1
|
Jeon SG, Lee J, Lee SJ, Seo J, Choi J, Bae DH, Chun DH, Ko SY, Shin HS, Joo L, Lee SH, Lim YC, Choi WH, Yoo J. Salivary gland organoid transplantation as a therapeutic option for radiation-induced xerostomia. Stem Cell Res Ther 2024; 15:265. [PMID: 39183328 PMCID: PMC11346288 DOI: 10.1186/s13287-024-03833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Xerostomia is a pathological condition characterized by decreased salivation due to salivary gland dysfunction and is frequently attributed to irreversible damage as a side effect of radiation therapy. Stem cell-derived organoid therapy has garnered attention as a promising avenue for resolving this issue. However, Matrigel, a hydrogel commonly used in organoid culture, is considered inappropriate for clinical use due to its undefined composition and immunogenicity. In this study, we aimed to develop a method for culturing collagen-based human salivary gland organoids (hSGOs) suitable for clinical applications and evaluated their therapeutic effectiveness. METHODS Human salivary gland stem cells were isolated from the salivary gland tissues and cultured in both Matrigel and collagen. We compared the gene and protein expression patterns of salivary gland-specific markers and measured amylase activity in the two types of hSGOs. To evaluate the therapeutic effects, we performed xenogeneic and allogeneic transplantation using human and mouse salivary gland organoids (hSGOs and mSGOs), respectively, in a mouse model of radiation-induced xerostomia. RESULTS hSGOs cultured in Matrigel exhibited self-renewal capacity and differentiated into acinar and ductal cell lineages. In collagen, they maintained a comparable self-renewal ability and more closely replicated the characteristics of salivary gland tissue following differentiation. Upon xenotransplantation of collagen-based hSGOs, we observed engraftment, which was verified by detecting human-specific nucleoli and E-cadherin expression. The expression of mucins, especially MUC5B, within the transplanted hSGOs suggested a potential improvement in the salivary composition. Moreover, the allograft procedure using mSGOs led to increased salivation, validating the efficacy of our approach. CONCLUSIONS This study showed that collagen-based hSGOs can be used appropriately in clinical settings and demonstrated the effectiveness of an allograft procedure. Our research has laid the groundwork for the future application of collagen-based hSGOs in allogeneic clinical trials.
Collapse
Affiliation(s)
- Seong Gyeong Jeon
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jaeseon Lee
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Su Jeong Lee
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jaehwi Seo
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jinkyoung Choi
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Duk-Hee Chun
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Seung Young Ko
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Hyun Soo Shin
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Lina Joo
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, 120, Neungdong-ro, Seoul, 05029, Republic of Korea.
| | - Woo Hee Choi
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| | - Jongman Yoo
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Santiviparat S, Swangchan-Uthai T, Stout TAE, Buranapraditkun S, Setthawong P, Taephatthanasagon T, Rodprasert W, Sawangmake C, Tharasanit T. De novo reconstruction of a functional in vivo-like equine endometrium using collagen-based tissue engineering. Sci Rep 2024; 14:9012. [PMID: 38641671 PMCID: PMC11031578 DOI: 10.1038/s41598-024-59471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.
Collapse
Affiliation(s)
- Sawita Santiviparat
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Swangchan-Uthai
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tom A E Stout
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Chulalongkorn University, Bangkok, 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, Center of Excellence in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
4
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
5
|
Fowler EW, Witt RL, Jia X. Basement Membrane Mimetic Hydrogel Cooperates with Rho-Associated Protein Kinase Inhibitor to Promote the Development of Acini-Like Salivary Gland Spheroids. ADVANCED NANOBIOMED RESEARCH 2023; 3:2300088. [PMID: 38645834 PMCID: PMC11031203 DOI: 10.1002/anbr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels were prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce "hyperGel+" or "hyperGel", respectively. Differential scanning fluorescence experiments confirmed the ability of the sulphated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels were nanoporous, cytocompatibile and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. Incorporation of sulfated HPG species in the hydrogel enhanced cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor, Y-27632 (Y-27), led to the development of spheroids with a central lumen, increased the expression of acinar marker aquaporin-3 at the transcript level (AQP3), and decreased the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-β) targets SMAD2/3 was also observed in Y27-treated cultures, suggesting attenuation of TGF-β signaling. Thus, hyperGel+ cooperates with the ROCK inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.
Collapse
Affiliation(s)
- Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Robert L. Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, Delaware, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
6
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
7
|
Saleem R, Carpenter G. The Role of mTOR and Injury in Developing Salispheres. Biomedicines 2023; 11:604. [PMID: 36831139 PMCID: PMC9953188 DOI: 10.3390/biomedicines11020604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Salispheres are the representative primitive cells of salivary glands grown in vitro in a nonadherent system. In this study, we used the ligation model for salisphere isolation after seven days of obstruction of the main excretory duct of the submandibular gland. The mammalian target of rapamycin (mTOR) is a critical signalling pathway involved in many cellular functions and is suggested to play a role in atrophy. We determined the role of mTOR and injury in the formation and development of salispheres. Morphological assessments and Western blot analysis illustrated how mTOR inhibition by rapamycin impaired the assembly of salispheres and how indirect stimulation of mTOR by lithium chloride (LiCl) assisted in the expansion of the salispheres. The use of rapamycin highlighted the necessity of mTOR for the development of salispheres as it affected the morphology and inhibited the phosphorylation of the eukaryotic translation initiation factor 4E-binding protein (4e-bp1). mTOR activity also appeared to be a crucial regulator for growing salispheres, even from the ligated gland. However, atrophy induced by ductal ligation resulted in a morphological alteration. The phosphorylation of 4e-bp1 and S6 ribosomal protein in cultured salispheres from ligated glands suggests that mTOR was not responsible for the morphological modification, but other unexplored factors were involved. This exploratory study indicates that active mTOR is essential for growing healthy salispheres. In addition, mTOR stimulation by LiCl could effectively play a role in the expansion of salispheres. The impact of atrophy on salispheres suggests a complex mechanism behind the morphological alteration, which requires further investigation.
Collapse
Affiliation(s)
- Rimah Saleem
- College of Medicine, Alfaisal University, Al Takhassousi, Riyadh 11533, Saudi Arabia
| | - Guy Carpenter
- Salivary Research, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
8
|
Abstract
Oral and maxillofacial organoids, as three-dimensional study models of organs, have attracted increasing attention in tissue regeneration and disease modeling. However, traditional strategies for organoid construction still fail to precisely recapitulate the key characteristics of real organs, due to the difficulty in controlling the self-organization of cells in vitro. This review aims to summarize the recent progress of novel approaches to engineering oral and maxillofacial organoids. First, we introduced the necessary components and their roles in forming oral and maxillofacial organoids. Besides, we discussed cutting-edge technology in advancing the architecture and function of organoids, especially focusing on oral and maxillofacial tissue regeneration via novel strategy with designed cell-signal scaffold compounds. Finally, current limitations and future prospects of oral and maxillofacial organoids were represented to provide guidance for further disciplinary progression and clinical application to achieve organ regeneration.
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| |
Collapse
|
9
|
Shaffi SC, Zakaria N, Halim NSSA, Ishtiah AA, Patar AA, Yahaya BH. The Rapid Development of Airway Organoids: A Direct Culture Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023. [PMID: 36991294 DOI: 10.1007/5584_2023_767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
INTRODUCTION The lung is a complex organ composed of numerous cell types. Exposure to air pollutants, cigarette smoke, bacteria, viruses, and many others may cause injury to the epithelial cells that line the conducting airways and alveoli. Organoids are the 3D self-organising structures grown from stem cells and generated from adult stem and progenitor cells. Lung organoids are fascinating tools to investigate human lung development in vitro. The objective of this study was to establish a rapid method for generating lung organoids with a direct culture strategy. METHODS Trachea and lung organoids were derived from mixed cell populations of mice primary airway epithelial cells, fibroblasts, and lung microvascular endothelial cells and directly digested from the whole cell population in the distal lung. RESULTS The formation of spheres appeared as early as 3 days and continued to proliferate until day 5. The generation of trachea and lung organoids self-organised into discrete epithelial structures was formed within less than 10 days. CONCLUSION We conclude that researchers will be able to examine cellular involvement during organ formation and molecular networks because organoids come in a variety of morphologies and stages of development, and this organoid protocol may be used for modelling lung diseases as a platform for therapeutic purposes and suitable for personalised medicine for respiratory diseases.
Collapse
Affiliation(s)
- Syahidatulamali Che Shaffi
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, Penang, Malaysia
| | - Norashikin Zakaria
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, Penang, Malaysia
| | - Nur Shuhaidatul Sarmiza Abdul Halim
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, Penang, Malaysia
| | - Anan A Ishtiah
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, Penang, Malaysia
| | - Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
10
|
Pillai S, Munguia-Lopez JG, Tran SD. Hydrogels for Salivary Gland Tissue Engineering. Gels 2022; 8:730. [PMID: 36354638 PMCID: PMC9690182 DOI: 10.3390/gels8110730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
Mimicking the complex architecture of salivary glands (SGs) outside their native niche is challenging due their multicellular and highly branched organization. However, significant progress has been made to recapitulate the gland structure and function using several in vitro and ex vivo models. Hydrogels are polymers with the potential to retain a large volume of water inside their three-dimensional structure, thus simulating extracellular matrix properties that are essential for the cell and tissue integrity. Hydrogel-based culture of SG cells has seen a tremendous success in terms of developing platforms for cell expansion, building an artificial gland, and for use in transplantation to rescue loss of SG function. Both natural and synthetic hydrogels have been used widely in SG tissue engineering applications owing to their properties that support the proliferation, reorganization, and polarization of SG epithelial cells. While recent improvements in hydrogel properties are essential to establish more sophisticated models, the emphasis should still be made towards supporting factors such as mechanotransduction and associated signaling cues. In this concise review, we discuss considerations of an ideal hydrogel-based biomaterial for SG engineering and their associated signaling pathways. We also discuss the current advances made in natural and synthetic hydrogels for SG tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
11
|
Fowler EW, van Venrooy EJ, Witt RL, Jia X. A TGFβR inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Sci Rep 2022; 12:15008. [PMID: 36056161 PMCID: PMC9440137 DOI: 10.1038/s41598-022-19253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Salivary gland tissue engineering offers an attractive alternative for the treatment of radiation-induced xerostomia. Key to the success of this approach is the maintenance and expansion of secretory acinar cells in vitro. However, recent studies revealed that in vitro culture of primary salivary gland epithelial cells led to undesirable upregulation of the expression of keratin-7 (K7), a marker of ductal phenotype and frequently associated with cellular stress. We have previously shown that hyaluronic acid (HA)-based, RGDSP-decorated hydrogels support the 3D growth and assembly of primary human salivary gland stem/progenitor cells (hS/PCs). Here, we investigate whether the RGDSP culture also promotes K7 expression, and if so, what factors govern the K7 expression. Compared to hS/PCs maintained in blank HA gels, those grown in RGDSP cultures expressed a significantly higher level of K7. In other tissues, various transforming growth factor-β (TGF-β) superfamily members are reported to regulate K7 expression. Similarly, our immunoblot array and ELISA experiments confirmed the increased expression of TGF-β1 and growth/differentiation factor-15 (GDF-15) in RGDSP cultures. However, 2D model studies show that only TGF-β1 is required to induce K7 expression in hS/PCs. Immunocytochemical analysis of the intracellular effectors of TGF-β signaling, SMAD 2/3, further confirmed the elevated TGF-β signaling in RGDSP cultures. To maximize the regenerative potential of h/SPCs, cultures were treated with a pharmacological inhibitor of TGF-β receptor, A83-01. Our results show that A83-01 treatment can repress K7 expression not only in 3D RGDSP cultures but also under 2D conditions with exogenous TGF-β1. Collectively, we provide a link between TGF-β signaling and K7 expression in hS/PC cultures and demonstrate the effectiveness of TGF-β inhibition to repress K7 expression while maintaining the ability of RGDSP-conjugated HA gels to facilitate the rapid development of amylase expressing spheroids. These findings represent an important step towards regenerating salivary function with a tissue-engineered salivary gland.
Collapse
Affiliation(s)
- Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Emmett J van Venrooy
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
12
|
Piraino LR, Benoit DSW, DeLouise LA. Optimizing Soluble Cues for Salivary Gland Tissue Mimetics Using a Design of Experiments (DoE) Approach. Cells 2022; 11:1962. [PMID: 35741092 PMCID: PMC9222211 DOI: 10.3390/cells11121962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The development of therapies to prevent or treat salivary gland dysfunction has been limited by a lack of functional in vitro models. Specifically, critical markers of salivary gland secretory phenotype downregulate rapidly ex vivo. Here, we utilize a salivary gland tissue chip model to conduct a design of experiments (DoE) approach to test combinations of seven soluble cues that were previously shown to maintain or improve salivary gland cell function. This approach uses statistical techniques to improve efficiency and accuracy of combinations of factors. The DoE-designed culture conditions improve markers of salivary gland function. Data show that the EGFR inhibitor, EKI-785, maintains relative mRNA expression of Mist1, a key acinar cell transcription factor, while FGF10 and neurturin promote mRNA expression of Aqp5 and Tmem16a, channel proteins involved in secretion. Mist1 mRNA expression correlates with increased secretory function, including calcium signaling and mucin (PAS-AB) staining. Overall, this study demonstrates that media conditions can be efficiently optimized to support secretory function in vitro using a DoE approach.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Yoon YJ, Kim D, Tak KY, Hwang S, Kim J, Sim NS, Cho JM, Choi D, Ji Y, Hur JK, Kim H, Park JE, Lim JY. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 2022; 13:3291. [PMID: 35672412 PMCID: PMC9174290 DOI: 10.1038/s41467-022-30934-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures. Murine and human salivary gland organoids express gland-specific genes and proteins of acinar, myoepithelial, and duct cells, and exhibit gland functions when stimulated with neurotransmitters. Furthermore, human salivary gland organoids are established from isolated basal or luminal cells, retaining their characteristics. Single-cell RNA sequencing also indicates that human salivary gland organoids contain heterogeneous cell types and replicate glandular diversity. Our protocol also enables the generation of tumoroid cultures from benign and malignant salivary gland tumor types, in which tumor-specific gene signatures are well-conserved. In this study, we provide an experimental platform for the exploration of precision medicine in the era of tissue regeneration and anticancer treatment.
Collapse
Affiliation(s)
- Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dojin Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngmi Ji
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Junho K Hur
- Department of Genetics, College of Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Thiemann RF, Varney S, Moskwa N, Lamar J, Larsen M, LaFlamme SE. Regulation of myoepithelial differentiation. PLoS One 2022; 17:e0268668. [PMID: 35617216 PMCID: PMC9135247 DOI: 10.1371/journal.pone.0268668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
The salivary gland can be permanently impaired by radiation treatment for head and neck cancers. Efforts at tissue regeneration have focused on saliva-producing acinar cells. However, myoepithelial cells are also critical to gland function, but mechanisms that regulate their differentiation are poorly defined. To study myoepithelial differentiation, we employed mSG-PAC1 murine salivary gland epithelial cells. We demonstrate that mSG-PAC1 spheroids exhibit phenotypic plasticity between pro-acinar and myoepithelial cell fates. Increased expression of pro-acinar/acinar or myoepithelial RNAs was identified from spheroids cultured under different media conditions by microarray followed by gene-set enrichment analysis. Spheroids cultured with different medium components expressed proteins typical of either acinar or myoepithelial cells, as detected by immunocytochemistry. We demonstrate that the pattern of TAZ expression in the epithelial compartment of the differentiating murine salivary gland correlates with the expression of the myoepithelial marker alpha-SMA, as is the case for TAZ expression in mSG-PAC1 spheroids. Our analysis also indicates that YAP/TAZ target genes are upregulated together with myoepithelial markers. Importantly, siRNA targeting of TAZ expression in mSG-PAC1 spheroids diminished the expression of myoepithelial markers. Our results in this in vitro cell model implicate TAZ signaling in myoepithelial differentiation.
Collapse
Affiliation(s)
- Renee F. Thiemann
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Scott Varney
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - Susan E. LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Song Y, Sharipol A, Uchida H, Ingalls MH, Piraino L, Mereness JA, Moyston T, DeLouise LA, Ovitt CE, Benoit DS. Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within Matrix Metalloproteinase (MMP)-Degradable Hydrogels to Maintain Tissue Structure and Function. Adv Healthc Mater 2022; 11:e2101948. [PMID: 34994104 PMCID: PMC8986612 DOI: 10.1002/adhm.202101948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | - Jared A. Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
17
|
Moskwa N, Mahmood A, Nelson DA, Altrieth AL, Forni PE, Larsen M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development 2022; 149:dev200167. [PMID: 35224622 PMCID: PMC8977102 DOI: 10.1242/dev.200167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Stromal cells can direct the differentiation of epithelial progenitor cells during organ development. Fibroblast growth factor (FGF) signaling is essential for submandibular salivary gland development. Through stromal fibroblast cells, FGF2 can indirectly regulate proacinar cell differentiation in organoids, but the mechanisms are not understood. We performed single-cell RNA-sequencing and identified multiple stromal cell subsets, including Pdgfra+ stromal subsets expressing both Fgf2 and Fgf10. When combined with epithelial progenitor cells in organoids, magnetic-activated cell-sorted PDGFRα+ cells promoted proacinar cell differentiation similarly to total stroma. Gene expression analysis revealed that FGF2 increased the expression of multiple stromal genes, including Bmp2 and Bmp7. Both BMP2 and BMP7 synergized with FGF2, stimulating proacinar cell differentiation but not branching. However, stromal cells grown without FGF2 did not support proacinar organoid differentiation and instead differentiated into myofibroblasts. In organoids, TGFβ1 treatment stimulated myofibroblast differentiation and inhibited the proacinar cell differentiation of epithelial progenitor cells. Conversely, FGF2 reversed the effects of TGFβ1. We also demonstrated that adult salivary stromal cells were FGF2 responsive and could promote proacinar cell differentiation. These FGF2 signaling pathways may have applications in future regenerative therapies.
Collapse
Affiliation(s)
- Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ayma Mahmood
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Amber L. Altrieth
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
18
|
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering (Basel) 2022; 9:bioengineering9010038. [PMID: 35049747 PMCID: PMC8773299 DOI: 10.3390/bioengineering9010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.
Collapse
|
19
|
Kim D, Yoon YJ, Choi D, Kim J, Lim JY. 3D Organoid Culture From Adult Salivary Gland Tissues as an ex vivo Modeling of Salivary Gland Morphogenesis. Front Cell Dev Biol 2021; 9:698292. [PMID: 34458260 PMCID: PMC8397473 DOI: 10.3389/fcell.2021.698292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dojin Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Piraino LR, Benoit DSW, DeLouise LA. Salivary Gland Tissue Engineering Approaches: State of the Art and Future Directions. Cells 2021; 10:1723. [PMID: 34359893 PMCID: PMC8303463 DOI: 10.3390/cells10071723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Salivary gland regeneration is important for developing treatments for radiation-induced xerostomia, Sjögren's syndrome, and other conditions that cause dry mouth. Culture conditions adopted from tissue engineering strategies have been used to recapitulate gland structure and function to study and regenerate the salivary glands. The purpose of this review is to highlight current trends in the field, with an emphasis on soluble factors that have been shown to improve secretory function in vitro. A PubMed search was conducted to identify articles published in the last 10 years and articles were evaluated to identify the most promising approaches and areas for further research. Results showed increasing use of extracellular matrix mimetics, such as Matrigel®, collagen, and a variety of functionalized polymers. Soluble factors that provide supportive cues, including fibroblast growth factors (FGFs) and neurotrophic factors, as well as chemical inhibitors of Rho-associated kinase (ROCK), epidermal growth factor receptor (EGFR), and transforming growth factor β receptor (TGFβR) have shown increases in important markers including aquaporin 5 (Aqp5); muscle, intestine, and stomach expression 1 (Mist1); and keratin (K5). However, recapitulation of tissue function at in vivo levels is still elusive. A focus on identification of soluble factors, cells, and/or matrix cues tested in combination may further increase the maintenance of salivary gland secretory function in vitro. These approaches may also be amenable for translation in vivo to support successful regeneration of dysfunctional glands.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Kim K, Min S, Kim D, Kim H, Roh S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021; 26:molecules26092658. [PMID: 34062818 PMCID: PMC8124333 DOI: 10.3390/molecules26092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland stem cells (SGSCs) are potential cell sources for the treatment of salivary gland diseases. The control of cell survival is an essential factor for applying stem cells to regenerative medicine or stem cell-based research. The purpose of this study was to investigate the effects of the ROCK inhibitor Y-27632 on the survival of SGSCs and its underlying mechanisms. SGSCs were isolated from mouse submandibular glands and cultured in suspension. Treatment with Y-27632 restored the viability of SGSCs that was significantly decreased during isolation and the subsequent culture. Y-27632 upregulated the expression of anti-apoptotic protein BCL-2 in SGSCs and, in the apoptosis assay, significantly reduced apoptotic and necrotic cell populations. Matrigel was used to mimic the extracellular environment of an intact salivary gland. The expression of genes regulating apoptosis and the ROCK signaling pathway was significantly reduced when SGSCs were embedded in Matrigel. SGSCs cultured in Matrigel and treated with Y-27632 showed no difference in the total numbers of spheroids and expression levels of apoptosis-regulating genes. Matrigel-embedded SGSCs treated with Y-27632 increased the number of spheroids with budding structures and the expression of acinar cell-specific marker AQP5. We demonstrate the protective effects of Y-27632 against dissociation-induced apoptosis of SGSCs during their culture in vitro.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA;
| | - Hyewon Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-880-2333
| |
Collapse
|
22
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
23
|
Okamoto T, duVerle D, Yaginuma K, Natsume Y, Yamanaka H, Kusama D, Fukuda M, Yamamoto M, Perraudeau F, Srivastava U, Kashima Y, Suzuki A, Kuze Y, Takahashi Y, Ueno M, Sakai Y, Noda T, Tsuda K, Suzuki Y, Nagayama S, Yao R. Comparative Analysis of Patient-Matched PDOs Revealed a Reduction in OLFM4-Associated Clusters in Metastatic Lesions in Colorectal Cancer. Stem Cell Reports 2021; 16:954-967. [PMID: 33711267 PMCID: PMC8072036 DOI: 10.1016/j.stemcr.2021.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the major cause of cancer-related death, but whether metastatic lesions exhibit the same cellular composition as primary tumors has yet to be elucidated. To investigate the cellular heterogeneity of metastatic colorectal cancer (CRC), we established 72 patient-derived organoids (PDOs) from 21 patients. Combined bulk transcriptomic and single-cell RNA-sequencing analysis revealed decreased gene expression of markers for differentiated cells in PDOs derived from metastatic lesions. Paradoxically, expression of potential intestinal stem cell markers was also decreased. We identified OLFM4 as the gene most strongly correlating with a stem-like cell cluster, and found OLFM4+ cells to be capable of initiating organoid culture growth and differentiation capacity in primary PDOs. These cells were required for the efficient growth of primary PDOs but dispensable for metastatic PDOs. These observations demonstrate that metastatic lesions have a cellular composition distinct from that of primary tumors; patient-matched PDOs are a useful resource for analyzing metastatic CRC. Seventy-two PDOs were established from 21 stage IV CRC patients Forty-one DEGs were identified between primary and corresponding metastatic PODs scRNA-seq analysis identified OLFM4 as a potential cancer stem cell marker Different roles of OLFM4+ cells in primary and metastatic PDOs were demonstrated
Collapse
Affiliation(s)
- Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David duVerle
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Katsuyuki Yaginuma
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Kusama
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mayuko Fukuda
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mayuko Yamamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fanny Perraudeau
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Upasna Srivastava
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuuta Kuze
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yu Takahashi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masashi Ueno
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuo Noda
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Tsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
24
|
Tanaka J, Mishima K. In vitro three-dimensional culture systems of salivary glands. Pathol Int 2020; 70:493-501. [PMID: 32367629 DOI: 10.1111/pin.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Dry mouth can be caused by salivary gland hypofunction due to Sjögren's syndrome (SS) or radiation therapy for head and neck cancer, and it can also be a side effect of medications. The use of sialagogues effectively increases saliva secretion in patients with dry mouth. However, the application of sialagogues is not always satisfactory because of their side effects, such as sweating, nausea, runny nose and diarrhea. Two-dimensional (2D) cell cultures have been used not only for drug screening and discovery but also to clarify disease mechanisms. However, three-dimensional (3D) cell cultures are expected to be even more advantageous than 2D cell cultures. Therefore, we have tried to develop an in vitro cell culture system that can reconstitute 3D salivary glands. Sox9 and Foxc1 were identified as important genes that differentiate mouse embryonic stem cell-derived oral ectoderm into salivary gland placode. Using these genes and organoid culture systems, we succeeded in generating salivary gland organoids that exhibited a morphology and gene expression profile that were similar to those of the embryonic rudiment from which salivary glands arise in normal mice. These organoids are expected to be a promising tool for disease modeling, drug discovery and regenerative medicine in salivary glands.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|