1
|
Li Y, Wu W, Yao J, Wang S, Wu X, Yan J. Patient-Derived Tumor Organoids: A Platform for Precision Therapy of Colorectal Cancer. Cell Transplant 2025; 34:9636897251314645. [PMID: 39953837 PMCID: PMC11829288 DOI: 10.1177/09636897251314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025] Open
Abstract
Colorectal cancer (CRC) represents a significant cause of cancer-related mortality on a global scale. It is a highly heterogeneous cancer, and the response of patients to homogeneous drug therapy varies considerably. Patient-derived tumor organoids (PDTOs) represent an optimal preclinical model for cancer research. A substantial body of evidence from numerous studies has demonstrated that PDTOs can accurately predict a patient's response to different drug treatments. This article outlines the utilization of PDTOs in the management of CRC across a range of therapeutic contexts, including postoperative adjuvant chemotherapy, palliative chemotherapy, neoadjuvant chemoradiotherapy, targeted therapy, third-line and follow-up treatment, and the treatment of elderly patients. This article delineates the manner in which PDTOs can inform therapeutic decisions at all stages of CRC, thereby assisting clinicians in selecting treatment options and reducing the risk of toxicity and resistance associated with clinical drugs. Moreover, it identifies shortcomings of existing PDTOs, including the absence of consistent criteria for assessing drug sensitivity tests, the lack of vascular and tumor microenvironment models, and the high cost of the technology. In conclusion, despite their inherent limitations, PDTOs offer several advantages, including rapid culture, a high success rate, high consistency, and high throughput, which can be employed as a personalized treatment option for CRC. The use of PDTOs in CRC allows for the prediction of responses to different treatment modalities at various stages of disease progression. This has the potential to reduce adverse drug reactions and the emergence of resistance associated with clinical drugs, facilitate evidence-based clinical decision-making, and guide CRC patients in the selection of personalized medications, thereby advancing the individualized treatment of CRC.
Collapse
Affiliation(s)
- Yiran Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wei Wu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jiaxin Yao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Suidong Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiufeng Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
2
|
Deng J, Qin JH, Li X, Tao D, Feng Y. Establishment and drug resistance characterization of paired organoids using human primary colorectal cancer and matched tumor deposit specimens. Hum Cell 2024; 38:13. [PMID: 39495391 PMCID: PMC11534897 DOI: 10.1007/s13577-024-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
Tumor deposits (TDs) represent a specific form tumor metastasis observed in colorectal cancer (CRC). The lack of successfully established cell lines for TDs, as well as the molecular mechanisms by which TDs occur remain largely unknown. Here, we established paired CRC organoids, including a human primary cancer organoid and its TD organoid, from a 46-year-old male patient with CRC. Further analysis revealed that, compared with primary tumor-derived cells, TD-derived cells exhibited enhanced proliferative, invasive and metastatic capabilities, and increased expression of stemness-related proteins. Furthermore, the present findings also demonstrated that TD-derived cells were more resistant to oxaliplatin or 5-FU. Transcriptomic profiling and qPCR revealed that TD-derived cells exhibited more alterations in fatty acid metabolism signaling and enhanced lipid synthesis ability compared to primary tumor-derived cells. Inhibition of lipid synthesis markedly decreased resistance to oxaliplatin in TD-derived cells. Taken together, the paired organoids established using CRC primary tumor and its TD specimens will provide valuable tools to study tumorigenicity, metastasis and chemoresistance in CRC. Notably, these models will provide novel insights to study tumor heterogeneity and lipid metabolism in CRC.
Collapse
Affiliation(s)
- Jiao Deng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jerry H Qin
- Wuhan Britain-China Senior High School, Wuhan, 430030, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongdong Feng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
3
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
4
|
Liu YC, Ansaryan S, Tan J, Broguiere N, Lorenzo-Martín LF, Homicsko K, Coukos G, Lütolf MP, Altug H. Nanoplasmonic Single-Tumoroid Microarray for Real-Time Secretion Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401539. [PMID: 38924371 PMCID: PMC11425908 DOI: 10.1002/advs.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/30/2024] [Indexed: 06/28/2024]
Abstract
Organoid tumor models have emerged as a powerful tool in the fields of biology and medicine as such 3D structures grown from tumor cells recapitulate better tumor characteristics, making these tumoroids unique for personalized cancer research. Assessment of their functional behavior, particularly protein secretion, is of significant importance to provide comprehensive insights. Here, a label-free spectroscopic imaging platform is presented with advanced integrated optofluidic nanoplasmonic biosensor that enables real-time secretion analysis from single tumoroids. A novel two-layer microwell design isolates tumoroids, preventing signal interference, and the microarray configuration allows concurrent analysis of multiple tumoroids. The dual imaging capability combining time-lapse plasmonic spectroscopy and bright-field microscopy facilitates simultaneous observation of secretion dynamics, motility, and morphology. The integrated biosensor is demonstrated with colorectal tumoroids derived from both cell lines and patient samples to investigate their vascular endothelial growth factor A (VEGF-A) secretion, growth, and movement under various conditions, including normoxia, hypoxia, and drug treatment. This platform, by offering a label-free approach with nanophotonics to monitor tumoroids, can pave the way for new applications in fundamental biological studies, drug screening, and the development of therapies.
Collapse
Affiliation(s)
- Yen-Cheng Liu
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Saeid Ansaryan
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jiayi Tan
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Luis Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, Lausanne, 1005, Switzerland
- Ludwig Institute for Cancer Research, Ludwig Lausanne Branch, Chem. des Boveresses 155, Epalinges, 1066, Switzerland
- Swiss Cancer Center Leman, Rue du Bugnon 25A, Lausanne, 1011, Switzerland
- Agora Translational Research Center, Rue du Bugnon 25A, Lausanne, 1011, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, Lausanne, 1005, Switzerland
- Ludwig Institute for Cancer Research, Ludwig Lausanne Branch, Chem. des Boveresses 155, Epalinges, 1066, Switzerland
- Swiss Cancer Center Leman, Rue du Bugnon 25A, Lausanne, 1011, Switzerland
- Agora Translational Research Center, Rue du Bugnon 25A, Lausanne, 1011, Switzerland
| | - Matthias P Lütolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Hatice Altug
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
5
|
Thorel L, Perréard M, Florent R, Divoux J, Coffy S, Vincent A, Gaggioli C, Guasch G, Gidrol X, Weiswald LB, Poulain L. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp Mol Med 2024; 56:1531-1551. [PMID: 38945959 PMCID: PMC11297165 DOI: 10.1038/s12276-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade.
Collapse
Grants
- AP-RM-19-020 Fondation de l'Avenir pour la Recherche Médicale Appliquée (Fondation de l'Avenir)
- PJA20191209649 Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Fondation ARC pour la Recherche sur le Cancer (ARC Foundation for Cancer Research)
- TRANSPARANCE Ligue Contre le Cancer
- ORGAPRED Ligue Contre le Cancer
- 3D-Hub Canceropôle PACA (Canceropole PACA)
- Pré-néo 2019-188 Institut National Du Cancer (French National Cancer Institute)
- Conseil Régional de Haute Normandie (Upper Normandy Regional Council)
- GIS IBiSA, Cancéropôle Nord-Ouest (ORGRAFT project), the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (ORGAVADS project), the Fonds de dotation Patrick de Brou de Laurière (ORGAVADS project),and Normandy County Council (ORGATHEREX project).
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), Etat-région
- GIS IBiSA, Region Sud
- GIS IBiSA, Cancéropôle Nord-Ouest (OrgaNO project), and Normandy County Council (ORGAPRED, PLATONUS ONE, POLARIS, and EQUIP’INNOV projects).
Collapse
Affiliation(s)
- Lucie Thorel
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Marion Perréard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Department of Head and Neck Surgery, Caen University Hospital, Caen, France
| | - Romane Florent
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Jordane Divoux
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France
| | - Sophia Coffy
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Audrey Vincent
- CNRS UMR9020, INSERM U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, Lille, France
| | - Cédric Gaggioli
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, CNRS University Côte d'Azur, Nice, France
| | - Géraldine Guasch
- CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Aix-Marseille University, Marseille, France
| | - Xavier Gidrol
- Biomics, CEA, Inserm, IRIG, UA13 BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Louis-Bastien Weiswald
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| | - Laurent Poulain
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
- ORGAPRED core facility, US PLATON, Université de Caen Normandie, Caen, France.
| |
Collapse
|
6
|
El Menshawe SF, Shalaby K, Elkomy MH, Aboud HM, Ahmed YM, Abdelmeged AA, Elkarmalawy M, Abou Alazayem MA, El Sisi AM. Repurposing celecoxib for colorectal cancer targeting via pH-triggered ultra-elastic nanovesicles: Pronounced efficacy through up-regulation of Wnt/β-catenin pathway in DMH-induced tumorigenesis. Int J Pharm X 2024; 7:100225. [PMID: 38230407 PMCID: PMC10788539 DOI: 10.1016/j.ijpx.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Celecoxib (CLX), a selective inhibitor for cyclooxygenase 2 (COX-2), has manifested potential activity against diverse types of cancer. However, low bioavailability and cardiovascular side effects remain the major challenges that limit its exploitation. In this work, we developed ultra-elastic nanovesicles (UENVs) with pH-triggered surface charge reversal traits that could efficiently deliver CLX to colorectal segments for snowballed tumor targeting. CLX-UENVs were fabricated via a thin-film hydration approach. The impact of formulation factors (Span 80, Tween 80, and sonication time) on the nanovesicular features was evaluated using Box-Behnken design, and the optimal formulation was computed. The optimum formulation was positively coated with polyethyleneimine (CLX-PEI-UENVs) and then coated with Eudragit S100 (CLX-ES-PEI-UENVs). The activity of the optimized nano-cargo was explored in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. Levels of COX-2, Wnt-2 and β-catenin were assessed in rats' colon. The diameter of the optimized CLX-ES-PEI-UENVs formulation was 253.62 nm, with a zeta potential of -23.24 mV, 85.64% entrapment, and 87.20% cumulative release (24 h). ES coating hindered the rapid release of CLX under acidic milieu (stomach and early small intestine) and showed extended release in the colon section. In colonic environments, the ES coating layer was removed due to high pH, and the charge on the nanovesicular corona was shifted from negative to positive. Besides, a pharmacokinetics study revealed that CLX-ES-PEI-UENVs had superior oral bioavailability by 2.13-fold compared with CLX suspension. Collectively, these findings implied that CLX-ES-PEI-UENVs could be a promising colorectal-targeted nanoplatform for effective tumor management through up-regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shahira F. El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | | | - Marwa Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | | | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
8
|
de Oliveira VA, Negreiros HA, de Sousa IGB, Farias Mendes LK, Alves Damaceno Do Lago JP, Alves de Sousa A, Alves Nobre T, Pereira IC, Carneiro da Silva FC, Lopes Magalhães J, de Castro E Sousa JM. Application of nanoformulations as a strategy to optimize chemotherapeutic treatment of glioblastoma: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:131-152. [PMID: 38480528 DOI: 10.1080/10937404.2024.2326679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The aim of this review was to explore the advances of nanoformulations as a strategy to optimize glioblastoma treatment, specifically focusing on targeting and controlling drug delivery systems to the tumor. This review followed the PRISMA recommendations. The studies were selected through a literature search conducted in the electronic databases PubMed Central, Science Direct, Scopus and Web of Science, in April 2023, using the equation descriptors: (nanocapsule OR nanoformulation) AND (glioblastoma). Forty-seven investigations included were published between 2011 and 2023 to assess the application of different nanoformulations to optimize delivery of chemotherapies including temozolomide, carmustine, vincristine or cisplatin previously employed in brain tumor therapy, as well as investigating another 10 drugs. Data demonstrated the possible application of different matrices employed as nanocarriers and utilization of functionalizing agents to improve internalization of chemotherapeutics. Functionalization was developed with the application of peptides, micronutrients/vitamins, antibodies and siRNAs. Finally, this review demonstrated the practical and clinical application of nanocarriers to deliver multiple drugs in glioblastoma models. These nanomodels might ideally be developed using functionalizing ligand agents that preferably act synergistically with the drug these agents carry. The findings showed promising results, making nanoformulations one of the best prospects for innovation and improvement of glioblastoma treatment.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Helber Alves Negreiros
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Layza Karyne Farias Mendes
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Athanara Alves de Sousa
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Taline Alves Nobre
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Janildo Lopes Magalhães
- Supramolecular Self-Assembly Laboratory - LAS, Department of Chemistry, Nature Sciences Center, Federal University of Piaui, Teresina, Brazil
| | | |
Collapse
|
9
|
Zheng X, Zhang X, Yu S. Organoids derived from metastatic cancers: Present and future. Heliyon 2024; 10:e30457. [PMID: 38720734 PMCID: PMC11077038 DOI: 10.1016/j.heliyon.2024.e30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Organoids are three-dimensional structures derived from primary tissue or tumors that closely mimic the architecture, histology, and function of the parental tissue. In recent years, patient-derived organoids (PDOs) have emerged as powerful tools for modeling tumor heterogeneity, drug screening, and personalized medicine. Although most cancer organoids are derived from primary tumors, the ability of organoids from metastatic cancer to serve as a model for studying tumor biology and predicting the therapeutic response is an area of active investigation. Recent studies have shown that organoids derived from metastatic sites can provide valuable insights into tumor biology and may be used to validate predictive models of the drug response. In this comprehensive review, we discuss the feasibility of culturing organoids from multiple metastatic cancers and evaluate their potential for advancing basic cancer research, drug development, and personalized therapy. We also explore the limitations and challenges associated with using metastasis organoids for cancer research. Overall, this review provides a comprehensive overview of the current state and future prospects of metastatic cancer-derived organoids.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
11
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
12
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
14
|
Plattner C, Lamberti G, Blattmann P, Kirchmair A, Rieder D, Loncova Z, Sturm G, Scheidl S, Ijsselsteijn M, Fotakis G, Noureen A, Lisandrelli R, Böck N, Nemati N, Krogsdam A, Daum S, Finotello F, Somarakis A, Schäfer A, Wilflingseder D, Gonzalez Acera M, Öfner D, Huber LA, Clevers H, Becker C, Farin HF, Greten FR, Aebersold R, de Miranda NF, Trajanoski Z. Functional and spatial proteomics profiling reveals intra- and intercellular signaling crosstalk in colorectal cancer. iScience 2023; 26:108399. [PMID: 38047086 PMCID: PMC10692669 DOI: 10.1016/j.isci.2023.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology-a strategy that is based on perturbing primary tumor cells from cancer patients-could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.
Collapse
Affiliation(s)
- Christina Plattner
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Giorgia Lamberti
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexander Kirchmair
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zuzana Loncova
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Scheidl
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marieke Ijsselsteijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Georgios Fotakis
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Asma Noureen
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Rebecca Lisandrelli
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Böck
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Niloofar Nemati
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sophia Daum
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Antonios Somarakis
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander Schäfer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas A. Huber
- Biocenter, Institute of Cell Biology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hans Clevers
- Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Henner F. Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership with DKFZ Heidelberg, Frankfurt/Mainz, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership with DKFZ Heidelberg, Frankfurt/Mainz, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Noel F.C.C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Chen X, Li Y, Li M, Xie Y, Wang K, Zhang L, Zou Z, Xiong L. Exosomal miRNAs assist in the crosstalk between tumor cells and immune cells and its potential therapeutics. Life Sci 2023; 329:121934. [PMID: 37460057 DOI: 10.1016/j.lfs.2023.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Exosomes are small extracellular vesicles that carry active substances (including proteins, lipids, and nucleic acids) and are essential for homeostasis and signal transmission. Recent studies have focused on the function of exosomal miRNAs in tumor progression. Researchers have expanded the use of exosomes and miRNAs as potential therapeutic tools and biomarkers to detect tumor progression. Immune cells, as an important part of the tumor microenvironment (TME), secrete a majority of exosome-derived miRNAs involved in the biological processes of malignancies. However, the underlying mechanisms remain unclear. Currently, there is no literature that systematically summarizes the communication of exosome-derived miRNAs between tumor cells and immune cells. Based on the cell specificity of exosome-derived miRNAs, this review provides the first comprehensive summary of the significant miRNAs from the standpoint of exosome sources, which are tumor cells and immune cells. Furthermore, we elaborated on the potential clinical applications of these miRNAs, attempting to propose existing difficulties and future possibilities in tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Lifang Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuoling Zou
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
16
|
Jensen LH, Rogatto SR, Lindebjerg J, Havelund B, Abildgaard C, do Canto LM, Vagn-Hansen C, Dam C, Rafaelsen S, Hansen TF. Precision medicine applied to metastatic colorectal cancer using tumor-derived organoids and in-vitro sensitivity testing: a phase 2, single-center, open-label, and non-comparative study. J Exp Clin Cancer Res 2023; 42:115. [PMID: 37143108 PMCID: PMC10161587 DOI: 10.1186/s13046-023-02683-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Patients with colorectal metastatic disease have a poor prognosis, limited therapeutic options, and frequent development of resistance. Strategies based on tumor-derived organoids are a powerful tool to assess drug sensitivity at an individual level and to suggest new treatment options or re-challenge. Here, we evaluated the method's feasibility and clinical outcome as applied to patients with no satisfactory treatment options. METHODS In this phase 2, single-center, open-label, non-comparative study (ClinicalTrials.gov, register NCT03251612), we enrolled 90 patients with metastatic colorectal cancer following progression on or after standard therapy. Participants were 18 years or older with an Eastern Cooperative Oncology Group performance status of 0-2, adequate organ function, and metastasis available for biopsy. Biopsies from the metastatic site were cultured using organoids model. Sensitivity testing was performed with a panel of drugs with proven activity in phase II or III trials. At the discretion of the investigator considering toxicity, the drug with the highest relative activity was offered. The primary endpoint was the proportion of patients alive without disease progression at two months per local assessment. RESULTS Biopsies available from 82 to 90 patients were processed for cell culture, of which 44 successfully generated organoids with at least one treatment suggested. The precision cohort of 34 patients started treatment and the primary endpoint, progression-free survival (PFS) at two months was met in 17 patients (50%, 95% CI 32-68), exceeding the pre-defined level (14 of 45; 31%). The median PFS was 67 days (95% CI 51-108), and the median overall survival was 189 days (95% CI 103-277). CONCLUSIONS Patient-derived organoids and in-vitro sensitivity testing were feasible in a cohort of metastatic colorectal cancer. The primary endpoint was met, as half of the patients were without progression at two months. Cancer patients may benefit from functional testing using tumor-derived organoids. TRIAL REGISTRATION ClinicalTrials.gov, register NCT03251612.
Collapse
Affiliation(s)
- Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Lillebaelt Hospital, Beriderbakken 4, Vejle, 7100, Denmark.
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Silvia Regina Rogatto
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Clinical Genetics Department, University Hospital of Southern Denmark, Lillebaelt Hospital, Vejle, Denmark
| | - Jan Lindebjerg
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Pathology, University Hospital of Southern Denmark, Lillebalt Hospital, Vejle, Denmark
| | - Birgitte Havelund
- Department of Oncology, University Hospital of Southern Denmark, Lillebaelt Hospital, Beriderbakken 4, Vejle, 7100, Denmark
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark
| | - Cecilie Abildgaard
- Clinical Genetics Department, University Hospital of Southern Denmark, Lillebaelt Hospital, Vejle, Denmark
| | - Luisa Matos do Canto
- Clinical Genetics Department, University Hospital of Southern Denmark, Lillebaelt Hospital, Vejle, Denmark
| | - Chris Vagn-Hansen
- Department of Pathology, University Hospital of Southern Denmark, Lillebalt Hospital, Vejle, Denmark
| | - Claus Dam
- Department of Pathology, University Hospital of Southern Denmark, Lillebalt Hospital, Vejle, Denmark
| | - Søren Rafaelsen
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Radiology, University Hospital of Southern Denmark, Lillebalt Hospital, Vejle, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, University Hospital of Southern Denmark, Lillebaelt Hospital, Beriderbakken 4, Vejle, 7100, Denmark
- Danish Colorectal Cancer Center South, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Martini G, Belli V, Napolitano S, Ciaramella V, Ciardiello D, Belli A, Izzo F, Avallone A, Selvaggi F, Menegon Tasselli F, Santaniello W, Franco R, Puig I, Ramirez L, Chicote I, Mancuso F, Caratu G, Serres X, Fasani R, Jimenez J, Ros J, Baraibar I, Mulet N, Della Corte CM, Troiani T, Vivancos A, Dienstmann R, Elez E, Palmer HG, Tabernero J, Martinelli E, Ciardiello F, Argilés G. Establishment of patient-derived tumor organoids to functionally inform treatment decisions in metastatic colorectal cancer. ESMO Open 2023; 8:101198. [PMID: 37119788 DOI: 10.1016/j.esmoop.2023.101198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) patients tend to have modest benefits from molecularly driven therapeutics. Patient-derived tumor organoids (PDTOs) represent an unmatched model to elucidate tumor resistance to therapy, due to their high capacity to resemble tumor characteristics. MATERIALS AND METHODS We used viable tumor tissue from two cohorts of patients with mCRC, naïve or refractory to treatment, respectively, for generating PDTOs. The derived models were subjected to a 6-day drug screening assay (DSA) with a comprehensive pipeline of chemotherapy and targeted drugs against almost all the actionable mCRC molecular drivers. For the second cohort DSA data were matched with those from PDTO genotyping. RESULTS A total of 40 PDTOs included in the two cohorts were derived from mCRC primary tumors or metastases. The first cohort included 31 PDTOs derived from patients treated in front line. For this cohort, DSA results were matched with patient responses. Moreover, RAS/BRAF mutational status was matched with DSA cetuximab response. Ten out of 12 (83.3%) RAS wild-type PDTOs responded to cetuximab, while all the mutant PDTOs, 8 out of 8 (100%), were resistant. For the second cohort (chemorefractory patients), we used part of tumor tissue for genotyping. Four out of nine DSA/genotyping data resulted applicable in the clinic. Two RAS-mutant mCRC patients have been treated with FOLFOX-bevacizumab and mitomycin-capecitabine in third line, respectively, based on DSA results, obtaining disease control. One patient was treated with nivolumab-second mitochondrial-derived activator of caspases mimetic (phase I trial) due to high tumor mutational burden at genotyping, experiencing stable disease. In one case, the presence of BRCA2 mutation correlated with DSA sensitivity to olaparib; however, the patient could not receive the therapy. CONCLUSIONS Using CRC as a model, we have designed and validated a clinically applicable methodology to potentially inform clinical decisions with functional data. Undoubtedly, further larger analyses are needed to improve methodology success rates and propose suitable treatment strategies for mCRC patients.
Collapse
Affiliation(s)
- G Martini
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Belli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - S Napolitano
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - V Ciaramella
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - D Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Belli
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G. Pascale, Napoli
| | - F Selvaggi
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Menegon Tasselli
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - W Santaniello
- Hepatobiliary Surgical Oncology Unit, AORN Cardarelli, Naples
| | - R Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - I Puig
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - L Ramirez
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - I Chicote
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - F Mancuso
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - G Caratu
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - X Serres
- Department of Interventional Radiology, Hospital Universitari Vall d'Hebron, Barcelona
| | - R Fasani
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Jimenez
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona
| | - J Ros
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - I Baraibar
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - N Mulet
- B-ARGO Badalona Applied Research Group in Oncology, Catalan Institute of Oncology, Badalona
| | - C M Della Corte
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - T Troiani
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - A Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona
| | - R Dienstmann
- Oncology Data Science, Vall d'Hebron Institute of Oncology, Barcelona
| | - E Elez
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - H G Palmer
- Translational Program, Stem Cells and Cancer Laboratory, Vall D'Hebron Institute of Oncology (VHIO), Barcelona
| | - J Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona
| | - E Martinelli
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - F Ciardiello
- Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - G Argilés
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona; Universitat Autònoma de Barcelona, Barcelona, Spain; Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
18
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
20
|
Papaccio F, Cabeza-Segura M, Garcia-Micò B, Tarazona N, Roda D, Castillo J, Cervantes A. Will Organoids Fill the Gap towards Functional Precision Medicine? J Pers Med 2022; 12:1939. [PMID: 36422115 PMCID: PMC9695811 DOI: 10.3390/jpm12111939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
Precision medicine approaches for solid tumors are mainly based on genomics. Its employment in clinical trials has led to somewhat underwhelming results, except for single responses. Moreover, several factors can influence the response, such as gene and protein expression, the coexistence of different genomic alterations or post-transcriptional/translational modifications, the impact of tumor microenvironment, etc., therefore making it insufficient to employ a genomics-only approach to predict response. Recently, the implementation of patient-derived organoids has shed light on the possibility to use them to predict patient response to drug treatment. This could offer for the first time the possibility to move precision medicine to a functional environment.
Collapse
Affiliation(s)
- Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Manuel Cabeza-Segura
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| | - Blanca Garcia-Micò
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Desamparados Roda
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josefa Castillo
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
- Centro de Investigacion Biomedica en Red (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Andres Cervantes
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
21
|
Pérez-Pedroza R, Al-Jalih F, Xu J, Moretti M, Briola GR, Hauser CAE. Fabrication of lumen-forming colorectal cancer organoids using a newly designed laminin-derived bioink. Int J Bioprint 2022; 9:633. [PMID: 36866082 PMCID: PMC9974354 DOI: 10.18063/ijb.v9i1.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
160Three-dimensional (3D) bioprinting systems, which are the prominent tools for biofabrication, should evolve around the cutting-edge technologies of tissue engineering. This is the case with organoid technology, which requires a plethora of new materials to evolve, including extracellular matrices with specific mechanical and biochemical properties. For a bioprinting system to facilitate organoid growth, it must be able to recreate an organ-like environment within the 3D construct. In this study, a well-established, self-assembling peptide system was employed to generate a laminin-like bioink to provide signals of cell adhesion and lumen formation in cancer stem cells. One bioink formulation led to the formation of lumen with outperforming characteristics, which showed good stability of the printed construct.
Collapse
Affiliation(s)
- Rosario Pérez-Pedroza
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fatimah Al-Jalih
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiayi Xu
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Giuseppina R. Briola
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022; 71:1892-1908. [PMID: 35636923 PMCID: PMC9380493 DOI: 10.1136/gutjnl-2021-326560] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
We are entering an era of medicine where increasingly sophisticated data will be obtained from patients to determine proper diagnosis, predict outcomes and direct therapies. We predict that the most valuable data will be produced by systems that are highly dynamic in both time and space. Three-dimensional (3D) organoids are poised to be such a highly valuable system for a variety of gastrointestinal (GI) diseases. In the lab, organoids have emerged as powerful systems to model molecular and cellular processes orchestrating natural and pathophysiological human tissue formation in remarkable detail. Preclinical studies have impressively demonstrated that these organs-in-a-dish can be used to model immunological, neoplastic, metabolic or infectious GI disorders by taking advantage of patient-derived material. Technological breakthroughs now allow to study cellular communication and molecular mechanisms of interorgan cross-talk in health and disease including communication along for example, the gut-brain axis or gut-liver axis. Despite considerable success in culturing classical 3D organoids from various parts of the GI tract, some challenges remain to develop these systems to best help patients. Novel platforms such as organ-on-a-chip, engineered biomimetic systems including engineered organoids, micromanufacturing, bioprinting and enhanced rigour and reproducibility will open improved avenues for tissue engineering, as well as regenerative and personalised medicine. This review will highlight some of the established methods and also some exciting novel perspectives on organoids in the fields of gastroenterology. At present, this field is poised to move forward and impact many currently intractable GI diseases in the form of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Baião A, Dias S, Soares AF, Pereira CL, Oliveira C, Sarmento B. Advances in the use of 3D colorectal cancer models for novel drug discovery. Expert Opin Drug Discov 2022; 17:569-580. [PMID: 35343351 DOI: 10.1080/17460441.2022.2056162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most common and deadly tumors worldwide. CRC in vitro and in vivo models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. However, two-dimensional (2D) in vitro culture systems are considered too simple and do not represent the complex nature of the human tumor. However, three-dimensional (3D) models have emerged in recent years as more advanced and complex cell culture systems, able to closely resemble key features of human cancer tissues. AREAS COVERED The authors' review the currently established in vitro cell culture models and describe the advances in the development of 3D scaffold-free models to study CRC. The authors also discuss intestinal spheroids and organoids. As well as in vitro models for drug screening and metastatic CRC (mCRC). EXPERT OPINION The ideal CRC in vitro model is not yet established. Spheroid-based 3D models represent one of the most used approaches to recapitulate the tumor environment, overcoming some limitations of 2D models. Mouse and patient-derived organoids are more advanced models that can mimic more closely the characteristics and properties of CRC, with the possibility of including cells derived from patients with metastatic CRC.
Collapse
Affiliation(s)
- Ana Baião
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Dias
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Francisca Soares
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina Leite Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Department of Pathology, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
25
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
26
|
Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong WP, Chow EKH, Fong ELS, Wang L, Goh BC. Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res 2022; 10:10. [PMID: 35272694 PMCID: PMC8908618 DOI: 10.1186/s40364-022-00356-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple three-dimensional (3D) tumour organoid models assisted by multi-omics and Artificial Intelligence (AI) have contributed greatly to preclinical drug development and precision medicine. The intrinsic ability to maintain genetic and phenotypic heterogeneity of tumours allows for the reconciliation of shortcomings in traditional cancer models. While their utility in preclinical studies have been well established, little progress has been made in translational research and clinical trials. In this review, we identify the major bottlenecks preventing patient-derived tumour organoids (PDTOs) from being used in clinical setting. Unsuitable methods of tissue acquisition, disparities in establishment rates and a lengthy timeline are the limiting factors for use of PDTOs in clinical application. Potential strategies to overcome this include liquid biopsies via circulating tumour cells (CTCs), an automated organoid platform and optical metabolic imaging (OMI). These proposed solutions accelerate and optimize the workflow of a clinical organoid drug screening. As such, PDTOs have the potential for potential applications in clinical oncology to improve patient outcomes. If remarkable progress is made, cancer patients can finally benefit from this revolutionary technology.
Collapse
Affiliation(s)
- Malia Alexandra Foo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 31002, China.,Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Shing Leng Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Surgery, National University Hospital, Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Glenn K Bonney
- Department of Surgery, National University Hospital, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eliza Li Shan Fong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore.
| |
Collapse
|
27
|
Rada M, Tsamchoe M, Kapelanski-Lamoureux A, Hassan N, Bloom J, Petrillo S, Kim DH, Lazaris A, Metrakos P. Cancer Cells Promote Phenotypic Alterations in Hepatocytes at the Edge of Cancer Cell Nests to Facilitate Vessel Co-Option Establishment in Colorectal Cancer Liver Metastases. Cancers (Basel) 2022; 14:1318. [PMID: 35267627 PMCID: PMC8909291 DOI: 10.3390/cancers14051318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Vessel co-option is correlated with resistance against anti-angiogenic therapy in colorectal cancer liver metastases (CRCLM). Vessel co-opting lesions are characterized by highly motile cancer cells that move toward and along the pre-existing vessels in the surrounding nonmalignant tissue and co-opt them to gain access to nutrients. To access the sinusoidal vessels, the cancer cells in vessel co-opting lesions must displace the hepatocytes and occupy their space. However, the mechanisms underlying this displacement are unknown. Herein, we examined the involvement of apoptosis, autophagy, motility, and epithelial-mesenchymal transition (EMT) pathways in hepatocyte displacement by cancer cells. We demonstrate that cancer cells induce the expression of the proteins that are associated with the upregulation of apoptosis, motility, and EMT in adjacent hepatocytes in vitro and in vivo. Accordingly, we observe the upregulation of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and actin-related protein 2/3 (ARP2/3) in adjacent hepatocytes to cancer cell nests, while we notice a downregulation of E-cadherin. Importantly, the knockdown of runt-related transcription factor 1 (RUNX1) in cancer cells attenuates the function of cancer cells in hepatocytes alterations in vitro and in vivo. Altogether, our data suggest that cancer cells exploit various mechanisms to displace hepatocytes and access the sinusoidal vessels to establish vessel co-option.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| | | | | | | | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| |
Collapse
|
28
|
Furbo S, Urbano PCM, Raskov HH, Troelsen JT, Kanstrup Fiehn AM, Gögenur I. Use of Patient-Derived Organoids as a Treatment Selection Model for Colorectal Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14041069. [PMID: 35205817 PMCID: PMC8870458 DOI: 10.3390/cancers14041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common type of cancer globally. Despite successful treatment, it has a 40% chance of recurrence within five years after surgery. While neoadjuvant chemotherapy is offered for stage IV cancers, it comes with a risk of resistance and disease progression. CRC tumors vary biologically, recur frequently, and pose a significant risk for cancer-related mortality, making it increasingly relevant to develop methods to study personalized treatment. A tumor organoid is a miniature, multicellular, and 3D replica of a tumor in vitro that retains its characteristics. Here, we discuss the current methods of culturing organoids and the correlation of drug response in organoids with clinical responses in patients. This helps us to determine whether organoids can be used for treatment selection in a clinical setting. Based on the studies included, there was a strong correlation between treatment responses of organoids and clinical treatment responses. Abstract Surgical resection is the mainstay in intended curative treatment of colorectal cancer (CRC) and may be accompanied by adjuvant chemotherapy. However, 40% of the patients experience recurrence within five years of treatment, highlighting the importance of improved, personalized treatment options. Monolayer cell cultures and murine models, which are generally used to study the biology of CRC, are associated with certain drawbacks; hence, the use of organoids has been emerging. Organoids obtained from tumors display similar genotypic and phenotypic characteristics, making them ideal for investigating individualized treatment strategies and for integration as a core platform to be used in prediction models. Here, we review studies correlating the clinical response in patients with CRC with the therapeutic response in patient-derived organoids (PDO), as well as the limitations and potentials of this model. The studies outlined in this review reported strong associations between treatment responses in the PDO model and clinical treatment responses. However, as PDOs lack the tumor microenvironment, they do not genuinely account for certain crucial characteristics that influence therapeutic response. To this end, we reviewed studies investigating PDOs co-cultured with tumor-infiltrating lymphocytes. This model is a promising method allowing evaluation of patient-specific tumors and selection of personalized therapies. Standardized methodologies must be implemented to reach a “gold standard” for validating the use of this model in larger cohorts of patients. The introduction of this approach to a clinical scenario directing neoadjuvant treatment and in other curative and palliative treatment strategies holds incredible potential for improving personalized treatment and its outcomes.
Collapse
Affiliation(s)
- Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Paulo César Martins Urbano
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Hans Henrik Raskov
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
| | - Jesper Thorvald Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark;
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Department of Pathology, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (S.F.); (P.C.M.U.); (H.H.R.); (A.-M.K.F.)
- Enhanced Perioperative Oncology (EPeOnc) Consortium, Zealand University Hospital, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
- Correspondence: ; Tel.: +45-2633-6426
| |
Collapse
|
29
|
Liu J, Huang X, Huang L, Huang J, Liang D, Liao L, Deng Y, Zhang L, Zhang B, Tang W. Organoid: Next-Generation Modeling of Cancer Research and Drug Development. Front Oncol 2022; 11:826613. [PMID: 35155215 PMCID: PMC8831330 DOI: 10.3389/fonc.2021.826613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal carcinoma is a highly prevalent and heterogeneous gastrointestinal malignancy. The emergence of organoid technology has provided a new direction for colorectal cancer research. As a novel-type model, organoid has significant advantages compared with conventional tumor research models, characterized with the high success rate of construction and the high matching with the original tumor. These characteristics provide new possibilities to study the mechanism of colorectal carcinogenesis and improve the treatment effects. The present literature would mainly summarize the characteristics of tumor organoids and the up-to-date technique development of patient-derived organoids (PDOs) and application in colorectal cancer.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lihaoyun Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinlian Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dingyu Liang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lixian Liao
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yuqing Deng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lihua Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
30
|
Nrf3 Promotes 5-FU Resistance in Colorectal Cancer Cells via the NF- κB/BCL-2 Signaling Pathway In Vitro and In Vivo. JOURNAL OF ONCOLOGY 2021; 2021:9355555. [PMID: 34795760 PMCID: PMC8595022 DOI: 10.1155/2021/9355555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
Increasing evidence indicates that nuclear factor, erythroid 2-like 3 (Nrf3) is connected with tumorigenesis. However, the relationship between Nrf3 and tumor drug resistance remains elusive. In this study, we investigated the effect and mechanism of action by which Nrf3 regulated the sensitivity of colon cancer cells to 5-fluorouracil (5-FU). We found Nrf3 was significantly increased in colon cancer tissues. Furthermore, we observed that Nrf3 knockdown and overexpression can significantly affect the sensitivity of colon cancer cells to 5-FU in vitro and in vivo. Moreover, Nrf3 promoted the expression of RELA, P-RELA, and BCL-2. Inhibition of NF-κB partly reversed the effects of Nrf3 overexpression, resulting in the resistance of colon cancer cells to 5-FU. Overall, the study revealed that Nrf3 was connected to the sensitivity of colon cancer cells to 5-FU, and its possible mechanism was related to the NF-κB signaling pathway, which provided a new target for overcoming the resistance of colon cancer cells to 5-FU.
Collapse
|
31
|
Boos SL, Loevenich LP, Vosberg S, Engleitner T, Öllinger R, Kumbrink J, Rokavec M, Michl M, Greif PA, Jung A, Hermeking H, Neumann J, Kirchner T, Rad R, Jung P. Disease Modeling on Tumor Organoids Implicates AURKA as a Therapeutic Target in Liver Metastatic Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:517-540. [PMID: 34700030 PMCID: PMC8688726 DOI: 10.1016/j.jcmgh.2021.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Patient-derived tumor organoids recapitulate the characteristics of colorectal cancer (CRC) and provide an ideal platform for preclinical evaluation of personalized treatment options. We aimed to model the acquisition of chemotolerance during first-line combination chemotherapy in metastatic CRC organoids. METHODS We performed next-generation sequencing to study the evolution of KRAS wild-type CRC organoids during adaptation to irinotecan-based chemotherapy combined with epidermal growth factor receptor (EGFR) inhibition. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 protein (Cas9)-editing showed the specific effect of KRASG12D acquisition in drug-tolerant organoids. Compound treatment strategies involving Aurora kinase A (AURKA) inhibition were assessed for their capability to induce apoptosis in a drug-persister background. Immunohistochemical detection of AURKA was performed on a patient-matched cohort of primary tumors and derived liver metastases. RESULTS Adaptation to combination chemotherapy was accompanied by transcriptomic rather than gene mutational alterations in CRC organoids. Drug-tolerant cells evaded apoptosis and up-regulated MYC (c-myelocytomatosis oncogene product)/E2F1 (E2 family transcription factor 1) and/or interferon-α-related gene expression. Introduction of KRASG12D further increased the resilience of drug-persister CRC organoids against combination therapy. AURKA inhibition restored an apoptotic response in drug-tolerant KRAS-wild-type organoids. In dual epidermal growth factor receptor (EGFR)- pathway blockade-primed CRC organoids expressing KRASG12D, AURKA inhibition augmented apoptosis in cases that had acquired increased c-MYC protein levels during chemotolerance development. In patient-matched CRC cohorts, AURKA expression was increased in primary tumors and derived liver metastases. CONCLUSIONS Our study emphasizes the potential of patient-derived CRC organoids in modeling chemotherapy tolerance ex vivo. The applied therapeutic strategy of dual EGFR pathway blockade in combination with AURKA inhibition may prove effective for second-line treatment of chemotolerant CRC liver metastases with acquired KRAS mutation and increased AURKA/c-MYC expression.
Collapse
Affiliation(s)
- Sophie L. Boos
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung) Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Leon P. Loevenich
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung) Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Sebastian Vosberg
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Department of Medicine III, University Hospital Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jörg Kumbrink
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Marlies Michl
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany,Comprehensive Cancer Center, Ludwig-Maximilians-University, University Hospital, Munich, Germany
| | - Philipp A. Greif
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Department of Medicine III, University Hospital Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Jung
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Heiko Hermeking
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Kirchner
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Roland Rad
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Jung
- German Cancer Research Center, Deutsches Krebsforschungszentrum, Heidelberg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Partner Site Munich, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung) Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany,Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany,Correspondence Address correspondence to: Peter Jung, Dr.rer.nat., Deutsches Krebsforschungszentrum, Institut of Pathology, Thalkirchner Straße 36, D-80337, Munich, Germany. Fax: +49 89 21 80 736 04
| |
Collapse
|
32
|
Kastner C, Hendricks A, Deinlein H, Hankir M, Germer CT, Schmidt S, Wiegering A. Organoid Models for Cancer Research-From Bed to Bench Side and Back. Cancers (Basel) 2021; 13:4812. [PMID: 34638297 PMCID: PMC8507862 DOI: 10.3390/cancers13194812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Organoids are a new 3D ex vivo culture system that have been applied in various fields of biomedical research. First isolated from the murine small intestine, they have since been established from a wide range of organs and tissues, both in healthy and diseased states. Organoids genetically, functionally and phenotypically retain the characteristics of their tissue of origin even after multiple passages, making them a valuable tool in studying various physiologic and pathophysiologic processes. The finding that organoids can also be established from tumor tissue or can be engineered to recapitulate tumor tissue has dramatically increased their use in cancer research. In this review, we discuss the potential of organoids to close the gap between preclinical in vitro and in vivo models as well as clinical trials in cancer research focusing on drug investigation and development.
Collapse
Affiliation(s)
- Carolin Kastner
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, University of Wuerzburg Medical Centre, Josef-Schneiderstr. 2, 97080 Wuerzburg, Germany
| | - Anne Hendricks
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, University of Wuerzburg Medical Centre, Josef-Schneiderstr. 2, 97080 Wuerzburg, Germany
| | - Hanna Deinlein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mohammed Hankir
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Comprehensive Cancer Centre Mainfranken, University of Wuerzburg Medical Centre, Josef-Schneiderstr. 2, 97080 Wuerzburg, Germany
| | - Stefanie Schmidt
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany
| | - Armin Wiegering
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital, University of Wuerzburg, Oberduerrbacherstr. 6, 97080 Wuerzburg, Germany; (C.K.); (A.H.); (H.D.); (M.H.); (C.-T.G.); (S.S.)
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, University of Wuerzburg Medical Centre, Josef-Schneiderstr. 2, 97080 Wuerzburg, Germany
| |
Collapse
|
33
|
Zhang MM, Yang KL, Cui YC, Zhou YS, Zhang HR, Wang Q, Ye YJ, Wang S, Jiang KW. Current Trends and Research Topics Regarding Intestinal Organoids: An Overview Based on Bibliometrics. Front Cell Dev Biol 2021; 9:609452. [PMID: 34414174 PMCID: PMC8369504 DOI: 10.3389/fcell.2021.609452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/08/2021] [Indexed: 01/10/2023] Open
Abstract
Currently, research on intestinal diseases is mainly based on animal models and cell lines in monolayers. However, these models have drawbacks that limit scientific advances in this field. Three-dimensional (3D) culture systems named organoids are emerging as a reliable research tool for recapitulating the human intestinal epithelium and represent a unique platform for patient-specific drug testing. Intestinal organoids (IOs) are crypt–villus structures that can be derived from adult intestinal stem cells (ISCs), embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs) and have the potential to serve as a platform for individualized medicine and research. However, this emerging field has not been bibliometric summarized to date. Here, we performed a bibliometric analysis of the Web of Science Core Collection (WoSCC) database to evaluate 5,379 publications concerning the use of organoids; the studies were divided into four clusters associated with the current situation and future directions for the application of IOs. Based on the results of our bibliometric analysis of IO applications, we systematically summarized the latest advances and analyzed the limitations and prospects.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ke-Lu Yang
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yan-Cheng Cui
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yu-Shi Zhou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Hao-Ran Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
34
|
Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021; 175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease. While traditional 2D models are not able to provide consistent and predictive responses about the in vivo efficiency of the formulation, animal models frequently fail to recapitulate cancer progression and to reproduce adverse effects. On its turn, multicellular 3D systems, by mimicking key genetic, physical and mechanical cues of the tumor microenvironment, constitute a promising tool in cancer research. In addition, they constitute more physiological and relevant environment for anticancer drugs screening and for predicting patient's response towards personalized approaches, bridging the gap between simplified 2D models and unrepresentative animal models. In this review, we provide an overview of CRC 3D models for translational research, with focus on their potential for nanomedicines screening.
Collapse
|
35
|
Truelsen SLB, Mousavi N, Wei H, Harvey L, Stausholm R, Spillum E, Hagel G, Qvortrup K, Thastrup O, Harling H, Mellor H, Thastrup J. The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids. PLoS One 2021; 16:e0253258. [PMID: 34234354 PMCID: PMC8263287 DOI: 10.1371/journal.pone.0253258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
The treatment response to anti-angiogenic agents varies among cancer patients and predictive biomarkers are needed to identify patients with resistant cancer or guide the choice of anti-angiogenic treatment. We present “the Cancer Angiogenesis Co-Culture (CACC) assay”, an in vitro Functional Precision Medicine assay which enables the study of tumouroid induced angiogenesis. This assay can quantify the ability of a patient-derived tumouroid to induce vascularization by measuring the induction of tube formation in a co-culture of vascular cells and tumoroids established from the primary colorectal tumour or a metastasis. Furthermore, the assay can quantify the sensitivity of patient-derived tumoroids to anti-angiogenic therapies. We observed that tube formation increased in a dose-dependent manner upon treatment with the pro-angiogenic factor vascular endothelial growth factor A (VEGF-A). When investigating the angiogenic potential of tumoroids from 12 patients we found that 9 tumoroid cultures induced a significant increase in tube formation compared to controls without tumoroids. In these 9 angiogenic tumoroid cultures the tube formation could be abolished by treatment with one or more of the investigated anti-angiogenic agents. The 3 non-angiogenic tumoroid cultures secreted VEGF-A but we observed no correlation between the amount of tube formation and tumoroid-secreted VEGF-A. Our data suggests that the CACC assay recapitulates the complexity of tumour angiogenesis, and when clinically verified, could prove a valuable tool to quantify sensitivity towards different anti-angiogenic agents.
Collapse
Affiliation(s)
| | - Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Haoche Wei
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Lucy Harvey
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | | | | | - Klaus Qvortrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Harling
- 2cureX, Symbion, Copenhagen, Denmark
- Department of Digestive Diseases, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
36
|
Organoids and Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112657. [PMID: 34071313 PMCID: PMC8197877 DOI: 10.3390/cancers13112657] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids were first established as a three-dimensional cell culture system from mouse small intestine. Subsequent development has made organoids a key system to study many human physiological and pathological processes that affect a variety of tissues and organs. In particular, organoids are becoming very useful tools to dissect colorectal cancer (CRC) by allowing the circumvention of classical problems and limitations, such as the impossibility of long-term culture of normal intestinal epithelial cells and the lack of good animal models for CRC. In this review, we describe the features and current knowledge of intestinal organoids and how they are largely contributing to our better understanding of intestinal cell biology and CRC genetics. Moreover, recent data show that organoids are appropriate systems for antitumoral drug testing and for the personalized treatment of CRC patients.
Collapse
|
37
|
Interplay between SOX9 transcription factor and microRNAs in cancer. Int J Biol Macromol 2021; 183:681-694. [PMID: 33957202 DOI: 10.1016/j.ijbiomac.2021.04.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
SOX transcription factors are critical regulators of development, homeostasis and disease progression and their dysregulation is a common finding in various cancers. SOX9 belongs to SOXE family located on chromosome 17. MicroRNAs (miRNAs) possess the capacity of regulating different transcription factors in cancer cells by binding to 3'-UTR. Since miRNAs can affect differentiation, migration, proliferation and other physiological mechanisms, disturbances in their expression have been associated with cancer development. In this review, we evaluate the relationship between miRNAs and SOX9 in different cancers to reveal how this interaction can affect proliferation, metastasis and therapy response of cancer cells. The tumor-suppressor miRNAs can decrease the expression of SOX9 by binding to the 3'-UTR of mRNAs. Furthermore, the expression of downstream targets of SOX9, such as c-Myc, Wnt, PI3K/Akt can be affected by miRNAs. It is noteworthy that other non-coding RNAs including lncRNAs and circRNAs regulate miRNA/SOX9 expression to promote/inhibit cancer progression and malignancy. The pre-clinical findings can be applied as biomarkers for diagnosis and prognosis of cancer patients.
Collapse
|
38
|
Srivastava S, Dewangan J, Mishra S, Divakar A, Chaturvedi S, Wahajuddin M, Kumar S, Rath SK. Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153484. [PMID: 33667839 DOI: 10.1016/j.phymed.2021.153484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Celecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB. PURPOSE We hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells. STUDY DESIGN The potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways. METHODS The effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model. RESULTS PIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice. CONCLUSION The outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Lucknow 226031, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Lucknow 226031, Uttar Pradesh, India
| | - Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Lucknow 226031, Uttar Pradesh, India
| | - Aman Divakar
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Swati Chaturvedi
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sadan Kumar
- Immunotoxicology laboratory Division of Toxicology and Experimental Medicine, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
39
|
Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Patient-Derived Cancer Organoids as Predictors of Treatment Response. Front Oncol 2021; 11:641980. [PMID: 33816288 PMCID: PMC8012903 DOI: 10.3389/fonc.2021.641980] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Patient-derived cancer organoids have taken a prominent role in pre-clinical and translational research and have been generated for most common solid tumors. Cancer organoids have been shown to retain key genetic and phenotypic characteristics of their tissue of origin, tumor subtype and maintain intratumoral heterogeneity and therefore have the potential to be used as predictors for individualized treatment response. In this review, we highlight studies that have used cancer organoids to compare the efficacy of standard-of-care and targeted combination treatments with clinical patient response. Furthermore, we review studies using cancer organoids to identify new anti-cancer treatments using drug screening. Finally, we discuss the current limitations and improvements needed to understand the full potential of cancer organoids as avatars for clinical management of cancer therapy.
Collapse
Affiliation(s)
- Maikel Verduin
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
40
|
Tung KL, Chen KY, Negrete M, Chen T, Safi A, Aljamal AA, Song L, Crawford GE, Ding S, Hsu DS, Shen X. Integrated chromatin and transcriptomic profiling of patient-derived colon cancer organoids identifies personalized drug targets to overcome oxaliplatin resistance. Genes Dis 2021; 8:203-214. [PMID: 33997167 PMCID: PMC8099686 DOI: 10.1016/j.gendis.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer is a leading cause of cancer deaths. Most colorectal cancer patients eventually develop chemoresistance to the current standard-of-care therapies. Here, we used patient-derived colorectal cancer organoids to demonstrate that resistant tumor cells undergo significant chromatin changes in response to oxaliplatin treatment. Integrated transcriptomic and chromatin accessibility analyses using ATAC-Seq and RNA-Seq identified a group of genes associated with significantly increased chromatin accessibility and upregulated gene expression. CRISPR/Cas9 silencing of fibroblast growth factor receptor 1 (FGFR1) and oxytocin receptor (OXTR) helped overcome oxaliplatin resistance. Similarly, treatment with oxaliplatin in combination with an FGFR1 inhibitor (PD166866) or an antagonist of OXTR (L-368,899) suppressed chemoresistant organoids. However, oxaliplatin treatment did not activate either FGFR1 or OXTR expression in another resistant organoid, suggesting that chromatin accessibility changes are patient-specific. The use of patient-derived cancer organoids in combination with transcriptomic and chromatin profiling may lead to precision treatments to overcome chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Tianyi Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Alexias Safi
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Abed Alhalim Aljamal
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Gregory E. Crawford
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - David S. Hsu
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27708, USA
- Duke Cancer Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
41
|
Taha-Mehlitz S, Bianco G, Coto-Llerena M, Kancherla V, Bantug GR, Gallon J, Ercan C, Panebianco F, Eppenberger-Castori S, von Strauss M, Staubli S, Bolli M, Peterli R, Matter MS, Terracciano LM, von Flüe M, Ng CK, Soysal SD, Kollmar O, Piscuoglio S. Adenylosuccinate lyase is oncogenic in colorectal cancer by causing mitochondrial dysfunction and independent activation of NRF2 and mTOR-MYC-axis. Am J Cancer Res 2021; 11:4011-4029. [PMID: 33754045 PMCID: PMC7977451 DOI: 10.7150/thno.50051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.
Collapse
|
42
|
Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020; 23:101851. [PMID: 33319176 PMCID: PMC7724203 DOI: 10.1016/j.isci.2020.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors comprised a tightly surrounded tumor microenvironment, made up of non-cellular extracellular matrix (ECM) and stromal cells. Although treatment response is often attributed to tumor heterogeneity, progression and malignancy are profoundly influenced by tumor cell interactions with the surrounding ECM. Here, we used a tumor organoid model, consisting of hepatic stellate cells (HSCs) embedded in collagen type 1 (Col1) and colorectal cancer cell (HCT-116) spheroids, to determine the relationship between the ECM architecture, cancer cell malignancy, and chemoresistance. Exogenous transforming growth factor beta (TGF-β) used to activate the HSCs increased the remodeling and bundling of Col1 in the ECM around the cancer spheroid. A dense ECM architecture inhibited tumor cell growth, reversed their mesenchymal phenotype, preserved stem cell population, and reduced chemotherapy response. Overall, our results demonstrate that controlled biofabrication and manipulation of the ECM in tumor organoids results enables studying tumor cell-ECM interactions and better understand tumor cell response to chemotherapies.
Collapse
Affiliation(s)
- Anthony Dominijanni
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Mahesh Devarasetty
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
43
|
Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17:731-745. [PMID: 32207030 PMCID: PMC7710770 DOI: 10.1007/s13770-020-00245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell cultures with architectural and biomechanical properties similar to those of natural tissue have been the focus for generating liver tissue. Microarchitectural organization is believed to be crucial to hepatic function, and 3D cell culture technologies have enabled the construction of tissue-like microenvironments, thereby leading to remarkable progress in vitro models of human tissue and organs. Recently, to recapitulate the 3D architecture of tissues, spheroids and organoids have become widely accepted as new practical tools for 3D organ modeling. Moreover, the combination of bioengineering approach offers the promise to more accurately model the tissue microenvironment of human organs. Indeed, the employment of sophisticated bioengineered liver models show long-term viability and functional enhancements in biochemical parameters and disease-orient outcome. RESULTS Various 3D in vitro liver models have been proposed as a new generation of liver medicine. Likewise, new biomedical engineering approaches and platforms are available to more accurately replicate the in vivo 3D microarchitectures and functions of living organs. This review aims to highlight the recent 3D in vitro liver model systems, including micropatterning, spheroids, and organoids that are either scaffold-based or scaffold-free systems. Finally, we discuss a number of challenges that will need to be addressed moving forward in the field of liver tissue engineering for biomedical applications. CONCLUSION The ongoing development of biomedical engineering holds great promise for generating a 3D biomimetic liver model that recapitulates the physiological and pathological properties of the liver and has biomedical applications.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
44
|
Drug screening model meets cancer organoid technology. Transl Oncol 2020; 13:100840. [PMID: 32822897 PMCID: PMC7451679 DOI: 10.1016/j.tranon.2020.100840] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor organoids inherit the genomic and molecular characteristics of the donor tumor, which not only bridge the gap between genome and phenotype but also circumvent the disadvantages such as genetic information change by using 2D cell lines and the mouse-specific tumor evolution in patient-derived xenograft (PDX). So, cancer organoid has been widely applied to preclinical drug evaluation, biomarker identification, biological research, and individualized therapy. Besides, cancer organoid can be preserved, resuscitated, passed infinitely, and mechanically cultured on a chip for drug screening; it has become one of the partial models for low/high-throughput drug screening in the preclinical trial in vitro. Therefore, this review presents the recent developments of tumor organoids for drug screening, which will introduce from four aspects, including the stability/credibility, types, application, deficiency and prospect of the tumor organoids model for drug screening.
Collapse
|
45
|
Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastatic disease in head & neck oncology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:S1-S86. [PMID: 32469009 PMCID: PMC7263073 DOI: 10.14639/0392-100x-suppl.1-40-2020] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The head and neck district represents one of the most frequent sites of cancer, and the percentage of metastases is very high in both loco-regional and distant areas. Prognosis refers to several factors: a) stage of disease; b) loco-regional relapses; c) distant metastasis. At diagnosis, distant metastases of head and neck cancers are present in about 10% of cases with an additional 20-30% developing metastases during the course of their disease. Diagnosis of distant metastases is associated with unfavorable prognosis, with a median survival of about 10 months. The aim of the present review is to provide an update on distant metastasis in head and neck oncology. Recent achievements in molecular profiling, interaction between neoplastic tissue and the tumor microenvironment, oligometastatic disease concepts, and the role of immunotherapy have all deeply changed the therapeutic approach and disease control. Firstly, we approach topics such as natural history, epidemiology of distant metastases and relevant pathological and radiological aspects. Focus is then placed on the most relevant clinical aspects; particular attention is reserved to tumours with distant metastasis and positive for EBV and HPV, and the oligometastatic concept. A substantial part of the review is dedicated to different therapeutic approaches. We highlight the role of immunotherapy and the potential effects of innovative technologies. Lastly, we present ethical and clinical perspectives related to frailty in oncological patients and emerging difficulties in sustainable socio-economical governance.
Collapse
Affiliation(s)
- Paolo Pisani
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Mario Airoldi
- Medical Oncology, Città della Salute e della Scienza, Torino, Italy
| | | | - Paolo Aluffi Valletti
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | | | - Marco Benazzo
- SC Otorinolaringoiatria, Fondazione IRCCS Policlinico “S. Matteo”, Università di Pavia, Italy
| | | | | | - Salvatore Cocuzza
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Andrea Colombo
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Laura della Vecchia
- Unit of Otorhinolaryngology General Hospital “Macchi”, ASST dei Settelaghi, Varese, Italy
| | - Nerina Denaro
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
| | | | - Danilo Galizia
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Massimiliano Garzaro
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Marco Krengli
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | - Giovanni Vittorio Lanza
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | | | - Maurizio Mancuso
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| | - Laura Masini
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
| | - Marco Carlo Merlano
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Marco Piemonte
- ENT Unit, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory Fondazione IRCCS Policlinico “S. Matteo”, Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Luca Prioglio
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | | | - Felice Scasso
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | - Agostino Serra
- University of Catania, Italy
- G.B. Morgagni Foundation, Catania, Italy
| | - Guido Valente
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Micol Zannetti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Angelo Zigliani
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| |
Collapse
|
46
|
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1588. [PMID: 31566913 PMCID: PMC7027529 DOI: 10.1002/wnan.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Paul A. Sutton
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Marianne B. Ashford
- AstraZeneca, Advanced Drug Delivery, Pharmaceutical Sciences, R&DMacclesfieldUK
| | - Kevin E. Treacher
- AstraZeneca, Pharmaceutical Technology and DevelopmentMacclesfieldUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Steve P. Rannard
- Department of Chemistry, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
47
|
O'Connell L, Winter DC. Organoids: Past Learning and Future Directions. Stem Cells Dev 2020; 29:281-289. [DOI: 10.1089/scd.2019.0227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lauren O'Connell
- Department of Surgery, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Des C. Winter
- Department of Surgery, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| |
Collapse
|
48
|
Abugomaa A, Elbadawy M. Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 5:1-5. [DOI: 10.1080/23808993.2020.1715794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
49
|
Forsythe S, Pu T, Skardal A. Using organoid models to predict chemotherapy efficacy: the future of precision oncology? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1685868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Steven Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracey Pu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
50
|
Martin SZ, Wagner DC, Hörner N, Horst D, Lang H, Tagscherer KE, Roth W. Ex vivo tissue slice culture system to measure drug-response rates of hepatic metastatic colorectal cancer. BMC Cancer 2019; 19:1030. [PMID: 31675944 PMCID: PMC6824140 DOI: 10.1186/s12885-019-6270-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023] Open
Abstract
Background The lack of predictive biomarkers or test systems contributes to high failure rates of systemic therapy in metastasized colorectal carcinoma, accounting for a still unfavorable prognosis. Here, we present an ex vivo functional assay to measure drug-response based on a tissue slice culture approach. Methods Tumor tissue slices of hepatic metastases of nine patients suffering from colorectal carcinoma were cultivated for 72 h and treated with different concentrations of the clinically relevant drugs Oxaliplatin, Cetuximab and Pembrolizumab. Easy to use, objective and automated analysis routines based on the Halo platform were developed to measure changes in proliferative activity and the morphometric make-up of the tumor. Apoptotic indices were assessed semiquantitatively. Results Untreated tumor tissue slices showed high morphological comparability with the original “in vivo”-tumor, preserving proliferation and stromal-tumor interactions. All but one patients showed a dosage dependent susceptibility to treatment with Oxaliplatin, whereas only two patients showed responses to Cetuximab and Pembrolizumab, respectively. Furthermore, we identified possible non-responders to Cetuximab therapy in absence of RAS-mutations. Conclusions This is the first time to demonstrate feasibility of the tissue slice culture approach for metastatic tissue of colorectal carcinoma. An automated readout of proliferation and tumor-morphometry allows for quantification of drug susceptibility. This strongly indicates a potential value of this technique as a patient-specific test-system of targeted therapy in metastatic colorectal cancer. Co-clinical trials are needed to customize for clinical application and to define adequate read-out cut-off values.
Collapse
Affiliation(s)
- Steve Z Martin
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. .,Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte, 10117, Berlin, Germany.
| | - Daniel C Wagner
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Nina Hörner
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Charité Mitte, 10117, Berlin, Germany
| | - Hauke Lang
- Department of General Visceral and Transplantation Surgery, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|