patterned group, whereas those in the random group were asynchronous. Patterned alignment of SkMBs is feasible with magnetic nanoparticles. Using the novel in vitro model mimicking cell transplantation, it may become possible to predict arrhythmogenicity due to heterogenous cell transplantation. J. Cell. Physiol. 231: 2249-2256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Takanari
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan.,Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keiko Miwa
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - XianMing Fu
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiothoracic Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiovascular Surgery, Central South University The Second Xiangya Hospital, Changsha, China
| | - Junichi Nakai
- Saitama University Brain Science Institute, Saitama, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kousuke Ino
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Japan
| | - Wataru Tonomura
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Tobias Opthof
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology Group, Center for Heart Failure Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Ag van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Ye J, Gaur M, Zhang Y, Sievers RE, Woods BJ, Aurigui J, Bernstein HS, Yeghiazarians Y. Treatment with hESC-Derived Myocardial Precursors Improves Cardiac Function after a Myocardial Infarction. PLoS One 2015; 10:e0131123. [PMID: 26230835 PMCID: PMC4521814 DOI: 10.1371/journal.pone.0131123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
Background We previously reported the generation of a reporter line of human embryonic stem cells (hESCs) with enhanced green fluorescent protein (eGFP) expression driven by the α-myosin heavy chain (αMHC) promoter. The GFP+/αMHC+ cells derived from this cell line behave as multipotent, human myocardial precursors (hMPs) in vitro. In this study, we evaluated the therapeutic effects of GFP+/αMHC+ cells isolated from the reporter line in a mouse model of myocardial infarction (MI). Methods MI was generated in immunodeficient mice. hMPs were injected into murine infarcted hearts under ultrasound guidance at 3 days post-MI. Human fetal skin fibroblasts (hFFs) were injected as control. Cardiac function was evaluated by echocardiography. Infarct size, angiogenesis, apoptosis, cell fate, and teratoma formation were analyzed by immunohistochemical staining. Results Compared with control, hMPs resulted in improvement of cardiac function post-MI with smaller infarct size, induced endogenous angiogenesis, and reduced apoptosis of host cardiomyocytes at the peri-infarct zone at 28 days post-MI. Conclusion Intramyocardial injection of hMPs improved cardiac function post-MI. The engraftment rate of these cells in the myocardium post-MI was low, suggesting that the majority of effect occurs via paracrine mechanisms.
Collapse
Affiliation(s)
- Jianqin Ye
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Meenakshi Gaur
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Yan Zhang
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Richard E. Sievers
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Brandon J. Woods
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Julian Aurigui
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Harold S. Bernstein
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Yerem Yeghiazarians
- Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, 94143, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, 94143, United States of America
- * E-mail:
| |
Collapse
|
16
|
Buikema JW, Van Der Meer P, Sluijter JPG, Domian IJ. Concise review: Engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 2015; 31:2587-98. [PMID: 23843322 DOI: 10.1002/stem.1467] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Advanced heart failure represents a leading public health problem in the developed world. The clinical syndrome results from the loss of viable and/or fully functional myocardial tissue. Designing new approaches to augment the number of functioning human cardiac muscle cells in the failing heart serve as the foundation of modern regenerative cardiovascular medicine. A number of clinical trials have been performed in an attempt to increase the number of functional myocardial cells by the transplantation of a diverse group of stem or progenitor cells. Although there are some encouraging suggestions of a small early therapeutic benefit, to date, no evidence for robust cell or tissue engraftment has been shown, emphasizing the need for new approaches. Clinically meaningful cardiac regeneration requires the identification of the optimum cardiogenic cell types and their assembly into mature myocardial tissue that is functionally and electrically coupled to the native myocardium. We here review recent advances in stem cell biology and tissue engineering and describe how the convergence of these two fields may yield novel approaches for cardiac regeneration.
Collapse
Affiliation(s)
- Jan Willem Buikema
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
17
|
Madonna R, Ferdinandy P, De Caterina R, Willerson JT, Marian AJ. Recent developments in cardiovascular stem cells. Circ Res 2014; 115:e71-8. [PMID: 25477490 DOI: 10.1161/circresaha.114.305567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosalinda Madonna
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Peter Ferdinandy
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Raffaele De Caterina
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - James T Willerson
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Ali J Marian
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.).
| |
Collapse
|
18
|
Kwon HM, Hur SM, Park KY, Kim CK, Kim YM, Kim HS, Shin HC, Won MH, Ha KS, Kwon YG, Lee DH, Kim YM. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascul Pharmacol 2014; 63:19-28. [DOI: 10.1016/j.vph.2014.06.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 01/08/2023]
|
19
|
Hudson JE, Porrello ER. The non-coding road towards cardiac regeneration. J Cardiovasc Transl Res 2014; 6:909-23. [PMID: 23797382 DOI: 10.1007/s12265-013-9486-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/05/2013] [Indexed: 12/31/2022]
Abstract
Our understanding of cardiovascular disease has evolved rapidly, leading to a number of treatments that have improved patient quality of life and mortality rates. However, there is still no cure for heart failure. This has led to the pursuit of cardiac regeneration to prevent, and ultimately cure, this debilitating condition. To this end, several approaches have been proposed, including activation of cardiomyocyte proliferation, activation of endogenous or exogenous stem/progenitor cells, delivery of de novo cardiomyocytes, and in situ direct reprogramming of cardiac fibroblasts. While these different methodologies are currently being intensely investigated, there are still a number of caveats limiting their application in the clinic. Given the emerging regulatory potential of non-coding RNAs for controlling diverse cellular processes, these molecules may offer potential solutions in this pursuit of cardiac regeneration. In this concise review, we discuss the potential role of non-coding RNAs in a variety of different cardiac regenerative approaches.
Collapse
|
20
|
Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT The adult mammalian heart has limited capacity for regeneration, and any major injury such as a myocardial infarction results in the permanent loss of up to 1 billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably, the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on the efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals.
Collapse
Affiliation(s)
- Scott D Lundy
- Department of Bioengineering, University of Washington, Box 358050, 850 Republican St., Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
21
|
Sluijter JPG, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, Lecour S, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Van Laake LW. Novel therapeutic strategies for cardioprotection. Pharmacol Ther 2014; 144:60-70. [PMID: 24837132 DOI: 10.1016/j.pharmthera.2014.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality from ischemic heart disease (IHD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of occluded coronary arteries. Although it is essential to re-open the artery as soon as possible, paradoxically this leads to additional myocardial injury, called acute ischemia-reperfusion injury (IRI), for which currently no effective therapy is available. Therefore, novel therapeutic strategies are required to protect the heart from acute IRI in order to reduce myocardial infarction size, preserve cardiac function and improve clinical outcomes in patients with IHD. In this review article, we will first outline the pathophysiology of acute IRI and review promising therapeutic strategies for cardioprotection. These include novel aspects of mitochondrial function, epigenetics, circadian clocks, the immune system, microvesicles, growth factors, stem cell therapy and gene therapy. We discuss the therapeutic potential of these novel cardioprotective strategies in terms of pharmacological targeting and clinical application.
Collapse
Affiliation(s)
- Joost P G Sluijter
- Department of Cardiology, University Medical Center Utrecht, The Netherlands; ICIN, Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Derek J Hausenloy
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, South Africa
| | - Rosalinda Madonna
- Department of Neurosciences and Imaging, Institute of Cardiology, University of Chieti, Chieti, Italy
| | - Michel Ovize
- Service d'Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, France; Inserm U1060-CarMeN, CIC de Lyon, Université Claude Bernard Lyon, Lyon, France
| | - Marisol Ruiz-Meana
- Laboratori Cardiologia, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Spain
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität, Gießen, Germany
| | - Linda W Van Laake
- Department of Cardiology, University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
22
|
Poggioli T, Sarathchandra P, Rosenthal N, Santini MP. Intramyocardial cell delivery: observations in murine hearts. J Vis Exp 2014:e51064. [PMID: 24513973 DOI: 10.3791/51064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Collapse
|
23
|
Chen A, Ting S, Seow J, Reuveny S, Oh S. Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 2014; 5:12. [PMID: 24444355 PMCID: PMC4055057 DOI: 10.1186/scrt401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived cardiomyocytes have attracted attention as an unlimited source of cells for cardiac therapies. One of the factors to surmount to achieve this is the production of hPSC-derived cardiomyocytes at a commercial or clinical scale with economically and technically feasible platforms. Given the limited proliferation capacity of differentiated cardiomyocytes and the difficulties in isolating and culturing committed cardiac progenitors, the strategy for cardiomyocyte production would be biphasic, involving hPSC expansion to generate adequate cell numbers followed by differentiation to cardiomyocytes for specific applications. This review summarizes and discusses up-to-date two-dimensional cell culture, cell-aggregate and microcarrier-based platforms for hPSC expansion. Microcarrier-based platforms are shown to be the most suitable for up-scaled production of hPSCs. Subsequently, different platforms for directing hPSC differentiation to cardiomyocytes are discussed. Monolayer differentiation can be straightforward and highly efficient and embryoid body-based approaches are also yielding reasonable cardiomyocyte efficiencies, whereas microcarrier-based approaches are in their infancy but can also generate high cardiomyocyte yields. The optimal target is to establish an integrated scalable process that combines hPSC expansion and cardiomyocyte differentiation into a one unit operation. This review discuss key issues such as platform selection, bioprocess parameters, medium development, downstream processing and parameters that meet current good manufacturing practice standards.
Collapse
|
24
|
Liu Y, Fox V, Lei Y, Hu B, Joo KI, Wang P. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation. J Biomed Mater Res B Appl Biomater 2013; 102:1101-12. [DOI: 10.1002/jbm.b.33092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Victoria Fox
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research; University of Southern California; Los Angeles California
| | - Yuning Lei
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Kye-Il Joo
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
- Department of Biomedical Engineering; University of Southern California; Los Angeles California
- Department of Pharmacology and Pharmaceutical Sciences; University of Southern California; Los Angeles California
| |
Collapse
|
25
|
Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T, Song MK, Yu SP, Wagner M, Bao G, Yoon YS. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 2013; 128:1897-909. [PMID: 23995537 DOI: 10.1161/circulationaha.113.004228] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. METHOD AND RESULTS Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. CONCLUSIONS We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.
Collapse
Affiliation(s)
- Kiwon Ban
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Brian Wile
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Sangsung Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Hun-Jun Park
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaemin Byun
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kyu-Won Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Talib Saafir
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Ming-Ke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Mary Wagner
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
26
|
du Pré BC, Doevendans PA, van Laake LW. Stem cells for cardiac repair: an introduction. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:186-97. [PMID: 23888179 PMCID: PMC3708059 DOI: 10.3969/j.issn.1671-5411.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.
Collapse
Affiliation(s)
- Bastiaan C du Pré
- Departments of Cardiology and Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, P.O. box 85500, 3508 GA Utrecht, the Netherlands
| | | | | |
Collapse
|
27
|
Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 2013; 34:4013-4026. [DOI: 10.1016/j.biomaterials.2013.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2013] [Indexed: 11/15/2022]
|
28
|
Duan Y, Liu S, Tao J, You Y, Yang G, Yan C, Han Y. Cellular repressor of E1A stimulated genes enhances endothelial monolayer integrity. Mol Biol Rep 2013; 40:3891-900. [PMID: 23580165 DOI: 10.1007/s11033-012-2373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Cellular repressor of E1A stimulated genes (CREG) is a novel modulator that maintains the homeostasis of vascular cells. The present study aimed to investigate the effects of CREG on tumor necrosis factor (TNF)-α-mediated inflammatory injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured and CREG overexpressing (VC), knockdown (VS) and mock-transfected (VE) HUVECs were challenged with TNF-α. We demonstrated that TNF-α prompted robust intercellular filamentous actin (F-actin) stress fiber formation as examined by rhodamin-phalloidin staining. Transwell assay and rhodamine B isothiocyanate-dextran staining indicated that TNF-α induced intercellular hyperpermeability of the HUVEC monolayers. These effects were attenuated in VC cells with forced CREG overexpression but significantly potentiated in VS cells with CREG silencing. After TNF-α stimulation, interleukin (IL)-6 and IL-8 secretions in VE cells were markedly increased and inducible nitric oxidase (iNOS) expression substantially elevated, whereas these effects were pronouncedly damped in VC cells. Conversely, in VS cells, the increase in inflammatory markers was substantially potentiated. Immunofluorescence staining demonstrated that nuclear factor κB (NF-κB) slowly and transiently translocated into the nuclei of VC cells upon TNF-α stimulation. However, a more swift and sustained nuclear translocation was observed in VS as compared to VE cells. Corresponding changes in the pattern of its protein expression was also observed. These data suggested that CREG can inhibit NF-κB activation, TNF-α-induced inflammatory responses and the hyperpermeability of endothelial cells, and may therefore represent a potential therapeutic target for pathological vascular injury.
Collapse
Affiliation(s)
- Yan Duan
- Department of Cardiology, Shenyang Northern Hospital, Cardiovascular Research Institute, 83 Wenhua Road, Shenyang, 110016, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Human Embryonic Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S, Maier LS, Krause A, Dräger G, Ochs M, Haverich A, Gruh I, Martin U. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 2012; 34:1134-46. [PMID: 23103664 DOI: 10.1093/eurheartj/ehs349] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality. METHODS AND RESULTS Murine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm(2) in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition. CONCLUSION BCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair.
Collapse
Affiliation(s)
- George Kensah
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Cluster of Excellence REBIRTH, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liao SY, Tse HF, Chan YC, Mei-Chu Yip P, Zhang Y, Liu Y, Li RA. Overexpression of Kir2.1 channel in embryonic stem cell-derived cardiomyocytes attenuates posttransplantation proarrhythmic risk in myocardial infarction. Heart Rhythm 2012; 10:273-82. [PMID: 23041574 DOI: 10.1016/j.hrthm.2012.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cellular replacement strategies using embryonic stem cell-derived cardiomyocytes (ESC-CMs) have been shown to improve left ventricular (LV) ejection fraction and prevent LV remodeling post-myocardial infarction (MI). Nonetheless, the immature electrical phenotypes of ESC-CMs may increase the risk of ventricular tachyarrhythmias (VTs) and sudden death. OBJECTIVE To investigate whether the forced expression of Kir2.1-encoded inward rectifying K(+) channels that are otherwise absent in ESC-CMs would attenuate their proarrhythmic risk after transplantation post-MI. METHODS Mouse ESC line stably transduced with a lentivirus (LentV)-based doxycycline (DOX)-inducible system coexpressing the transgenes Kir2.1 and a dsRed (LentV-THM-Kir2.1-GFP/LentV-TR-KRAB-dsRed) was differentiated into ESC-CMs with (DOX(+)) or without (DOX(-)) treatment with DOX. Detailed in vitro and in vivo assessments of LV function and cardiac electrophysiology were measured 4 weeks after transplantation. RESULTS ESC-CM DOX(+) with atrial and ventricular phenotype exhibited more hyperpolarizing resting membrane potential than did ESC-CM DOX(-) (P< .05). Transplantations of ESC-CM DOX(-) and ESC-CM DOX(+) both significantly improved LV ejection fraction, LV end-systolic diameter, end-systolic pressure-volume relationship, and positive maximal and negative pressure derivative (P< .05) at 4 weeks compared with the MI group; however, the DOX(-) group (22 of 40, 55%) had a significantly higher early sudden death rate than the DOX(+) group (13 of 40, 32.5%; P = .036). Telemetry monitoring revealed that the DOX(-) group (6.09%±3.65%) had significantly more episodes of spontaneous VT compared with the DOX(+) group (0.92%±0.81%; P< .05). In vivo programmed electrical stimulation at 2 weeks resulted in a significantly higher incidence of inducible VT in the DOX(-) group (9 of 16, 56.25%) compared with the DOX(+) group (3 of 16, 18.75%; P = .031). CONCLUSIONS Forced expression of Kir2.1 in ESC-CMs improves their electrical phenotypes and lowers the risk of inducible and spontaneous VT after post-MI transplantation.
Collapse
Affiliation(s)
- Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Dierickx P, Doevendans PA, Geijsen N, van Laake LW. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 2012; 5:566-80. [PMID: 22806916 DOI: 10.1007/s12265-012-9391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Abstract
The term "lineage reprogramming" is typically used to describe the conversion of one differentiated somatic cell type into another without transit through a pluripotent intermediate. Two recent reports in Nature demonstrate that such a conversion can be achieved in the heart in situ, and suggest a novel, regenerative approach for the development of cardiac therapeutics.
Collapse
Affiliation(s)
- Huansheng Xu
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
34
|
Menasché P. [Embryonic stem cells in the treatment of severe cardiac insufficiency]. Biol Aujourdhui 2012; 206:31-44. [PMID: 22463994 DOI: 10.1051/jbio/2012002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 05/31/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which optimizing cardiac specification of the embryonic stem cells, purifying the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis and controlling the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a pre-requisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
Affiliation(s)
- Philippe Menasché
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité de chirurgie de l'insuffisance cardiaque, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
35
|
Xu C. Differentiation and enrichment of cardiomyocytes from human pluripotent stem cells. J Mol Cell Cardiol 2012; 52:1203-12. [PMID: 22484618 DOI: 10.1016/j.yjmcc.2012.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Human cardiomyocytes derived from pluripotent stem cells hold great promise for cardiac cell therapy, disease modeling, drug discovery, and the study of developmental biology. Reaching these potentials fully requires the development of methods that enable efficient and robust generation of cardiomyocytes with expected characteristics. This review summarizes and discusses up-to-date methods that have been used to derive and enrich human cardiomyocytes from pluripotent stem cells, provides a brief overview of in vitro and in vivo characterization of these cardiomyocytes, and considers future advancement needed to further harness the power of these cells.
Collapse
Affiliation(s)
- Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res 2012; 5:555-65. [PMID: 22411322 DOI: 10.1007/s12265-012-9356-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which the optimization of the cardiac specification of the embryonic stem cells, the purification of the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis, and the control of the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a prerequisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted, and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
|
37
|
Vallée JP, Hauwel M, Lepetit-Coiffé M, Bei W, Montet-Abou K, Meda P, Gardier S, Zammaretti P, Kraehenbuehl TP, Herrmann F, Hubbell JA, Jaconi ME. Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats. Stem Cells Transl Med 2012. [PMID: 23197784 DOI: 10.5966/sctm.2011-0028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Jean-Paul Vallée
- Department of Radiology, Geneva University Hospitals and University of Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 2012; 21:977-86. [PMID: 22182484 DOI: 10.1089/scd.2011.0075] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage.
Collapse
Affiliation(s)
- Lee Carpenter
- Stem Cell Research Laboratory, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.
Collapse
|
40
|
Mujoo K, Krumenacker JS, Murad F. Nitric oxide-cyclic GMP signaling in stem cell differentiation. Free Radic Biol Med 2011; 51:2150-7. [PMID: 22019632 PMCID: PMC3232180 DOI: 10.1016/j.freeradbiomed.2011.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 12/15/2022]
Abstract
The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation, and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and in stem cells. Manipulation of the NO-cGMP pathway, by employing activators and inhibitors as pharmacological probes, and genetic manipulation of NO signaling components have implicated the involvement of this pathway in the regulation of stem cell differentiation. This review focuses on some of the work pertaining to the role of NO-cGMP in the differentiation of stem cells into cells of various lineages, particularly into myocardial cells, and in stem cell-based therapy.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Brown Foundation Institute of Molecular Medicine, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | |
Collapse
|
41
|
Lu TY, Yang L. Uses of cardiomyocytes generated from induced pluripotent stem cells. Stem Cell Res Ther 2011; 2:44. [PMID: 22099214 PMCID: PMC3340553 DOI: 10.1186/scrt85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Tung-Ying Lu
- Department of Developmental Biology, University of Pittsburgh, Rangos Research Center, Pittsburgh, PA 15201, USA
| | | |
Collapse
|
42
|
Nunes SS, Song H, Chiang CK, Radisic M. Stem cell-based cardiac tissue engineering. J Cardiovasc Transl Res 2011; 4:592-602. [PMID: 21748529 DOI: 10.1007/s12265-011-9307-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and cell-based therapies represent a potential cure for patients with cardiac diseases such as myocardial infarction, heart failure, and congenital heart diseases. Towards this goal, cardiac tissue engineering is now being investigated as an approach to support cell-based therapies and enhance their efficacy. This review focuses on the latest research in cardiac tissue engineering based on the use of embryonic, induced pluripotent, or adult stem cells. We describe different strategies such as direct injection of cells and/or biomaterials as well as direct replacement therapies with tissue mimics. In this regard, the latest research has shown promising results demonstrating the improvement of cardiac function with different strategies. It is clear from recent studies that the most important consideration to be addressed by new therapeutic strategies is long-term functional improvement. For this goal to be realized, novel and efficient methods of cell delivery are required that enable high cell retention, followed by electrical integration and mechanical coupling of the injected cells or the engineered tissue to the host myocardium.
Collapse
Affiliation(s)
- Sara S Nunes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St. Rosebrugh Building, Toronto, ON, Canada, M5S 3G9.
| | | | | | | |
Collapse
|
43
|
Dawson J, Schussler O, Al-Madhoun A, Menard C, Ruel M, Skerjanc IS. Collagen scaffolds with or without the addition of RGD peptides support cardiomyogenesis after aggregation of mouse embryonic stem cells. In Vitro Cell Dev Biol Anim 2011; 47:653-664. [PMID: 21938587 DOI: 10.1007/s11626-011-9453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Embryonic stem (ES) cell-based cardiac muscle repair using tissue-engineered scaffolds is an attractive prospective treatment option for patients suffering from heart disease. In this study, our aim was to characterize mouse ES cell-derived cardiomyocytes growing on collagen I/III scaffolds, modified with the adhesion peptides arginine-glycine-aspartic acid (RGD). Mouse ES-derived embryoid bodies (EBs) differentiated efficiently into beating cardiomyocytes on the collagen scaffolds. QPCR analysis and immunofluorescent staining showed that cardiomyocytes expressed cardiac muscle-related transcripts and proteins. Analysis of cardiomyocytes by electron microscopy identified muscle fiber bundles and Z bands, typical of ES-derived cardiomyocytes. No differences were detected between the collagen + RGD and collagen control scaffolds. ES cells that were not differentiated as EBs prior to seeding on the scaffold, did not differentiate into cardiomyocytes. These results indicate that a collagen I/III scaffold supports cardiac muscle development and function after EB formation, and that this scaffold appears suitable for future in vivo testing. The addition of the RGD domain to the collagen scaffold did not improve cardiomyocyte development or viability, indicating that RGD signaling to integrins was not a rate-limiting event for cardiomyogenesis from EBs seeded on a collagen scaffold.
Collapse
Affiliation(s)
- Jennifer Dawson
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
de Almeida PE, van Rappard JRM, Wu JC. In vivo bioluminescence for tracking cell fate and function. Am J Physiol Heart Circ Physiol 2011; 301:H663-71. [PMID: 21666118 DOI: 10.1152/ajpheart.00337.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tracking the fate and function of cells in vivo is paramount for the development of rational therapies for cardiac injury. Bioluminescence imaging (BLI) provides a means for monitoring physiological processes in real time, ranging from cell survival to gene expression to complex molecular processes. In mice and rats, BLI provides unmatched sensitivity because of the absence of endogenous luciferase expression in mammalian cells and the low background luminescence emanating from animals. In the field of stem cell therapy, BLI provides an unprecedented means to monitor the biology of these cells in vivo, giving researchers a greater understanding of their survival, migration, immunogenicity, and potential tumorigenicity in a living animal. In addition to longitudinal monitoring of cell survival, BLI is a useful tool for semiquantitative measurements of gene expression in vivo, allowing a better optimization of drug and gene therapies. Overall, this technology not only enables rapid, reproducible, and quantitative monitoring of physiological processes in vivo but also can measure the influences of therapeutic interventions on the outcome of cardiac injuries.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5454, USA
| | | | | |
Collapse
|
45
|
Marshall C, Wang GK, Cimetta E, Talchai C, Egli D, Shim JW, Martin I, Ahmad F, Sproul A, Chen T, Fossati V, McKeon D, Smith K, Solomon SL. The New York Stem Cell Foundation: Fifth Annual Translational Stem Cell Research Conference. Ann N Y Acad Sci 2011; 1226:1-13. [PMID: 21615750 DOI: 10.1111/j.1749-6632.2011.06038.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The New York Stem Cell Foundation's "Fifth Annual Translational Stem Cell Research Conference" convened on October 12-13, 2010 at the Rockefeller University in New York City. The conference attracted over 400 scientists, patient advocates, and stem cell research supporters from 16 countries. In addition to poster and platform presentations, the conference featured panels entitled "Road to the Clinic" and "Regulatory Roadblocks."
Collapse
|
46
|
Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AAM, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DPV. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 2011; 6:206-14. [PMID: 21419744 DOI: 10.1016/j.scr.2011.01.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 01/03/2023] Open
Abstract
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.
Collapse
Affiliation(s)
- Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Englund MCO, Sartipy P, Hyllner J. Human Embryonic Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
48
|
Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 2010; 32:1102-9. [PMID: 21035182 DOI: 10.1016/j.biomaterials.2010.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/03/2010] [Indexed: 01/27/2023]
Abstract
We present use of a synthetic, injectable matrix metalloproteinase (MMP)-responsive, bioactive hydrogel as an in situ forming scaffold to deliver thymosin β4 (Tβ4), a pro-angiogenic and pro-survival factor, along with vascular cells derived from human embryonic stem cells (hESC) in ischemic injuries to the heart in a rat model. The gel was found to substitute the degrading extracellular matrix in the infarcted myocardium of rats and to promote structural organization of native endothelial cells, while some of the delivered hESC-derived vascular cells formed de novo capillaries in the infarct zone. Magnetic resonance imaging (MRI) revealed that the microvascular grafts effectively preserved contractile performance 3 d and 6 wk after myocardial infarction, attenuated left ventricular dilation, and decreased infarct size as compared to infarcted rats treated with PBS injection as a control (3 d ejection fraction, + ∼7%, P < 0.001; 6 wk ejection faction, + ∼12%, P < 0.001). Elevation in vessel density was observed in response to treatment, which may be due in part to elevations in human (donor)-derived cytokines EGF, VEGF and HGF (1 d). Thus, a clinically relevant matrix for dual delivery of vascular cells and drugs may be useful in engineering sustained tissue preservation and potentially regenerating ischemic cardiac tissue.
Collapse
|
49
|
Abstract
Of the many diseases discussed in the context of stem cell therapy, those concerning the heart account for almost one-third of the publications in the field. However, the long-term clinical outcomes have been disappointing, in part because of preclinical studies failing to optimize the timing, number, type, and method of cell delivery and to account for shape changes that the heart undergoes during failure. In situations in which cardiomyocytes have been used in cell therapy, their alignment and integration with host tissue have not been realized. Here we review the present status of direct delivery of stem cells or their derivative cardiomyocytes to the heart and the particular challenges each cell type brings, and consider where we should go from here.
Collapse
Affiliation(s)
- Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, Netherlands.
| | | | | |
Collapse
|
50
|
Alexander JM, Bruneau BG. Lessons for cardiac regeneration and repair through development. Trends Mol Med 2010; 16:426-34. [PMID: 20692205 PMCID: PMC3089764 DOI: 10.1016/j.molmed.2010.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 02/07/2023]
Abstract
Cell-based regenerative strategies have the potential to revolutionize the way cardiovascular injury is treated, but successful therapies will require a precise understanding of the mechanisms that dictate cell fate, survival and differentiation. Recent advances in the study of cardiac development hold promise for unlocking the keys for successful therapies. Using mouse models and embryonic stem cells, researchers are uncovering cardiac progenitor cells in both embryonic and adult contexts. Furthermore, the signaling molecules and transcriptional regulators that govern these cells and their behavior are being revealed. Here, we focus on the recent advances in these areas of cardiac developmental research and their impact on the expanding field of regenerative medicine.
Collapse
Affiliation(s)
- Jeffrey M Alexander
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | | |
Collapse
|