1
|
Peng X, Li G, Zhao J, Liu H, Wu C, Su Z, Liu Z, Fan S, Chen Y, Wu Y, Liu W, Shen H, Zheng G. Promotion of quiescence and maintenance of function of mesenchymal stem cells on substrates with surface potential. Bioelectrochemistry 2025; 164:108920. [PMID: 39904300 DOI: 10.1016/j.bioelechem.2025.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
The widespread use of human mesenchymal stem cells(hMSCs) is impeded by functional loss during prolonged expansion. Although multiple approaches have been attempted to preserve hMSCs stemness, a suitable culture system remains to be modified. The interaction between electrical signals and stem cells is expected to better maintain the function of stem cells. However, it remains unclear whether the surface potential of substrates has the potential to preserve stem cell function during in vitro expansion. In our study, hMSCs cultured on materials with different surface potentials could be induced into a reversible quiescent state, and we demonstrated that quiescent hMSCs could be reactivated and transitioned back into the proliferation cell cycle. hMSCs cultured under appropriate potential displayed superior differentiation and proliferation abilities within the same generation compared to conventional conditions. These findings underscore the importance of surface potential as a critical physical factor regulating hMSCs stemness. Manipulating the surface potential of hMSCs culture substrates holds promise for optimising preservation and culture conditions, thereby enhancing their application in tissue repair and regeneration engineering.
Collapse
Affiliation(s)
- Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Guojian Li
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, PR China
| | - Jiu Zhao
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Changhua Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yuanquan Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| |
Collapse
|
2
|
Onoki T, Kanczler J, Rawlings A, Smith M, Kim YH, Hashimoto K, Aizawa T, Oreffo ROC. Modulation of osteoblastogenesis by NRF2: NRF2 activation suppresses osteogenic differentiation and enhances mineralization in human bone marrow-derived mesenchymal stromal cells. FASEB J 2024; 38:e23892. [PMID: 39230563 DOI: 10.1096/fj.202400602r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.
Collapse
Affiliation(s)
- Takahiro Onoki
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Andrew Rawlings
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Melanie Smith
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Ko Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Zhang Z, Su Z, Li Z, Li J, Yu W, Ye G, Lin J, Che Y, Xu P, Zeng Y, Wu Y, Shen H, Xie Z. CYP7B1-mediated 25-hydroxycholesterol degradation maintains quiescence-activation balance and improves therapeutic potential of mesenchymal stem cells. Cell Chem Biol 2024; 31:1277-1289.e7. [PMID: 38382532 DOI: 10.1016/j.chembiol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China; Department of Orthopedics, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Zhikun Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yipeng Zeng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China.
| |
Collapse
|
4
|
Yin S, Wu H, Huang Y, Lu C, Cui J, Li Y, Xue B, Wu J, Jiang C, Gu X, Wang W, Cao Y. Structurally and mechanically tuned macroporous hydrogels for scalable mesenchymal stem cell-extracellular matrix spheroid production. Proc Natl Acad Sci U S A 2024; 121:e2404210121. [PMID: 38954541 PMCID: PMC11253011 DOI: 10.1073/pnas.2404210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Haipeng Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, the Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
5
|
Raik S, Sharma P, Kumar S, Rattan V, Das A, Kumar N, Srinivasan R, Bhattacharyya S. Three-dimensional spheroid culture of dental pulp-derived stromal cells enhance their biological and regenerative properties for potential therapeutic applications. Int J Biochem Cell Biol 2023; 160:106422. [PMID: 37172928 DOI: 10.1016/j.biocel.2023.106422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prakshi Sharma
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institution of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
6
|
Barzaghini B, Carelli S, Messa L, Rey F, Avanzini MA, Jacchetti E, Maghraby E, Berardo C, Zuccotti G, Raimondi MT, Cereda C, Calcaterra V, Pelizzo G. Bone Marrow Mesenchymal Stem Cells Expanded Inside the Nichoid Micro-Scaffold: a Focus on Anti-Inflammatory Response. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023:1-12. [PMID: 37363698 PMCID: PMC10027280 DOI: 10.1007/s40883-023-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 03/28/2023]
Abstract
Purpose Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application. Materials and Methods In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis. Results We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control. Conclusion The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations. Lay Summary Regenerative medicine is the research field integrating medicine, biology, and biomedical engineering. In this context, stem cells, which are a fundamental cell source able to regenerate tissues and restore damage in the body, are the key component for a regenerative therapeutic approach. When expanded outside the body, stem cells tend to differentiate spontaneously and lose regenerative potential due to external stimuli. For this reason, we exploit the scaffold named Nichoid, which mimics the in vivo cell niche architecture. In this scaffold, mesenchymal stem cells "feel at home" due to the three-dimensional mechanical stimuli, and our findings could be considered as an innovative culture system for the in vitro expansion of stem cells for clinical translation. Future Perspective The increasing demand of safe and effective cell therapies projects our findings toward the possibility of improving cell therapies based on the use of BM-MSCs, particularly for their clinical translation in lung diseases. Graphical Abstract
Collapse
Affiliation(s)
- Bianca Barzaghini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Stephana Carelli
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Erika Maghraby
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Clarissa Berardo
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Unit, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Chen Q, Yang Q, Pan C, Ding R, Wu T, Cao J, Wu H, Zhao X, Li B, Cheng X. Quiescence preconditioned nucleus pulposus stem cells alleviate intervertebral disc degeneration by enhancing cell survival via adaptive metabolism pattern in rats. Front Bioeng Biotechnol 2023; 11:1073238. [PMID: 36845177 PMCID: PMC9950514 DOI: 10.3389/fbioe.2023.1073238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Qu Yang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| |
Collapse
|
8
|
Rumman M, Dhawan J. PTPRU, a quiescence-induced receptor tyrosine phosphatase negatively regulates osteogenic differentiation of human mesenchymal stem cells. Biochem Biophys Res Commun 2022; 636:41-49. [DOI: 10.1016/j.bbrc.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
9
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
10
|
Vernon AR, Pemberton RM, Morse HR. A novel in vitro 3D model of the human bone marrow to bridge the gap between in vitro and in vivo genotoxicity testing. Mutagenesis 2022; 37:112-129. [PMID: 35394550 PMCID: PMC9071074 DOI: 10.1093/mutage/geac009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulatory 2D in vitro micronucleus (MN) assay is part of a battery of tests, used to test for genotoxicity of new and existing compounds before they are assessed in vivo (ICH S2). The 2D MN assay consists of a monolayer of cells, whereas the in vivo bone marrow (BM) setting comprises a multicellular environment within a three-dimensional extracellular matrix. Although the in vitro MN assay follows a robust protocol set out by the Organisation for Economic Co-operation and Development (OECD) to comply with regulatory bodies, some compounds have been identified as negative genotoxicants within the in vitro MN assay but marginally positive when assessed in vivo. The glucocorticoids, which are weakly positive in vivo, have generally been suggested to pose no long-term carcinogenic risk; however, for novel compounds of unknown activity, improved prediction of genotoxicity is imperative. To help address this observation, we describe a novel 3D in vitro assay which aims to replicate the results seen within the in vivo BM microenvironment. AlgiMatrix scaffolds were optimized for seeding with HS-5 human BM stromal cells as a BM microenvironment, to which the human lymphoblast cell line TK6 was added. An MN assay was performed aligning with the 2D regulatory assay protocol. Utilizing this novel 3D in vitro model of the BM, known genotoxicants (mitomycin C, etoposide, and paclitaxel), a negative control (caffeine), and in vivo positive glucocorticoids (dexamethasone and prednisolone) were investigated for the induction of MN. It was found, in agreement with historical in vivo data, that the model could accurately predict the in vivo outcome of the glucocorticoids, unlike the regulatory 2D in vitro MN assay. These preliminary results suggest our 3D MN assay may better predict the outcome of in vivo MN tests, compared with the standard 2D assay.
Collapse
Affiliation(s)
- Alexander R Vernon
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Roy M Pemberton
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - H Ruth Morse
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
11
|
Ohori-Morita Y, Niibe K, Limraksasin P, Nattasit P, Miao X, Yamada M, Mabuchi Y, Matsuzaki Y, Egusa H. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:434-449. [PMID: 35267026 PMCID: PMC9052431 DOI: 10.1093/stcltm/szab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kunimichi Niibe
- Corresponding authors: Kunimichi Niibe, DDS, PhD, Associate Professor, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city, Miyagi 980-8575, Japan. Tel: +81-22-717-8363; Fax: +81-22-717-8367;
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Praphawi Nattasit
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Xinchao Miao
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Hiroshi Egusa, DDS, PhD, Director, Center for Advanced Stem Cell and Regenerative Research, Professor and Chair, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city 980-8575, Japan. Tel: +81-22-717-8363; Fax: +81-22-717-8367;
| |
Collapse
|
12
|
Lin C, He Y, Feng Q, Xu K, Chen Z, Tao B, Li X, Xia Z, Jiang H, Cai K. Self-renewal or quiescence? Orchestrating the fate of mesenchymal stem cells by matrix viscoelasticity via PI3K/Akt-CDK1 pathway. Biomaterials 2021; 279:121235. [PMID: 34749070 DOI: 10.1016/j.biomaterials.2021.121235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
To control the fate of mesenchymal stem cells (MSCs) in a 3D environment by adjusting the mechanical parameters of MSC-loading scaffolds, is one of the hot topics in the field of regenerative biomaterials. However, a thorough understanding of the relevant MSCs behaviors affected by viscoelasticity, a dynamic physical parameter of scaffolds, is still lacking. Herein, we established an alginate hydrogel system with constant stiffness and tunable stress relaxation rate, which is a key parameter for the viscoelastic property of material. MSCs were cultured inside three groups of alginate hydrogels with various stress relaxation rates, and then RNA-seq analysis of cells was performed. Results showed that the change of stress relaxation rates of hydrogels regulated the most of the different expression genes of MSCs, which were enriched in cell proliferation-related pathways. MSCs cultured in hydrogels with fast stress relaxation rate presented a high self-renewal proliferation profile via activating phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) pathway. In contrast, a slow stress relaxation rate of hydrogels induced MSCs to enter a reversible quiescence state due to the weakened PI3K/Akt activation. Combined with a further finite element analysis, we speculated that the quiescence of MSCs could be served as a positive strategy for MSCs to deal with the matrix with a low deformation to keep stemness. Based on the results, we identified that stress relaxation rate of hydrogel was a potential physical factor of hydrogel to regulate the self-renewal or quiescence of MSCs. Thus, our findings provide a significant guiding principle for the design of MSCs-encapsulated biomaterials.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuemin Li
- Innovation Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
13
|
Wang H, Ding X, Liu C, Yang S, Zhao B. An evaluation of allogeneic freeze-dried concentrated growth factors biocompatibility in vitroand in vivo. Biomed Mater 2021; 16. [PMID: 34555823 DOI: 10.1088/1748-605x/ac2995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 11/12/2022]
Abstract
This study evaluated the biocompatibility of allogeneic freeze-dried concentrated growth factors (AFD-CGFs)in vitroandin vivo.For thein vitroexperiments, bone marrow stem cells (BMSCs) were cultured in 10% fresh allogeneic concentrated growth factors (CGFs). AFD-CGF solution was used as the experimental group, and Dulbecco's modified Eagle medium was used as control. Transmission electron microscopy (TEM) showed that the cell ultrastructure was unchanged, and membranes were intact. Scanning electron microscopy, cell counting kit-8, and quantitative polymerase chain reaction indicated that BMSCs and differentiation were unchanged between AFD-CGFs versus control groups (allp> 0.05). Alkaline phosphatase activity was higher in CGF groups (peaked at 14 d) than in the control group. Regarding thein vivoexperiments, four beagles were used for surgery and the rest as controls. Beagles were sacrificed at 2 weeks to observe acute response and membrane absorption; at 12 weeks for wound healing and chronic damage to the liver. According to general observations and histology, the CGFs of all groups were absorbed 2 weeks afterin vivoimplantation. No sign of intolerance was observed. Histology showed a slight increase in immune cells appearing in the implantation area after 2 weeks. However, no or very few inflammatory and immune cells were detected 3 months after the operation. Based on the hematoxylin and eosin staining and TEM results, the ultrastructure of the liver tissue was unchanged. In general, the results suggest that AFD-CGFs are biocompatible and may be a promising option for tissue healing.
Collapse
Affiliation(s)
- Hong Wang
- Department of Stomatology, The Second Affiliated Stomatological Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Xiaoling Ding
- Department of Stomatology, General Hospital of the PLA, Beijing 100185, People's Republic of China
| | - Changkui Liu
- Department of Stomatology, Dalian Stomatological Hospital, Dalian 116000, Liaoning, People's Republic of China
| | - Sefei Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an 710000, Shanxi, People's Republic of China
| | - Bingjing Zhao
- Department of Stomatology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523710, Guangdong, People's Republic of China.,Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
14
|
Adefegha SA, Saccol RDSP, Jantsch MH, da Silveira KL, Leal DBR. Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund's adjuvant-induced arthritic rats. J Pharm Pharmacol 2021; 73:1547-1561. [PMID: 34427673 DOI: 10.1093/jpp/rgab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study was aimed at assessing the anti-arthritic effects of hesperidin on the inflammatory markers in serum/plasma, ectoenzymes activity in platelet, reactive oxygen species (ROS), apoptosis and cell cycle in bone marrow cells of a rat model of arthritis. METHODS Fifty-six adult female Wistar rats (245-274 g) were grouped into eight of seven rats each: control rats given normal saline or 40 mg/kg of hesperidin or 80 mg/kg of hesperidin, 0.2 mg/kg of dexamethasone, arthritic rats given normal saline, or 40 mg/kg of hesperidin or 80 mg/kg of hesperidin, and 0.2 mg/kg of dexamethasone. Myeloperoxidase and nitrate plus nitrite levels were evaluated in the plasma and serum, respectively. The ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase and ecto-adenosine deaminase activities were assessed in platelets. Subsequently, the cells of the bone marrow were obtained, and the assays for ROS, apoptosis and cell cycle were evaluated using flow cytometry. KEY FINDINGS The results showed that hesperidin mitigated inflammation, modulated adenosine nucleotides and nucleoside hydrolysing enzymes and levels, minimized ROS intracellularly, attenuated apoptotic process and activated cell cycle arrest in arthritic rat. CONCLUSION This study suggests that hesperidin could be a natural and promising anti-inflammatory compound for the management of arthritis.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Renata da Silva Pereira Saccol
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Matheus Henrique Jantsch
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Karine Lanes da Silveira
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
15
|
Ødegaard KS, Ouyang L, Ma Q, Buene G, Wan D, Elverum CW, Torgersen J, Standal T, Westhrin M. Revealing the influence of electron beam melted Ti-6Al-4V scaffolds on osteogenesis of human bone marrow-derived mesenchymal stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:97. [PMID: 34406475 PMCID: PMC8373740 DOI: 10.1007/s10856-021-06572-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Porous Titanium-6Aluminum-4Vanadium scaffolds made by electron beam-based additive manufacturing (AM) have emerged as state-of-the-art implant devices. However, there is still limited knowledge on how they influence the osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs). In this study, BMSCs are cultured on such porous scaffolds to determine how the scaffolds influence the osteogenic differentiation of the cells. The scaffolds are biocompatible, as revealed by the increasing cell viability. Cells are evenly distributed on the scaffolds after 3 days of culturing followed by an increase in bone matrix development after 21 days of culturing. qPCR analysis provides insight into the cells' osteogenic differentiation, where RUNX2 expression indicate the onset of differentiation towards osteoblasts. The COL1A1 expression suggests that the differentiated osteoblasts can produce the osteoid. Alkaline phosphatase staining indicates an onset of mineralization at day 7 in OM. The even deposits of calcium at day 21 further supports a successful bone mineralization. This work shines light on the interplay between AM Ti64 scaffolds and bone growth, which may ultimately lead to a new way of creating long lasting bone implants with fast recovery times.
Collapse
Affiliation(s)
- Kristin S Ødegaard
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lingzi Ouyang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianli Ma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Di Wan
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christer W Elverum
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Torgersen
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marita Westhrin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Doron G, Temenoff JS. Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Adv Healthc Mater 2021; 10:e2100016. [PMID: 33930252 DOI: 10.1002/adhm.202100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical-scale manufacture of highly secretory MSC products.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
17
|
The Role of Extracellular Vesicles in the Development of a Cancer Stem Cell Microenvironment Niche and Potential Therapeutic Targets: A Systematic Review. Cancers (Basel) 2021; 13:cancers13102435. [PMID: 34069860 PMCID: PMC8157362 DOI: 10.3390/cancers13102435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are cancer cells that possess traits usually attributed to stem cells. An increase in CSCs can lead to more rapid cancer progression, treatment resistance and the increased likelihood of recurrence. To promote CSC survival and associated cancer progression, cancer cells enter into reciprocal crosstalk with the surrounding tissue environment, as well as with distant metastatic sites. This mechanism of communication relies, in part, on secreted factors, of which extracellular vesicles (EVs) are thought to have a critical role. This systematic review evaluates the current knowledge of cancer communication via EVs to alter the microenvironment to increase the survival and maintenance of CSCs. A total of 16 studies spanning the EV content, pathway alterations and CSC-targeting treatments provide new insights into how EVs mediate CSC traits and identify the gaps in our understanding of how modulation of the microenvironment plays a key role. Abstract Cancer stem cells (CSCs) have increasingly been shown to be a crucial element of heterogenous tumors. Although a relatively small component of the population, they increase the resistance to treatment and the likelihood of recurrence. In recent years, it has been shown, across multiple cancer types (e.g., colorectal, breast and prostate), that reciprocal communication between cancer and the microenvironment exists, which is, in part, facilitated by extracellular vesicles (EVs). However, the mechanisms of this method of communication and its influence on CSC populations is less well-understood. Therefore, the aim of this systematic review is to determine the evidence that supports the role of EVs in the manipulation of the tumor microenvironment to promote the survival of CSCs. Embase and PubMed were used to identify all studies on the topic, which were screened using PRISMA guidelines, resulting in the inclusion of 16 studies. These 16 studies reported on the EV content, pathways altered by EVs and therapeutic targeting of CSC through EV-mediated changes to the microenvironment. In conclusion, these studies demonstrated the role of EV-facilitated communication in maintaining CSCs via manipulation of the tumor microenvironment, demonstrating the potential of creating therapeutics to target CSCs. However, further works are needed to fully understand the targetable mechanisms upon which future therapeutics can be based.
Collapse
|
18
|
Gudagudi KB, Myburgh KH. Methods to Mimic In Vivo Muscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:176-189. [PMID: 33635139 DOI: 10.1089/omi.2020.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regenerative medicine research and testing of new therapeutics for muscle-related human diseases call for a deeper understanding of how human myoblasts gain and maintain quiescence in vitro versus in vivo. The more closely we can experimentally simulate the in vivo environment, the more relevance in vitro research on myoblasts will have. In this context, isolation of satellite cells from muscle tissue causes activation while myoblasts remain activated in culture, thus not simulating quiescence as in their in vivo niche. Cells synchronized for cell cycle present a good starting point for experimental intervention. In the past, myoblast quiescence has been induced using suspension culture (SuCu) and, recently, by knockout serum replacement (KOSR)-supplemented culture media. We assessed the proportion of cells in G0 and molecular regulators after combining the two quiescence-inducing approaches. Quiescence was induced in primary human myoblasts (PHMs) in vitro using KOSR-treatment for 10 days or suspension in viscous media for 2 days (SuCu), or suspension combined with KOSR-treatment for 2 days (blended method, SuCu-KOSR). Quiescence and synchronization were achieved with all three protocols (G0/G1 cell cycle arrest >90% cells). Fold-change of cell cycle controller p21 mRNA for KOSR and SuCu was 3.23 ± 0.30 and 2.86 ± 0.15, respectively. Since this was already a significant change (p < 0.05), no further change was gained with the blended method. But SuCu-KOSR significantly decreased Ki67 (p = 0.0019). Myogenic regulatory factors, Myf5 and MyoD gene expression in PHMs were much more suppressed (p = 0.0004 and p = 0.0034, respectively) in SuCu-KOSR, compared to SuCu alone. In conclusion, a homogenous pool of quiescent primary myoblasts synchronized in the G0 cell cycle phase was achieved with cells from three different donors regardless of the experimental protocol. Myogenic dedifferentiation at the level of Myogenic Regulatory Factors was greater when exposed to the blend of suspension and serum-free culture. We suggest that this blended new protocol can be considered in future biomedical research if differentiation is detected too early during myoblast expansion. This shall also inform new ways to bridge the in vitro and in vivo divides in regenerative medicine research.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Ogle ME, Doron G, Levy MJ, Temenoff JS. Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence. Tissue Eng Part A 2020; 26:1259-1271. [DOI: 10.1089/ten.tea.2020.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew J. Levy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Venugopal N, Ghosh A, Gala H, Aloysius A, Vyas N, Dhawan J. The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts. BMC Mol Cell Biol 2020; 21:25. [PMID: 32293249 PMCID: PMC7161131 DOI: 10.1186/s12860-020-00266-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Reversible cell cycle arrest (quiescence/G0) is characteristic of adult stem cells and is actively controlled at multiple levels. Quiescent cells also extend a primary cilium, which functions as a signaling hub. Primary cilia have been shown to be important in multiple developmental processes, and are implicated in numerous developmental disorders. Although the association of the cilium with G0 is established, the role of the cilium in the control of the quiescence program is still poorly understood. RESULTS Primary cilia are dynamically regulated across different states of cell cycle exit in skeletal muscle myoblasts: quiescent myoblasts elaborate a primary cilium in vivo and in vitro, but terminally differentiated myofibers do not. Myoblasts where ciliogenesis is ablated using RNAi against a key ciliary assembly protein (IFT88) can exit the cell cycle but display an altered quiescence program and impaired self-renewal. Specifically, the G0 transcriptome in IFT88 knockdown cells is aberrantly enriched for G2/M regulators, suggesting a focused repression of this network by the cilium. Cilium-ablated cells also exhibit features of activation including enhanced activity of Wnt and mitogen signaling and elevated protein synthesis via inactivation of the translational repressor 4E-BP1. CONCLUSIONS Taken together, our results show that the primary cilium integrates and dampens proliferative signaling, represses translation and G2/M genes, and is integral to the establishment of the quiescence program.
Collapse
Affiliation(s)
- Nisha Venugopal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ananga Ghosh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Hardik Gala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ajoy Aloysius
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- National Centre for Biological Sciences, Bengaluru, 560065, India
| | - Neha Vyas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Present address: St. John's Research Institute, Bengaluru, 560034, India
| | - Jyotsna Dhawan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India.
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, 560065, India.
| |
Collapse
|
21
|
Monteiro CF, Santos SC, Custódio CA, Mano JF. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902398. [PMID: 32274296 PMCID: PMC7141025 DOI: 10.1002/advs.201902398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Indexed: 05/04/2023]
Abstract
Fundamental physiologic and pathologic phenomena such as wound healing and cancer metastasis are typically associated with the migration of cells through adjacent extracellular matrix. In recent years, advances in biomimetic materials have supported the progress in 3D cell culture and provided biomedical tools for the development of models to study spheroid invasiveness. Despite this, the exceptional biochemical and biomechanical properties of human-derived materials are poorly explored. Human methacryloyl platelet lysates (PLMA)-based hydrogels are herein proposed as reliable 3D platforms to sustain in vivo-like cell invasion mechanisms. A systematic analysis of spheroid viability, size, and invasiveness is performed in three biomimetic materials: PLMA hydrogels at three different concentrations, poly(ethylene glycol) diacrylate, and Matrigel. Results demonstrate that PLMA hydrogels perfectly support the recapitulation of the tumor invasion behavior of cancer cell lines (MG-63, SaOS-2, and A549) and human bone-marrow mesenchymal stem cell spheroids. The distinct invasiveness ability of each cell type is reflected in the PLMA hydrogels and, furthermore, different mechanical properties produce an altered invasive behavior. The herein presented human PLMA-based hydrogels could represent an opportunity to develop accurate cell invasiveness models and open up new possibilities for humanized and personalized high-throughput screening and validation of anticancer drugs.
Collapse
Affiliation(s)
- Cátia F. Monteiro
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Sara C. Santos
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Catarina A. Custódio
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - João F. Mano
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| |
Collapse
|
22
|
Onodera Y, Teramura T, Takehara T, Fukuda K. Transforming Growth Factor β-Activated Kinase 1 Regulates Mesenchymal Stem Cell Proliferation Through Stabilization of Yap1/Taz Proteins. Stem Cells 2019; 37:1595-1605. [PMID: 31461199 PMCID: PMC6916189 DOI: 10.1002/stem.3083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent stem cells capable of differentiation into a variety of cell types, proliferation, and production of clinically useful secretory factors. These advantages make BMMSCs highly useful for cell transplantation therapy. However, the molecular network underlying BMMSC proliferation remains poorly understood. Here, we showed that TGFβ-activated kinase 1 (Tak1) is a critical molecule that regulates the activation of cell cycling and that Tak1 inhibition leads to quiescence in BMMSCs both in vivo and in vitro. Mechanistically, Tak1 was phosphorylated by growth factor stimulations, allowing it to bind and stabilize Yap1/Taz, which could then be localized to the nucleus. We also demonstrated that the quiescence induction by inhibiting Tak1 increased oxidized stress tolerance and improved BMMSC engraftment in intramuscular and intrabone marrow cell transplantation models. This study reveals a novel pathway controlling BMMSC proliferation and suggests a useful method to improve the therapeutic effect of BMMSC transplantation. Stem Cells 2019;37:1595-1605.
Collapse
Affiliation(s)
- Yuta Onodera
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| |
Collapse
|
23
|
Zhang F, Peng W, Zhang J, Dong W, Yuan D, Zheng Y, Wang Z. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning. J Cell Biochem 2019; 120:19902-19914. [PMID: 31347718 PMCID: PMC6852471 DOI: 10.1002/jcb.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Clinically, bone marrow mesenchymal stem cells (BMSCs) have been used in treatment of many diseases, but the local oxidative stress (OS) of lesion severely limits the survival of BMSCs, which reduces the efficacy of BMSCs transplantation. Therefore, enhancing the anti‐OS stress ability of BMSCs is a key breakthrough point. Preconditioning is a common protective mechanism for cells or body. Here, the aim of this study was to investigate the effects of OS preconditioning on the anti‐OS ability of BMSCs and its mechanism. Fortunately, OS preconditioning can increase the expression of superoxide dismutase, catalase, NQO1, and heme oxygenase 1 through the nuclear factor erythroid 2‐related factor 2 pathway, thereby decreased the intracellular reactive oxygen species (ROS) levels, relieved the damage of ROS to mitochondria, DNA and cell membrane, enhanced the anti‐OS ability of BMSCs, and promoted the survival of BMSCs under OS.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wuxun Peng
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Zhang
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wentao Dong
- Department of Trauma orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dajiang Yuan
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yinggang Zheng
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenwen Wang
- Trauma Teaching and Research Department, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
24
|
Kureel SK, Mogha P, Khadpekar A, Kumar V, Joshi R, Das S, Bellare J, Majumder A. Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence. Biol Open 2019; 8:bio039453. [PMID: 31023646 PMCID: PMC6503999 DOI: 10.1242/bio.039453] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), during in vitro expansion, gradually lose their distinct spindle morphology, self-renewal ability, multi-lineage differentiation potential and enter replicative senescence. This loss of cellular function is a major roadblock for clinical applications which demand cells in large numbers. Here, we demonstrate a novel role of substrate stiffness in the maintenance of hMSCs over long-term expansion. When serially passaged for 45 days from passage 3 to passage 18 on polyacrylamide gel of Young's modulus E=5 kPa, hMSCs maintained their proliferation rate and showed nine times higher population doubling in comparison to their counterparts cultured on plastic Petri-plates. They did not express markers of senescence, maintained their morphology and other mechanical properties such as cell stiffness and cellular traction, and were significantly superior in adipogenic differentiation potential. These results were demonstrated in hMSCs from two different sources, umbilical cord and bone marrow. In summary, our result shows that a soft gel is a suitable substrate to maintain the stemness of mesenchymal stem cells. As preparation of polyacrylamide gel is a well-established, and well-standardized protocol, we propose that this novel system of cell expansion will be useful in therapeutic and research applications of hMSCs.
Collapse
Affiliation(s)
- Sanjay Kumar Kureel
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Pankaj Mogha
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Akshada Khadpekar
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Vardhman Kumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai 400076, India
| |
Collapse
|
25
|
Autophagy mediates serum starvation-induced quiescence in nucleus pulposus stem cells by the regulation of P27. Stem Cell Res Ther 2019; 10:118. [PMID: 30987681 PMCID: PMC6466800 DOI: 10.1186/s13287-019-1219-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Adult stem cells exist in a quiescent state (G0) within the in vivo niche; the loss of quiescence often leads to a decrease in the number and function of adult stem cells, impairing tissue regeneration and repair. Endogenous repair by nucleus pulposus-derived stem cells has recently shown promising regenerative potential for the treatment of intervertebral disc degeneration (IDD). However, the number and function of nucleus pulposus stem cells (NPSCs) declined throughout the process of IDD. This effect may have a specific relationship with quiescence. However, the biology of the quiescent NPSCs has not been reported. Methods First, we established an in vitro model for NPSC quiescence with serum starvation. The induction of G0 was confirmed by flow cytometry analyses of dual staining with Hoechst 33342 and Pyronin Y, immunofluorescent staining with Ki67 and Western blot analysis of P27 expression. NPSCs were cultured under serum starvation conditions for a long time period (21 days). To examine the functional phenotype of quiescent NPSCs, the cells were reactivated with 10% serum and differentiated into osteogenic and chondrogenic lineages in vitro. The number of colony-forming units was also estimated. To elucidate the role of autophagy in the quiescence of NPSCs, we activated and inhibited autophagy in starved cells with rapamycin and chloroquine, respectively. Then, the expression of P27 was evaluated by Western blot analysis, and the immunofluorescence of Ki67 was assessed. Finally, we assessed the role of P27 siRNA in NPSC quiescence by flow cytometry analyses and 5-ethynyl-20-deoxyuridine incorporation assays under normal and serum-starved conditions. Results NPSC quiescence was induced by 48 h of serum starvation, and they maintained quiescence for up to 21 days. Upon reactivation with serum, the quiescent NPSCs re-entered the cell cycle and exhibited enhanced clonogenic self-renewal, osteogenic differentiation and chondrogenic differentiation potentials compared to control NPSCs under normal culture conditions. We also found that autophagy underlay serum starvation-induced NPSC quiescence. Further study demonstrated that autophagy mediated the quiescence of NPSCs by regulating P27. Conclusions Serum starvation efficiently induces quiescence in NPSCs. Quiescent NPSCs maintain stem cell properties. Our study reveals that autophagy plays a role in maintaining NPSC quiescence and that autophagy mediates the quiescence of NPSCs by regulating P27. We conclude that the induction of quiescence in cultured NPSCs provides a useful model for the analysis of mechanisms that might be relevant to the biology of NPSCs in vivo.
Collapse
|
26
|
Wang Y, Huang J, Gong L, Yu D, An C, Bunpetch V, Dai J, Huang H, Zou X, Ouyang H, Liu H. The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I. iScience 2019; 15:66-78. [PMID: 31030183 PMCID: PMC6487373 DOI: 10.1016/j.isci.2019.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 02/07/2023] Open
Abstract
A low surface expression level of human leukocyte antigen class I (HLA-I) ensures that the mesenchymal stem cells (MSCs) escape from the allogeneic recipients' immunological surveillance. Here, we discovered that both transcriptional and synthesis levels of HLA-I in MSCs increased continuously after interferon (IFN)-γ treatment, whereas interestingly, their surface HLA-I expression was downregulated after reaching an HLA-I surface expression peak. Microarray data indicated that the post-transcriptional process plays an important role in the downregulation of surface HLA-I. Further studies identified that IFN-γ-treated MSCs accelerated HLA-I endocytosis through a clathrin-independent dynamin-dependent endocytosis pathway. Furthermore, cells that have self-downregulated surface HLA-I expression elicit a weaker immune response than they previously could. Thus uncovering the plasticity of MSCs in the regulation of HLA-I surface expression would reveal insights into the membrane transportation events leading to the maintenance of low surface HLA-I expression, providing more evidence for selecting and optimizing low-immunogenic MSCs to improve the therapeutic efficiency. hESC-MSCs have the plasticity of maintaining low HLA-I expression on cell surface hESC-MSCs downregulate the surface HLA-I expression through endocytosis of HLA-I hESC-MSCs with lower HLA-I surface expression induce weaker MLR and slighter DTH
Collapse
Affiliation(s)
- Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, Zhejiang University, School of Medicine, Zhejiang 310009, P.R.China; Orthopaedics Research Institute of Zhejiang University, Zhejiang 310009, P.R.China
| | - Lin Gong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Dongsheng Yu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R.China
| | - Chenrui An
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jun Dai
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R. China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310003, P.R.China
| | - Xiaohui Zou
- Central Laboratory, the First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R.China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Sports Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University, School of Medicine, Hangzhou 310003, P. R. China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, P.R. China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China.
| |
Collapse
|