1
|
Zhu M, Catta-Preta R, Lee C, Tabin C. Shifts in embryonic oxygen levels cue heterochrony in limb initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620348. [PMID: 39484532 PMCID: PMC11527133 DOI: 10.1101/2024.10.25.620348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Heterochrony, or the alteration of developmental timing, is an important mechanism of evolutionary change. Avian species display synchronized growth of the forelimbs and hindlimbs, while mammalian species show delayed hindlimb development. We find that mammalian limb heterochrony is evident from the start of limb bud formation, and is associated with heterochronic expression of T-box transcription factors. This heterochronic shift is not due to changes in cis-regulatory sequences controlling T-box gene expression, but unexpectedly, is dependent upon differential oxygen levels to which avian and mammalian embryos are exposed prior to limb initiation, mediated, at least partially, by an NFKB transcription factor, cRel. Together, these results provide mechanistic understanding of an important example of developmental heterochrony and exemplify how the maternal environment regulates timing during embryonic development.
Collapse
|
2
|
Wang D, Li Y, Xu C, Wang H, Huang X, Jin X, Ren S, Gao J, Tong J, Liu J, Zhou J, Shi L. SETD7 promotes lateral plate mesoderm formation by modulating the Wnt/β-catenin signaling pathway. iScience 2023; 26:106917. [PMID: 37378343 PMCID: PMC10291335 DOI: 10.1016/j.isci.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/16/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
The role of SET domain containing 7 (SETD7) during human hematopoietic development remains elusive. Here, we found that deletion of SETD7 attenuated the generation of hematopoietic progenitor cells (HPCs) during the induction of hematopoietic differentiation from human embryonic stem cells (hESCs). Further analysis specified that SETD7 was required for lateral plate mesoderm (LPM) specification but dispensable for the generation of endothelial progenitor cells (EPCs) and HPCs. Mechanistically, rather than depending on its histone methyltransferase activity, SETD7 interacted with β-catenin at lysine residue 180 facilitated its degradation. Diminished SETD7 expression led to the accumulation of β-catenin and the consequent activation of the Wnt signaling pathway, which altered LPM patterning and facilitated the production of paraxial mesoderm (PM). Taken together, the findings indicate that SETD7 is related to LPM and PM patterning via posttranslational regulation of the Wnt/β-catenin signaling pathway, providing novel insights into mesoderm specification during hematopoietic differentiation from hESCs.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yapu Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xin Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Sirui Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
3
|
Satake T, Komura S, Aoki H, Hirakawa A, Imai Y, Akiyama H. Induction of iPSC-derived Prg4-positive cells with characteristics of superficial zone chondrocytes and fibroblast-like synovial cells. BMC Mol Cell Biol 2022; 23:30. [PMID: 35870887 PMCID: PMC9308249 DOI: 10.1186/s12860-022-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background Lubricin, a proteoglycan encoded by the PRG4 gene, is synthesised by superficial zone (SFZ) chondrocytes and synovial cells. It reduces friction between joints and allows smooth sliding of tendons. Although lubricin has been shown to be effective against osteoarthritis and synovitis in animals, its clinical application remains untested. In this study, we aimed to induce lubricin-expressing cells from pluripotent stem cells (iPSCs) and applied them locally via cell transplantation. Methods To generate iPSCs, OCT3/4, SOX2, KLF4, and L-MYC were transduced into fibroblasts derived from Prg4-mRFP1 transgenic mice. We established a protocol for the differentiation of iPSC-derived Prg4-mRFP1-positive cells and characterised their mRNA expression profile. Finally, we injected Prg4-mRFP1-positive cells into the paratenon, surrounding the Achilles tendons and knee joints of severe combined immunodeficient mice and assessed lubricin expression. Result Wnt3a, activin A, TGF-β1, and bFGF were applied to induce the differentiation of iPSC-derived Prg4-mRFP1-positive cells. Markers related to SFZ chondrocytes and fibroblast-like synovial cells (FLSs) were expressed during differentiation. RNA-sequencing indicated that iPSC-derived Prg4-mRFP1-positive cells manifested expression profiles typical of SFZ chondrocytes and FLSs. Transplanted iPSC-derived Prg4-mRFP1-positive cells survived around the Achilles tendons and in knee joints. Conclusions The present study describes a protocol for the differentiation of iPSC-derived Prg4-positive cells with characteristics of SFZ chondrocytes and FLSs. Transplantation of lubricin-expressing cells offers promise as a therapy against arthritis and synovitis.
Collapse
|
4
|
Bruschi M, Sahu N, Singla M, Grandi F, Agarwal P, Chu C, Bhutani N. A Quick and Efficient Method for the Generation of Immunomodulatory Mesenchymal Stromal Cell from Human Induced Pluripotent Stem Cell. Tissue Eng Part A 2022; 28:433-446. [PMID: 34693750 PMCID: PMC9131357 DOI: 10.1089/ten.tea.2021.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their regenerative capacity, anti-inflammatory properties and beneficial immunomodulatory effects across multiple clinical indications. Nevertheless, their widespread clinical utilization is limited by the variability in MSC quality, impacted by donor age, metabolism, and disease. Human induced pluripotent stem cells (hiPSCs) generated from readily accessible donor tissues, are a promising source of stable and rejuvenated MSC but differentiation methods generally require prolonged culture and result in low frequencies of stable MSCs. To overcome this limitation, we have optimized a quick and efficient method for hiPSC differentiation into footprint-free MSCs (human induced MSCs [hiMSCs]) in this study. This method capitalizes on the synergistic action of growth factors Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4), leading to an enrichment of MSC after only 4 days of treatment. These hiMSCs demonstrate a significant upregulation of mesenchymal stromal markers (CD105+, CD90+, CD73, and cadherin 11) compared with bone marrow-derived MSCs (bmMSCs), with reduced expression of the pluripotency genes (octamer-binding transcription factor [Oct-4], cellular myelocytomatosis oncogene [c-Myc], Klf4, and Nanog homebox [Nanog]) compared with hiPSC. Moreover, they show improved proliferation capacity in culture without inducing any teratoma formation in vivo. Osteogenesis, chondrogenesis, and adipogenesis assays confirmed the ability of hiMSCs to differentiate into the three different lineages. Secretome analyses showed cytokine profiles compared with bmMSCs. Encapsulated hiMSCs in alginate beads cocultured with osteoarthritic (OA) cartilage explants showed robust immunomodulation, with stimulation of cell growth and proteoglycan production in OA cartilage. Our quick and efficient protocol for derivation of hiMSC from hiPSC, and their encapsulation in microbeads, therefore, presents a reliable and reproducible method to boost the clinical applications of MSCs.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Mamta Singla
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Fiorella Grandi
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Pranay Agarwal
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Constance Chu
- Department of Orthopaedic Surgery, PAVAHCS, Palo Alto, California, USA
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
6
|
Cirino A, Aurigemma I, Franzese M, Lania G, Righelli D, Ferrentino R, Illingworth E, Angelini C, Baldini A. Chromatin and Transcriptional Response to Loss of TBX1 in Early Differentiation of Mouse Cells. Front Cell Dev Biol 2020; 8:571501. [PMID: 33015063 PMCID: PMC7505952 DOI: 10.3389/fcell.2020.571501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
The T-box transcription factor TBX1 has critical roles in the cardiopharyngeal lineage and the gene is haploinsufficient in DiGeorge syndrome, a typical developmental anomaly of the pharyngeal apparatus. Despite almost two decades of research, if and how TBX1 function triggers chromatin remodeling is not known. Here, we explored genome-wide gene expression and chromatin remodeling in two independent cellular models of Tbx1 loss of function, mouse embryonic carcinoma cells P19Cl6, and mouse embryonic stem cells (mESCs). The results of our study revealed that the loss or knockdown of TBX1 caused extensive transcriptional changes, some of which were cell type-specific, some were in common between the two models. However, unexpectedly we observed only limited chromatin changes in both systems. In P19Cl6 cells, differentially accessible regions (DARs) were not enriched in T-BOX binding motifs; in contrast, in mESCs, 34% (n = 47) of all DARs included a T-BOX binding motif and almost all of them gained accessibility in Tbx1 -/- cells. In conclusion, despite a clear transcriptional response of our cell models to loss of TBX1 in early cell differentiation, chromatin changes were relatively modest.
Collapse
Affiliation(s)
- Andrea Cirino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Ilaria Aurigemma
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Monica Franzese
- Institute Applicazioni del Calcolo, National Research Council, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Dario Righelli
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | | | - Claudia Angelini
- Institute Applicazioni del Calcolo, National Research Council, Naples, Italy
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| |
Collapse
|
7
|
Ren X, Xia W, Xu P, Shen H, Dai X, Liu M, Shi Y, Ye X, Dang Y. Lgr4 Deletion Delays the Hair Cycle and Inhibits the Activation of Hair Follicle Stem Cells. J Invest Dermatol 2020; 140:1706-1712.e4. [PMID: 32035093 PMCID: PMC8507220 DOI: 10.1016/j.jid.2019.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
It is known that LGR4 plays an important role in hair follicle (HF) development, but the impact of LGR4 on the hair cycle is still unclear. In this study, we have found that K14-Cre-mediated skin epithelia-specific deletion of Lgr4 results in delayed anagen entry during the physiological hair cycle and compromised HF regeneration upon transplantation. We show that, although Lgr4 deletion does not appear to affect the number of quiescent HF stem cells, it leads to reduced numbers of LGR5+ and actively proliferating stem cells in the HFs. Moreover, LGR4-deficient HFs show molecular changes consistent with decreased mTOR and Wnt signaling but upregulated BMP signaling. Importantly, the reactivation of the protein kinase B pathway by injecting the protein kinase B activator SC79 in Lgr4-/- mice can effectively reverse the hair cycle delay. Together, these data suggest that LGR4 promotes the normal hair cycle by activating HF stem cells and by influencing the activities of multiple signaling pathways that are known to regulate HF stem cells. Our study also implicates LGR4 as a potential target for treating hair disorder in the future.
Collapse
Affiliation(s)
- Xiaolin Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weili Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Xu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongyang Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yongyan Dang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Nakayama N, Pothiawala A, Lee JY, Matthias N, Umeda K, Ang BK, Huard J, Huang Y, Sun D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol Life Sci 2020; 77:2543-2563. [PMID: 31915836 PMCID: PMC11104892 DOI: 10.1007/s00018-019-03445-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The cartilage of joints, such as meniscus and articular cartilage, is normally long lasting (i.e., permanent). However, once damaged, especially in large animals and humans, joint cartilage is not spontaneously repaired. Compensating the lack of repair activity by supplying cartilage-(re)forming cells, such as chondrocytes or mesenchymal stromal cells, or by transplanting a piece of normal cartilage, has been the basis of therapy for biological restoration of damaged joint cartilage. Unfortunately, current biological therapies face problems on a number of fronts. The joint cartilage is generated de novo from a specialized cell type, termed a 'joint progenitor' or 'interzone cell' during embryogenesis. Therefore, embryonic chondroprogenitors that mimic the property of joint progenitors might be the best type of cell for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell type through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic chondroprogenitors. The major research goals toward the clinical application of PSCs in joint cartilage regeneration are to (1) efficiently generate lineage-specific chondroprogenitors from hPSCs, (2) expand the chondroprogenitors to the number needed for therapy without loss of their chondrogenic activity, and (3) direct the in vivo or in vitro differentiation of the chondroprogenitors to articular or meniscal (i.e., permanent) chondrocytes rather than growth plate (i.e., transient) chondrocytes. This review is aimed at providing the current state of research toward meeting these goals. We also include our recent achievement of successful generation of "permanent-like" cartilage from long-term expandable, hPSC-derived ectomesenchymal chondroprogenitors.
Collapse
Affiliation(s)
- Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA.
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA.
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - Katsutsugu Umeda
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Department of Pediatrics, Kyoto University School of Medicine, Kyoto, Japan
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yun Huang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Deqiang Sun
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
9
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
10
|
Fan L, Chen J, Tao Y, Heng BC, Yu J, Yang Z, Ge Z. Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. J Orthop Res 2019; 37:1387-1397. [PMID: 30644571 DOI: 10.1002/jor.24224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Transforming growth factor beta (TGF-β) is commonly utilized in chondrogenic differentiation protocols, but this often results in incomplete maturation of the derived chondrocytes. Gene expression analysis, quantitation of sulfated glycosaminoglycan and collagen, and histological staining were performed to assess the effects of ghrelin. The signaling pathways involved were investigated with inhibitors or targeted by shRNAs. Joint cavity delivery of TGF-β with or without ghrelin, within a rat cartilage defect model was performed to evaluate the in vivo effects of ghrelin. Ghrelin dramatically enhanced gene expression levels of SOX9, ACAN, and COL II and resulted in increased synthesis of sulfated glycosaminoglycan (sGAG) and collagen in vitro. Combined treatment with TGF-β and ghrelin synergistically enhanced the phosphorylation of ERK1/2 and DMNT3A, which accounted for increased expression of chondrogenic genes. Delivery of ghrelin in combination with TGF-β after MSC implantation within a rat osteochondral defect model significantly enhanced de novo cartilage regeneration, as compared to delivery with TGF-β alone. In conclusion, ghrelin could significantly enhance MSC chondrogenic differentiation in vitro and can also enhance cartilage regeneration in vivo when used in combination with TGF-β. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1387-1397, 2019.
Collapse
Affiliation(s)
- Litong Fan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jiaqing Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yanmeng Tao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Boon Chin Heng
- Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Jiakuo Yu
- Institute of Sports Medicine of Peking University 3rd Hospital, Beijing, China
| | - Zheng Yang
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore, 117510, Singapore
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Russell RP, Fu Y, Liu Y, Maye P. Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage. Stem Cell Res 2018; 30:85-95. [PMID: 29807258 PMCID: PMC6083448 DOI: 10.1016/j.scr.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
We have investigated the differentiation of paraxial mesoderm from mouse embryonic stem cells utilizing a Tbx6-EYFP/Brachyury (T)-Cherry dual reporter system. Differentiation from the mouse ESC state directly into mesoderm via Wnt pathway activation was low, but augmented by treatment with AGN193109, a pan-retinoic acid receptor inverse agonist. After five days of differentiation, T+ cells increased from 12.2% to 18.8%, Tbx6+ cells increased from 5.8% to 12.7%, and T+/Tbx6+ cells increased from 2.4% to 14.1%. The synergism of AGN193109 with Wnt3a/CHIR99021 was further substantiated by the increased expression of paraxial mesoderm gene markers Tbx6, Msgn1, Meox1, and Hoxb1. Separate to inverse agonist treatment, when mouse ESCs were indirectly differentiated into mesoderm via a transient epiblast step the efficiency of paraxial mesoderm formation markedly increased. Tbx6+ cells represented 65-75% of the total cell population after just 3 days of differentiation and the expression of paraxial mesoderm marker genes Tbx6 and Msgn increased over 100-fold and 300-fold, respectively. Further evaluation of AGN193109 treatment on the indirect differentiation protocol suggested that RARs have two distinct roles. First, AGN193109 treatment at the epiblast step and mesoderm step promoted paraxial mesoderm formation over other mesoderm and endoderm lineage types. Second, continued treatment during mesoderm formation revealed its ability to repress the maturation of presomitic mesoderm into somitic paraxial mesoderm. Thus, the continuous treatment of AGN193109 during epiblast and mesoderm differentiation steps yielded a culture where ~90% of the cells were Tbx6+. The surprisingly early effect of inverse agonist treatment at the epiblast step of differentiation led us to further examine the effect of AGN193109 treatment during an extended epiblast differentiation protocol. Interestingly, while inverse agonist treatment had no impact on the conversion of ESCs into epiblast cells based on the expression of Rex1, Fgf5, and pluripotency marker genes Oct4, Nanog, and Sox2, after three days of differentiation in the presence of AGN193109 caudal epiblast and early paraxial mesoderm marker genes, T, Cyp26a1, Fgf8, Tbx6 and Msgn were all highly up-regulated. Collectively, our studies reveal an earlier than appreciated role for RARs in epiblast cells and the modulation of their function via inverse agonist treatment can promote their differentiation into the paraxial mesoderm lineage.
Collapse
Affiliation(s)
- Ryan P Russell
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, United States.
| |
Collapse
|
12
|
Li L, Yue GGL, Lee JKM, Wong ECW, Fung KP, Yu J, Lau CBS, Chiu PWY. Gene expression profiling reveals the plausible mechanisms underlying the antitumor and antimetastasis effects of Andrographis paniculata in esophageal cancer. Phytother Res 2018; 32:1388-1396. [PMID: 29577460 DOI: 10.1002/ptr.6074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
Esophageal cancer (EC) is a seriously invasive malignancy with high mortality and poor prognosis. Metastasis of EC is the major cause of mortality. Our studies previously demonstrated that a herbal medicine Andrographis paniculata (AP) significantly suppressed EC growth and metastasis in vitro and in vivo. However, the underlying mechanisms responsible for these effects have not yet been systematically elucidated. In this context, gene expression profiling of AP-treated squamous EC cells (EC-109) was performed to reveal the regulatory mechanisms of AP in antitumor and antimetastasis signaling pathways using gene expression microarray analysis. Differentially expressed genes were identified by Affymetrix Gene Chip, followed by the real-time polymerase chain reaction validation. The results showed that the canonical pathways were significantly regulated by AP treatment, including multiple genes related to proliferation, apoptosis, intercellular adhesion, metastatic processes, and drug resistance, such as WNT, TGF-β, MAPK and ErbB signaling pathways, and ATP-binding cassette transporter subfamily members. This genomic study emerges candidate molecular targets and pathways to reveal the mechanisms involved in AP's effects, which provides scientific evidence to support the clinical application of AP in EC treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Surgery, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Shatin, New Territories, Hong Kong
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Shatin, New Territories, Hong Kong
| | - Eric Chun-Wai Wong
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Shatin, New Territories, Hong Kong
| | - Kwok-Pui Fung
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Shatin, New Territories, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jun Yu
- Department of Medicine and Therapeutics and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Shatin, New Territories, Hong Kong
| | - Philip Wai-Yan Chiu
- Department of Surgery, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| |
Collapse
|
13
|
Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier JM, Kennedy L, Knockaert M, Gayraud-Morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018; 145:145/6/dev157339. [DOI: 10.1242/dev.157339] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden 67400, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Marie Knockaert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
14
|
Suchorska WM, Augustyniak E, Richter M, Łukjanow M, Filas V, Kaczmarczyk J, Trzeciak T. Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells. POSTEP HIG MED DOSW 2017; 71:500-509. [PMID: 28665279 DOI: 10.5604/01.3001.0010.3831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Human articular cartilage has a poor regenerative capacity. This often results in the serious joint disease- osteoarthritis (OA) that is characterized by cartilage degradation. An inability to self-repair provided extensive studies on AC regeneration. The cell-based cartilage tissue engineering is a promising approach for cartilage regeneration. So far, numerous cell types have been reported to show chondrogenic potential, among others human embryonic stem cells (hESCs). MATERIALS AND METHODS However, the currently used methods for directed differentiation of human ESCs into chondrocyte-like cells via embryoid body (EB) formation, micromass culture (MC) and pellet culture (PC) are not highly efficient and require further improvement. In the present study, these three methods for hESCs differentiation into chondrocyte-like cells in the presence of chondrogenic medium supplemented with diverse combination of growth factors (GFs) were evaluated and modified. RESULTS The protocols established here allow highly efficient, simple and inexpensive production of a large number of chondrocyte-like cells suitable for transplantation into the sites of cartilage injury. The most crucial issue is the selection of appropriate GFs in defined concentration. The obtained stem-derived cells reveal the presence of chondrogenic markers such as type II collagen, Sox6 and Sox9 as well as the lack or significantly lower level of pluripotency markers including Nanog and Oct3/4. DISCUSSION The most efficient method is the differentiation throughout embryoid bodies. In turn, chondrogenic differentiation via pellet culture is the most promising method for implementation on clinical scale. The most useful GFs are TGF-β1, -3 and BMP-2 that possess the most chondrogenic potential. These methods can also be used to obtain chondrocyte-like cells from differentiating induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
| | | | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | | | - Violetta Filas
- Pathology Department, Greater Poland Cancer Centre, Poznan, Poland Poznan University of Medical Sciences, Poland
| | - Jacek Kaczmarczyk
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
15
|
Yang D, Chen S, Gao C, Liu X, Zhou Y, Liu P, Cai J. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells. Life Sci 2016; 164:9-14. [PMID: 27633838 DOI: 10.1016/j.lfs.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
AIMS The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro, and test the effect of in vivo environments on the further maturation of hESCs derived cells. MAIN METHODS Embryoid bodies (EBs) formed from hESCs, with serum-free KSR-based medium and mesodermal specification related factors, CHIR, and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB, TGF β3, BMP4 in sequence for 24days. The morphology, FACS, histological staining as well as the expression of chondrogenic specific genes were detected in each stage, and further in vivo experiments, cell injections and tissue transplantations, further verified the formation of chondrocytes. KEY FINDINGS We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule, their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. SIGNIFICANCE The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes, and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease.
Collapse
Affiliation(s)
- Dandan Yang
- Experimental Center of Pathogenobiology Immunology Cytobiology and Genetics, Basic Medical College, Jilin University, Changchun, PR China; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Shubin Chen
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Changzhao Gao
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Xiaobo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China; Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Yulai Zhou
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, PR China
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, USA.
| | - Jinglei Cai
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China.
| |
Collapse
|
16
|
Sudheer S, Liu J, Marks M, Koch F, Anurin A, Scholze M, Senft AD, Wittler L, Macura K, Grote P, Herrmann BG. Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells 2016; 34:1790-800. [DOI: 10.1002/stem.2371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/07/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Smita Sudheer
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU; United Kingdom
| | - Jinhua Liu
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Matthias Marks
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Frederic Koch
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Anurin
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Free University Berlin; Berlin Germany
| | - Manuela Scholze
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Dorothea Senft
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE; United Kingdom
| | - Lars Wittler
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Karol Macura
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Phillip Grote
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main; Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|
17
|
He P, Fu J, Wang DA. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta Biomater 2016; 35:87-97. [PMID: 26911880 DOI: 10.1016/j.actbio.2016.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. STATEMENT OF SIGNIFICANCE In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive procedure. Our results demonstrated chondrogenic differentiation could be realized on the platform via mesoderm differentiation. The mESCs/miPSCs derived chondrocytic cells were further cultured to finally generate a pluripotent stem cells-derived scaffold-free construct based on the micro-cavitary hydrogel platform, in which alginate hydrogel could be removed finally. Our results showed that miPSC-derived graft could be formed by cells with chondrocytic phenotype wrapped by abundant and assembled collagen type II. To our knowledge, this study is the first study that initials from pluripotent stem cell seeding on 3D scaffold environment and ends with a scaffold-free chondrogenic micro-tissue. By the support of materials and methodologies established from this study, engineered autologous iPSC-derived cartilage engraftment may be potentially developed instead of autologous chondrocytes grafts that have limited source.
Collapse
|
18
|
Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquié O. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 2015; 33:962-9. [PMID: 26237517 DOI: 10.1038/nbt.3297] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7(+) cells with satellite cell characteristics, including the ability to form dystrophin(+) fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Fanny Bousson
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden, France
| | - Yasmine Zidouni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Caroline Mursch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Stéphane Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | - Shinichiro Hayashi
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Bernadette Drayton
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France
| | | | - Emanuela Gussoni
- Division of Genetics and Genomics Boston Children's Hospital, Boston, Massachusetts, USA
| | - Frédéric Relaix
- UPMC Paris 06, UMRS 787, INSERM, Avenir team, Pitié-Salpêtrière, Paris, France.,Institut de Myologie, Paris, France
| | | | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden, France.,Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Kansas City, Missouri, USA
| |
Collapse
|
19
|
Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol 2015; 33:638-45. [PMID: 25961409 DOI: 10.1038/nbt.3210] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Abstract
The replacement of articular cartilage through transplantation of chondrogenic cells or preformed cartilage tissue represents a potential new avenue for the treatment of degenerative joint diseases. Although many studies have described differentiation of human pluripotent stem cells (hPSCs) to the chondrogenic lineage, the generation of chondrocytes able to produce stable articular cartilage in vivo has not been demonstrated. Here we show that activation of the TGFβ pathway in hPSC-derived chondrogenic progenitors promotes the efficient development of articular chondrocytes that can form stable cartilage tissue in vitro and in vivo. In contrast, chondrocytes specified by BMP4 signaling display characteristics of hypertrophy and give rise to cartilage tissues that initiate the endochondral ossification process in vivo. These findings provide a simple serum-free and efficient approach for the routine generation of hPSC-derived articular chondrocytes for modeling diseases of the joint and developing cell therapy approaches to treat them.
Collapse
|
20
|
Fu Y, Maye P. Derivation of chondrocyte and osteoblast reporter mouse embryonic stem cell lines. Genesis 2015; 53:294-8. [PMID: 25809957 DOI: 10.1002/dvg.22849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/11/2022]
Abstract
With the establishment of methods that provide evidence for the generation of chondrocyte and osteoblast cell types from ESCs, there is a need for reagents that will enable their further characterization. Here we report on the derivation of chondrocyte and osteoblast reporter ESCs from previously generated and characterized transgenic mouse lines, Collagen type 2 alpha 1(Col2a1)-ECFP, Bone Sialoprotein (BSP)-Topaz, and BSP-Topaz/Dentin Matrix Protein 1 (DMP1)-Cherry dual reporter mice. Col2a1-ECFP is highly expressed in chondrocytes, while BSP-Topaz and DMP1-Cherry are highly expressed in osteoblasts and osteocytes, respectively. These new skeletal reporter mouse ESC lines will serve as valuable reagents to investigate the functionality of ESC derived chondrocyte and osteoblast cell types.
Collapse
Affiliation(s)
- Yu Fu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Connecticut
| | | |
Collapse
|
21
|
Long-term expandable SOX9+ chondrogenic ectomesenchymal cells from human pluripotent stem cells. Stem Cell Reports 2015; 4:712-26. [PMID: 25818812 PMCID: PMC4400647 DOI: 10.1016/j.stemcr.2015.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Here we report the successful generation and long-term expansion of SOX9-expressing CD271+PDGFRα+CD73+ chondrogenic ectomesenchymal cells from the PAX3/SOX10/FOXD3-expressing MIXL1−CD271hiPDGFRαloCD73− neural crest-like progeny of human pluripotent stem cells in a chemically defined medium supplemented with Nodal/Activin/transforming growth factorβ (TGFβ) inhibitor and fibroblast growth factor (FGF). When “primed” with TGFβ, such cells efficiently formed translucent cartilage particles, which were completely mineralized in 12 weeks in immunocompromized mice. The ectomesenchymal cells were expandable without loss of chondrogenic potential for at least 16 passages. They maintained normal karyotype for at least 10 passages and expressed genes representing embryonic progenitors (SOX4/12, LIN28A/B), cranial mesenchyme (ALX1/3/4), and chondroprogenitors (SOX9, COL2A1) of neural crest origin (SOX8/9, NGFR, NES). Ectomesenchyme is a source of many craniofacial bone and cartilage structures. The method we describe for obtaining a large quantity of human ectomesenchymal cells will help to model craniofacial disorders in vitro and potentially provide cells for the repair of craniofacial damage. Generation of SOX9+ chondrogenic ectomesenchymal cells from hPSCs Long-term expandability of the cells without loss of in vitro chondrogenicity Need for TGFβ priming for cartilage particle formation In vivo ossification capacity of cartilage developed in vitro
Collapse
|
22
|
Zandi M, Muzaffar M, Shah SM, Kaushik R, Singh MK, Palta P, Singla SK, Manik RS, Chauhan MS. WNT3A signalling pathway in buffalo (Bubalus bubalis) embryonic stem cells. Reprod Fertil Dev 2014; 26:551-61. [PMID: 23656691 DOI: 10.1071/rd13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/19/2013] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the transcriptional profile and role of WNT3A signalling in maintaining buffalo embryonic stem (ES) cells in a pluripotent state and in the induction of their differentiation. ES cells were derived from embryos produced by in vitro fertilisation (iESC), parthenogenesis (pESC) and hand-made cloning (cESC). The expression of WNT3A, its receptors and intermediate signalling pathways were found to be conserved in ES cells derived from the three different sources. WNT3A was expressed in ES cells but not in embryoid bodies derived from iESC or in buffalo fetal fibroblast cells. It was revealed by real-time polymerase chain reaction analysis that following supplementation of culture medium with WNT3A (100, 200 or 400ngmL(-1)) a significant increase (P<0.05) was observed in the expression level of β-CATENIN, which indicated the activation of the canonical WNT pathway. WNT3A, in combination with exogenous fibroblast growth factor-2 and leukaemia inhibitory factor, induced proliferation of undifferentiated ES cells. Differentiation studies showed that WNT3A caused formation of scaffold-like structures and inhibition of differentiation into neuron-like cells. In conclusion, the WNT3A signalling pathway is necessary both for maintaining undifferentiated buffalo ES cells as well as for directing their differentiation.
Collapse
Affiliation(s)
- Mohammad Zandi
- Department of Animal and Poultry Science and Fisheries, Agricultural Institute, Iranian Research Organisation for Science and Technology, Tehran 33535111, Iran
| | - Musharifa Muzaffar
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Syed Mohmad Shah
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Ramakant Kaushik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
23
|
Zhao J, Li S, Trilok S, Tanaka M, Jokubaitis-Jameson V, Wang B, Niwa H, Nakayama N. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells. Development 2014; 141:3848-58. [PMID: 25294938 PMCID: PMC7055718 DOI: 10.1242/dev.105981] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 08/16/2014] [Indexed: 02/03/2023]
Abstract
Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ.
Collapse
Affiliation(s)
- Jiangang Zhao
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA
| | - Songhui Li
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Suprita Trilok
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA
| | - Makoto Tanaka
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | | | - Bei Wang
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Hitoshi Niwa
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Naoki Nakayama
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Hughes JN, Wong CKE, Lau KX, Rathjen PD, Rathjen J. Regulation of pluripotent cell differentiation by a small molecule, staurosporine. Differentiation 2014; 87:101-10. [PMID: 24582574 DOI: 10.1016/j.diff.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Abstract
Research in the embryo and in culture has resulted in a sophisticated understanding of many regulators of pluripotent cell differentiation. As a consequence, protocols for the differentiation of pluripotent cells generally rely on a combination of exogenous growth factors and endogenous signalling. Little consideration has been given to manipulating other pathways to achieve pluripotent cell differentiation. The integrity of cell:cell contacts has been shown to influence lineage choice during pluripotent cell differentiation, with disruption of cell:cell contacts promoting mesendoderm formation and maintenance of cell:cell contacts resulting in the preferential formation of neurectoderm. Staurosporine is a broad spectrum inhibitor of serine/threonine kinases which has several effects on cell function, including interruption of cell:cell contacts, decreasing focal contact size, inducing epithelial to mesenchyme transition (EMT) and promoting cell differentiation. The possibility that staurosporine could influence lineage choice from pluripotent cells in culture was investigated. The addition of staurosporine to differentiating mouse EPL resulted in preferential formation of mesendoderm and mesoderm populations, and inhibited the formation of neurectoderm. Addition of staurosporine to human ES cells similarly induced primitive streak marker gene expression. These data demonstrate the ability of staurosporine to influence lineage choice during pluripotent cell differentiation and to mimic the effect of disrupting cell:cell contacts. Staurosporine induced mesendoderm in the absence of known inducers of formation, such as serum and BMP4. Staurosporine induced the expression of mesendoderm markers, including markers that were not induced by BMP4, suggesting it acted as a broad spectrum inducer of molecular gastrulation. This approach has identified a small molecule regulator of lineage choice with potential applications in the commercial development of ES cell derivatives, specifically as a method for forming mesendoderm progenitors or as a culture adjunct to prevent the formation of ectoderm progenitors during pluripotent cell differentiation.
Collapse
Affiliation(s)
- James Nicholas Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chong Kum Edwin Wong
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; Australian Stem Cell Centre, Monash University, Clayton, 3800 Victoria, Australia
| | - Kevin Xiuwen Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
25
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
26
|
Craft AM, Ahmed N, Rockel JS, Baht GS, Alman BA, Kandel RA, Grigoriadis AE, Keller GM. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 2013; 140:2597-610. [PMID: 23715552 DOI: 10.1242/dev.087890] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoarthritis primarily affects the articular cartilage of synovial joints. Cell and/or cartilage replacement is a promising therapy, provided there is access to appropriate tissue and sufficient numbers of articular chondrocytes. Embryonic stem cells (ESCs) represent a potentially unlimited source of chondrocytes and tissues as they can generate a broad spectrum of cell types under appropriate conditions in vitro. Here, we demonstrate that mouse ESC-derived chondrogenic mesoderm arises from a Flk-1(-)/Pdgfrα(+) (F(-)P(+)) population that emerges in a defined temporal pattern following the development of an early cardiogenic F(-)P(+) population. Specification of the late-arising F(-)P(+) population with BMP4 generated a highly enriched population of chondrocytes expressing genes associated with growth plate hypertrophic chondrocytes. By contrast, specification with Gdf5, together with inhibition of hedgehog and BMP signaling pathways, generated a population of non-hypertrophic chondrocytes that displayed properties of articular chondrocytes. The two chondrocyte populations retained their hypertrophic and non-hypertrophic properties when induced to generate spatially organized proteoglycan-rich cartilage-like tissue in vitro. Transplantation of either type of chondrocyte, or tissue generated from them, into immunodeficient recipients resulted in the development of cartilage tissue and bone within an 8-week period. Significant ossification was not observed when the tissue was transplanted into osteoblast-depleted mice or into diffusion chambers that prevent vascularization. Thus, through stage-specific manipulation of appropriate signaling pathways it is possible to efficiently and reproducibly derive hypertrophic and non-hypertrophic chondrocyte populations from mouse ESCs that are able to generate distinct cartilage-like tissue in vitro and maintain a cartilage tissue phenotype within an avascular and/or osteoblast-free niche in vivo.
Collapse
Affiliation(s)
- April M Craft
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2012; 2:455. [PMID: 22701159 PMCID: PMC3374161 DOI: 10.1038/srep00455] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 05/22/2012] [Indexed: 12/22/2022] Open
Abstract
Directed specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDR−PDGFRα+ progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFβ signaling controller. Isolated (GFP+)KDR−PDGFRα+ mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFβ and BMP. Under these conditions, the cells showed robust chondrogenic activity in micromass culture, and generated a hyaline-like translucent cartilage particle in serum-free medium. In contrast, both STRO1+ mesenchymal stem/stromal cells from adult human marrow and mesenchymal cells spontaneously arising from hPS cells showed a relatively weaker chondrogenic response in vitro, and formed more of the fibrotic cartilage particles. Thus, hPS cell-derived KDR−PDGFRα+ paraxial mesoderm-like cells have potential in engineered cartilage formation and cartilage repair.
Collapse
|
28
|
Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors. Blood 2012; 119:e86-95. [PMID: 22262767 DOI: 10.1182/blood-2011-08-372334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The low incidence of CFU-F significantly complicates the isolation of homogeneous populations of mouse bone marrow stromal cells (BMSCs), a common problem being contamination with hematopoietic cells. Taking advantage of burgeoning evidence demonstrating the perivascular location of stromal cell stem/progenitors, we hypothesized that a potential reason for the low yield of mouse BMSCs is the flushing of the marrow used to remove single-cell suspensions and the consequent destruction of the marrow vasculature, which may adversely affect recovery of BMSCs physically associated with the abluminal surface of blood vessels. Herein, we describe a simple methodology based on preparation and enzymatic disaggregation of intact marrow plugs, which yields distinct populations of both stromal and endothelial cells. The recovery of CFU-F obtained by pooling the product of each digestion (1631.8 + 199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32 + 1.9) by at least 2 orders of magnitude (P < .001; N = 8) with an accompanying 113.95-fold enrichment of CFU-F frequency when plated at low oxygen (5%). Purified BMSC populations devoid of hematopoietic contamination are readily obtained by FACS at P0 and from freshly prepared single-cell suspensions. Furthermore, this population demonstrates robust multilineage differentiation using standard in vivo and in vitro bioassays.
Collapse
|
29
|
Waese EY, Stanford WL. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res 2011; 6:34-49. [DOI: 10.1016/j.scr.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
|