1
|
Farahat DS, Dang M, El-Fallal A, Badr N, Ma PX. Poly(N-isopropylacrylamide) based smart nanofibrous scaffolds for use as on-demand delivery systems for oral and dental tissue regeneration. J Biomed Mater Res A 2024; 112:852-865. [PMID: 38192179 DOI: 10.1002/jbm.a.37664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Stimuli-responsive domains capable of releasing loaded molecules, "on-demand," have garnered increasing attention due to their enhanced delivery, precision targeting, and decreased adverse effects. The development of an on-demand delivery system that can be easily triggered by dental clinicians might have major roles in dental and oral tissue engineering. A series of random graft poly(NIPAm-co-HEMA-Lactate) copolymers were synthesized using 95:5, 85:5, 60:40, and 40:60 ratios of thermosensitive NIPAm and HEMA-poly lactate respectively then electrospun to produce nanofibrous scaffolds loaded with bovine serum albumin (BSA). Cumulative BSA release was assessed at 25C and 37°C. To appraise the use of scaffolds as on-demand delivery systems, they were subjected to thermal changes in the form cooling and warming cycles during which BSA release was monitored. To confirm the triggered releasing ability of the synthesized scaffolds, the copolymer made with 60% NIPAm was selected, based on the results of the release tests, and loaded with bone morphogenetic protein-2 (BMP-2). The loaded scaffolds were placed with mesenchymal-like stem cells (iMSCs) derived from induced pluripotent stem cells (iPSCs), and subjected to temperature alterations. Then, the osteogenic differentiation of iMSCs, which might have resulted from the released protein, was evaluated after 10 days by analyzing runt-related transcription factor 2 (RUNX-2) osteogenic gene expression by the cells using real-time quantitative polymerase chain reaction (qRT-PCR). BSA release profiles showed a burst release at the beginning followed by a more linear pattern at 25°C, and a much slower release at 37°C. The release also decreased when the PNIPAm content decreased in the scaffolds. Thermal triggering led to a step-like release pattern in which the highest release was reported 30 min through the warming cycles. The iMSCs cultivated with scaffolds loaded with BMP-2 and exposed to temperature alteration showed significantly higher RUNX-2 gene expression than cells in the other experimental groups. The synthesized scaffolds are thermo-responsive and could be triggered to deliver biological biomolecules to be used in oral and dental tissue engineering. Thermal stimuli could be simulated by dental clinicians using simple means of cold therapy, for example, cold packs in intraoral accessible sites for specified times.
Collapse
Affiliation(s)
- Dina S Farahat
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming Dang
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Abeer El-Fallal
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Department of Dental Biomaterials, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| | - Nadia Badr
- Department of Dental Biomaterials, Faculty of Dentistry, October 6 University, Cairo, Egypt
- Department of Dental Biomaterials, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Payushina OV, Tsomartova DA, Chereshneva YV, Ivanova MY, Lomanovskaya TA, Pavlova MS, Kuznetsov SL. Experimental Transplantation of Mesenchymal Stromal Cells as an Approach to Studying Their Differentiation In Vivo (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Chang B, Ma C, Feng J, Svoboda KKH, Liu X. Dental Pulp Stem Cell Polarization: Effects of Biophysical Factors. J Dent Res 2021; 100:1153-1160. [PMID: 34328032 DOI: 10.1177/00220345211028850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have the potential to polarize, differentiate, and form tubular dentin under certain conditions. However, the factors that initiate and regulate DPSC polarization and its underlying mechanism remain unclear. Identification of the factors that control DPSC polarization is a prerequisite for tubular dentin regeneration. We recently developed a unique bioinspired 3-dimensional platform that is capable of deciphering the factors that initiate and modulate cell polarization. The bioinspired platform has a simple background and confines a single cell on each microisland of the platform; therefore, it is an effective tool to study DPSC polarization at the single-cell level. In this work, we explored the effects of biophysical factors (surface topography, microisland area, geometry, tubular size, and gravity) on single DPSC polarization. Our results demonstrated that nanofibrous architecture, microisland area, tubular size, and gravity participated in regulating DPSC polarization by influencing the formation of the DPSC process and relocation of the Golgi apparatus. Among these factors, nanofibrous architecture, tubular size, and appropriate microisland area were indispensable for initiating DPSC polarization, whereas gravity served as an auxiliary factor to the process of DPSC polarization. Meanwhile, microisland geometry had a limited effect on DPSC polarization. Collectively, this work provides information on DPSC polarization and paves the way for the development of new biomaterials for tubular dentin regeneration.
Collapse
Affiliation(s)
- B Chang
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - C Ma
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - J Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - K K H Svoboda
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - X Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, USA
| |
Collapse
|
4
|
Neves JG, Marcato PD, de Paula E Silva FWG, Mantovani CPT, Prado HS, Aires CP, Massaro TNC, Borsato MC. Synthesis and characterization of an experimental primer containing chitosan nanoparticles - Effect on the inactivation of metalloproteinases, antimicrobial activity and adhesive strength. Arch Oral Biol 2021; 127:105148. [PMID: 34022546 DOI: 10.1016/j.archoralbio.2021.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study was to synthesize and characterize an experimental primer containing cationic lipid nanoparticles (NPL-chitosan) and to evaluate its properties. DESIGN The NPL-chitosan were synthesized by emulsion and sonication method. The experimental primers were applied in dentin surface of fifty human molars. The experimental groups were: 1) application of commercial primer; 2) Primer containing 2% of Chlorhexidine (CHX) 3); Primer with 2% NPL-chitosan 4); Primer with 0.6 % of NPL-chitosan 5); Primer with 0.4 % of NPL-chitosan. A composite resin plateau was used for the analysis, where sections were made for making the dentin beams. The effect of experimental primer with cationic nanoparticles in the inhibition of matrix metalloproteinase (MMP) activity was carrying out by in situ zymography. For the Resin-Dentin Adhesive Strength and in situ Zymography analysis, was used the One-way analysis of variance (ANOVA) with significance level of 95 %. RESULTS Spherical NPL-chitosan presented size below 220 nm, polydispersity index of 0.179 and zeta potential positive and was stable over 75 days. These nanoparticles showed antibacterial activity agsainst S. mutans with MIC of the 0.4 % and MBC of 0.67 %. In the Microtensile Strength, no statistical difference was observed between the experimental groups (p = 0.9054). The in situ zymography assay showed that the group with 2% of NPL-chitosan presented higher inactivation activity of MMPs compared to the other groups (p < 0.05). CONCLUSION The experimental primer containing NPL-chitosan has antimicrobial activity, does not alter the adhesive resistance and inactivates MMPs present in dentin.
Collapse
Affiliation(s)
- J G Neves
- University of Campinas (Unicamp), Piracicaba Dental School, Department of Restorative Dentistry- Dental Materials Division, Av. Limeira, 901 - Areião, Piracicaba, 13414-903, Brazil.
| | - P D Marcato
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - F W G de Paula E Silva
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - C P T Mantovani
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - H S Prado
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Restorative Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - C P Aires
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - T N C Massaro
- University of São Paulo (USP), School of Pharmaceutical Sciences, Ribeirão Preto Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| | - M C Borsato
- University of São Paulo (USP), School of Dentistry, Ribeirão Preto, Department of Pediatric Dentistry, Av. Café s/n., Ribeirão Preto, SP, Cep 14040-904, Brazil
| |
Collapse
|
5
|
Huang G, Xu L, Wu J, Wang S, Dong Y. Gelatin/bioactive glass composite scaffold for promoting the migration and odontogenic differentiation of bone marrow mesenchymal stem cells. POLYMER TESTING 2021; 93:106915. [DOI: 10.1016/j.polymertesting.2020.106915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
7
|
Lim JW, Kim HJ, Kim Y, Shin SG, Cho S, Jung WG, Jeong JH. An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding. Polymers (Basel) 2020; 12:polym12030583. [PMID: 32150989 PMCID: PMC7182895 DOI: 10.3390/polym12030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 °C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators.
Collapse
Affiliation(s)
- Jun Woo Lim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (J.W.L.); (S.G.S.); (S.C.)
| | - Hee-jin Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (J.W.L.); (S.G.S.); (S.C.)
| | - Yechan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | - Sung Gyu Shin
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (J.W.L.); (S.G.S.); (S.C.)
| | - Sungwoo Cho
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (J.W.L.); (S.G.S.); (S.C.)
| | - Woong Gyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (J.W.L.); (S.G.S.); (S.C.)
- Correspondence: ; Tel.: +82-2-828-7043
| |
Collapse
|
8
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
9
|
Tawfik Tadros MS, El-Baz MAES, Khairy MAEK. Dental stem cells in tooth repair: A systematic review. F1000Res 2019; 8:1955. [DOI: 10.12688/f1000research.21058.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Dental stem cells (DSCs) are self-renewable teeth cells, which help maintain or develop oral tissues. These cells can differentiate into odontoblasts, adipocytes, cementoblast-like cells, osteoblasts, or chondroblasts and form dentin/pulp. This systematic review aimed to summarize the current evidence regarding the role of these cells in dental pulp regeneration. Methods: We searched the following databases: PubMed, Cochrane Library, MEDLINE, SCOPUS, ScienceDirect, and Web of Science using relevant keywords. Case reports and non-English studies were excluded. We included all studies using dental stem cells in tooth repair whether in vivo or in vitro studies. Results: Dental pulp stem cell (DPSCs) is the most common type of cell. Most stem cells are incorporated and implanted into the root canals in different scaffold forms. Some experiments combine growth factors such as TDM, BMP, and G-CSF with stem cells to improve the results. The transplant of DPSCs and stem cells from apical papilla (SCAPs) was found to be associated with pulp-like recovery, efficient revascularization, enhanced chondrogenesis, and direct vascular supply of regenerated tissue. Conclusion: The current evidence suggests that DPSCs, stem cells from human exfoliated deciduous teeth, and SCAPs are capable of providing sufficient pulp regeneration and vascularization. For the development of the dental repair field, it is important to screen for more effective stem cells, dentine releasing therapies, good biomimicry scaffolds, and good histological markers.
Collapse
|
10
|
Imura T, Otsuka T, Kawahara Y, Yuge L. "Microgravity" as a unique and useful stem cell culture environment for cell-based therapy. Regen Ther 2019; 12:2-5. [PMID: 31890760 PMCID: PMC6933149 DOI: 10.1016/j.reth.2019.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Cell-based therapy using mesenchymal stem cells or pluripotent stem cells such as induced pluripotent stem cells has seen dramatic progress in recent years. Part of cell-based therapy are already covered by public medical insurance. Recently, researchers have attempted to improve therapeutic effects toward various diseases by cell transplantation. Culture environment is considered to be one of the most important factors affecting therapeutic effects, in particular factors such as physical stimuli, because cells have the potential to adapt to their surrounding environment. In this review, we provide an overview of the research on the effects of gravity alteration on cell kinetics such as proliferation or differentiation and on potential therapeutic effects, and we also summarize the remarkable possibilities of the use of microgravity culture in cell-based therapy for various diseases.
Collapse
Affiliation(s)
- Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
11
|
The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018; 7:249-268. [PMID: 30267369 PMCID: PMC6304177 DOI: 10.1007/s40204-018-0100-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Infection of the dental pulp will result in inflammation and eventually tissue necrosis which is treated conventionally by pulpectomy and root canal treatment. Advances in regenerative medicine and tissue engineering along with the introduction of new sources of stem cells have led to the possibility of pulp tissue regeneration. This systematic review analyzes animal studies published since 2010 to determine the ability of stem cell therapy to regenerate the dentine-pulp complex (DPC) and the success of clinical protocols. In vitro and human clinical studies are excluded and only the experimental studies on animal models were included. Dental pulp stem cells constitute the most commonly used cell type. The majority of stem cells are incorporated into various types of scaffold and implanted into root canals. Some of the studies combine growth factors with stem cells in an attempt to improve the outcome. Studies of ectopic transplantation using small animal models are simple and non-systematic evaluation techniques. Stem cell concentrations have not been so far reported; therefore, the translational value of such animal studies remains questionable. Though all types of stem cells appear capable of regenerating a dentine-pulp complex, still several factors have been considered in selecting the cell type. Co-administrative factors are essential for inducing the systemic migration of stem cells, and their vascularization and differentiation into odontoblast-like cells. Scaffolds provide a biodegradable structure able to control the release of growth factors. To identify problems and reduce costs, novel strategies should be initially tested in subcutaneous or renal capsule implantation followed by root canal models to confirm results.
Collapse
|
12
|
Ingber DE. From mechanobiology to developmentally inspired engineering. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170323. [PMID: 30249774 PMCID: PMC6158204 DOI: 10.1098/rstb.2017.0323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
The field of mechanobiology emerged based on the recognition of the central role that physical forces play in development and physiology. In this article, which is based on a lecture I presented at the 2018 Royal Society meeting on Mechanics of Development, I review work from my laboratory carried out over the 40 years which helped to birth this field. I will also describe how we are leveraging the fundamental design principles that govern mechanoregulation to develop new experimental tools and organ-engineering approaches as well as novel mechanotherapeutics.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Wilson KR, Kang IH, Baliga U, Xiong Y, Chatterjee S, Moore E, Parthiban B, Thyagarajan K, Borke JL, Mehrotra S, Kirkwood KL, LaRue AC, Ogawa M, Mehrotra M. Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells. Sci Rep 2018; 8:8026. [PMID: 29795229 PMCID: PMC5966408 DOI: 10.1038/s41598-018-26258-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
While earlier studies have suggested that cells positive for hematopoietic markers can be found in dental tissues, it has yet to be confirmed. To conclusively demonstrate this, we utilized a unique transgenic model in which all hematopoietic cells are green fluorescent protein+ (GFP+). Pulp, periodontal ligament (PDL) and alveolar bone (AvB) cell culture analysis demonstrated numerous GFP+ cells, which were also CD45+ (indicating hematopoietic origin) and co-expressed markers of cellular populations in pulp (dentin matrix protein-1, dentin sialophosphoprotein, alpha smooth muscle actin [ASMA], osteocalcin), in PDL (periostin, ASMA, vimentin, osteocalcin) and in AvB (Runx-2, bone sialoprotein, alkaline phosphatase, osteocalcin). Transplantation of clonal population derived from a single GFP+ hematopoietic stem cell (HSC), into lethally irradiated recipient mice, demonstrated numerous GFP+ cells within dental tissues of recipient mice, which also stained for markers of cell populations in pulp, PDL and AvB (used above), indicating that transplanted HSCs can differentiate into cells in dental tissues. These hematopoietic-derived cells deposited collagen and can differentiate in osteogenic media, indicating that they are functional. Thus, our studies demonstrate, for the first time, that cells in pulp, PDL and AvB can have a hematopoietic origin, thereby opening new avenues of therapy for dental diseases and injuries.
Collapse
Affiliation(s)
- Katie R Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Uday Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Emily Moore
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Beneta Parthiban
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - James L Borke
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, The State University of New York, Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14260, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H Johnson VA Medical Center, Charleston, SC, 29425, USA
| | - Makio Ogawa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|