1
|
Schäffers OJM, Gribnau J, van Rijn BB, Bunnik EM. Ethical considerations for advancing research using organoid models derived from the placenta. Hum Reprod Update 2025:dmaf007. [PMID: 40096642 DOI: 10.1093/humupd/dmaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND The advent of organoid culture systems has revolutionized our ability to model and study complex tissues in vitro. The placenta is one of the last human organs to have a functional organoid model developed: trophoblast organoids. These 3-dimensional structures, derived from placental tissue, offer researchers a valuable tool for studying previously inaccessible processes that occur within the womb and play a significant role in determining the health of the offspring. While primarily used for research, trophoblast organoids hold promise for clinical applications, including prenatal diagnostics and therapeutic interventions, both of which may have commercial interest. However, to ensure that research with organoid models derived from the placenta is conducted responsibly, the relevant ethics of these models need to be addressed. OBJECTIVE AND RATIONALE Ethical considerations related to organoid models derived from the placenta, such as trophoblast organoids are important but remain unexplored in literature. Therefore, the goal of this review is to explore the ethical considerations related to trophoblast organoids. SEARCH METHODS Since there is no ethical research specifically addressing organoid models of the placenta to date, we have based our findings on discussions related to other organoid models and research involving fetal tissue, placenta, or umbilical cord blood. We employed a scoping review method to search PubMed, Embase, Medline (all), Bioethics Research Library, and Google Scholar for research articles, books, or other correspondence on ethical issues regarding these indicated topics, with no date limits. OUTCOMES Ethical considerations related to trophoblast organoids can be divided into three distinct categories. First, there is a need to assess the moral value of trophoblast organoids, including their potential relational and symbolic dimensions. Second, it is important to understand ethical issues associated with ownership and commercialization of trophoblast organoids. Last, there are considerations related to appropriate informed consent procedures. It is worth noting that these three categories are interconnected, with the second and third being largely dependent on the moral value attributed to trophoblast organoids. Future research should assess the perspectives of various stakeholders, including parents who may donate placental tissue for organoid research. WIDER IMPLICATIONS This review offers valuable insights into the ethical landscape surrounding the derivation of tissues or products from pregnancies, and their further application, highlighting areas that require attention and discussion within both the scientific community and the broader society. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Olivier J M Schäffers
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynaecology, Maxima Medical Center, Veldhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
4
|
The Impact of Epigenetic Signatures on Amniotic Fluid Stem Cell Fate. Stem Cells Int 2018; 2018:4274518. [PMID: 30627172 PMCID: PMC6304862 DOI: 10.1155/2018/4274518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play a significant role in determining the fate of stem cells and in directing the differentiation into multiple lineages. Current evidence indicates that mechanisms involved in chromatin regulation are essential for maintaining stable cell identities. There is a tight correlation among DNA methylation, histone modifications, and small noncoding RNAs during the epigenetic control of stem cells' differentiation; however, to date, the precise mechanism is still not clear. In this context, amniotic fluid stem cells (AFSCs) represent an interesting model due to their unique features and the possible advantages of their use in regenerative medicine. Recent studies have elucidated epigenetic profiles involved in AFSCs' lineage commitment and differentiation. In order to use these cells effectively for therapeutic purposes, it is necessary to understand the basis of multiple-lineage potential and elaborate in detail how cell fate decisions are made and memorized. The present review summarizes the most recent findings on epigenetic mechanisms of AFSCs with a focus on DNA methylation, histone modifications, and microRNAs (miRNAs) and addresses how their unique signatures contribute to lineage-specific differentiation.
Collapse
|
5
|
Graffmann N, Ncube A, Wruck W, Adjaye J. Cell fate decisions of human iPSC-derived bipotential hepatoblasts depend on cell density. PLoS One 2018; 13:e0200416. [PMID: 29990377 PMCID: PMC6039024 DOI: 10.1371/journal.pone.0200416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
During embryonic development bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes- the two main cell types within the liver. Cell fate decision depends on elaborate interactions between distinct signalling pathways, namely Notch, WNT, TGFβ, and Hedgehog. Several in vitro protocols have been established to differentiate human pluripotent stem cells into either hepatocyte or cholangiocyte like cells (HLC/CLC) to enable disease modelling or drug screening. During HLC differentiation we observed the occurrence of epithelial cells with a phenotype divergent from the typical hepatic polygonal shape- we refer to these as endoderm derived epithelial cells (EDECs). These cells do not express the mature hepatocyte marker ALB or the progenitor marker AFP. However they express the cholangiocyte markers SOX9, OPN, CFTR as well as HNF4α, CK18 and CK19. Interestingly, they express both E Cadherin and Vimentin, two markers that are mutually exclusive, except for cancer cells. EDECs grow spontaneously under low density cell culture conditions and their occurrence was unaffected by interfering with the above mentioned signalling pathways.
Collapse
Affiliation(s)
- Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
6
|
Liang N, Trujillo CA, Negraes PD, Muotri AR, Lameu C, Ulrich H. Stem cell contributions to neurological disease modeling and personalized medicine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:54-62. [PMID: 28576415 DOI: 10.1016/j.pnpbp.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) represent a revolutionary tool for disease modeling and drug discovery. The generation of tissue-relevant cell types exhibiting a patient's genetic and molecular background offers the ability to develop individual and effective therapies. In this review, we present some major achievements in the neuroscience field using iPSCs and discuss promising perspectives in personalized medicine. In addition to disease modeling, the understanding of the cellular and molecular basis of neurological disorders is explored, including the discovery of new targets and potential drugs. Ultimately, we highlight how iPSC technology, together with genome editing approaches, may bring a deep impact on pre-clinical trials by reducing costs and increasing the success of treatments in a personalized fashion.
Collapse
Affiliation(s)
- Nicholas Liang
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Cleber A Trujillo
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Priscilla D Negraes
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Stem Cell Program, La Jolla, CA 92093, USA
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Osteogenic Differentiation of Human Amniotic Fluid Mesenchymal Stem Cells Is Determined by Epigenetic Changes. Stem Cells Int 2016; 2016:6465307. [PMID: 27818691 PMCID: PMC5080506 DOI: 10.1155/2016/6465307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells (AF-MSCs) has been widely studied in vitro and in vivo as a potential tool for regenerative medicine and tissue engineering. While most of the studies analyze changes in transcriptional profile during differentiation to date there is not much information regarding epigenetic changes in AF-MSCs during differentiation. The aim of our study was to evaluate epigenetic changes during osteogenic differentiation of AF-MS cells. Isolated AF-MSCs were characterized morphologically and osteogenic differentiation was confirmed by cell staining and determining expression of alkaline phosphatase and osteopontin by RT-qPCR. Variation in gene expression levels of pluripotency markers and specific microRNAs were also evaluated. Analysis of epigenetic changes revealed that levels of chromatin modifying enzymes such as Polycomb repressive complex 2 (PRC2) proteins (EZH2 and SUZ12), DNMT1, HDAC1, and HDAC2 were reduced after osteogenic differentiation of AF-MSCs. We demonstrated that the level of specific histone markers keeping active state of chromatin (H3K4me3, H3K9Ac, and others) increased and markers of repressed state of chromatin (H3K27me3) decreased. Our results show that osteogenic differentiation of AF-MSCs is conducted by various epigenetic alterations resulting in global chromatin remodeling and provide insights for further epigenetic investigations in human AF-MSCs.
Collapse
|