1
|
Wu SK, Tsai CL, Mir A, Hynynen K. MRI-guided focused ultrasound for treating Parkinson's disease with human mesenchymal stem cells. Sci Rep 2025; 15:2029. [PMID: 39815002 PMCID: PMC11735764 DOI: 10.1038/s41598-025-85811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN. Human MSCs were injected immediately before sonication. Here, we show that we can deliver human MSCs into Parkinsonian rats through MRgFUS-induced BBB modulation using an acoustic controller. Stem cells were identified in the sonicated brain regions using surface markers, indicating the feasibility of MSC delivery via MRgFUS. MSCs + FUS treatment significantly improved the behavioural outcomes compared with control, FUS alone, and MSCs alone groups (p < 0.05). In the quantification analysis of the TH stain, a significant reservation of dopamine neurons was seen in the MSCs + FUS group as compared with the MSCs group (ST: p = 0.03; SN: p = 0.0005). Mesenchymal stem cell therapy may be a viable treatment option for neurodegenerative diseases such as Parkinson's. Transcranial MRgFUS serves as an efficacious and safe method for targeted and minimally invasive stem cell homing.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Aisha Mir
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:15-30. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Thanh-Thuy Vo Le
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
4
|
Seo Y, Chang KW, Lee J, Kong C, Shin J, Chang JW, Na YC, Chang WS. Optimal timing for drug delivery into the hippocampus by focused ultrasound: A comparison of hydrophilic and lipophilic compounds. Heliyon 2024; 10:e29480. [PMID: 38644896 PMCID: PMC11033133 DOI: 10.1016/j.heliyon.2024.e29480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Aims Previous studies have reported that focused ultrasound (FUS) helps modulate the blood-brain barrier (BBB). These studies have generally used the paracellular pathway owing to tight junction proteins (TJPs) regulation. However, BBB transport pathways also include diffusion and transcytosis. Few studies have examined transcellular transport across endothelial cells. We supposed that increased BBB permeability caused by FUS may affect transcytosis. We investigated drug delivery through transcytosis and paracellular transport to the brain after BBB modulation using FUS. Main methods FUS and microbubbles were applied to the hippocampus of rats, and were euthanized at 1, 4, 24, and 48 h after sonication. To investigate paracellular transport, we analyzed TJPs, including zona occludens-1 (ZO-1) and occludin. We also investigated caveola-mediated transcytosis by analyzing caveola formation and major facilitator superfamily domain-containing 2a (Mfsd2a) levels, which inhibit caveola vesicle formation. Key findings One hour after FUS, ZO-1 and occludin expression was the lowest and gradually increased over time, returning to baseline 24 h after FUS treatment. Compared with that of TJPs, caveola formation started to increase 1 h after FUS treatment and peaked at 4 h after FUS treatment before returning to baseline by 48 h after FUS treatment. Decreased Mfsd2a levels were observed at 1 h and 4 h after FUS treatment, indicating increased caveola formation. Significance FUS induces BBB permeability changes and regulates both paracellular transport and caveola-mediated transcytosis. However, a time difference was observed between these two mechanisms. Hence, when delivering drugs into the brain after FUS, the optimal drug administration timing should be determined by the mechanism by which each drug passes through the BBB.
Collapse
Affiliation(s)
- Younghee Seo
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Won Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Chanho Kong
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaewoo Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu, 41061, South Korea
| | - Jin Woo Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Cheol Na
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon Metropolitan City, South Korea
| | - Won Seok Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
6
|
Kong C, Ahn JW, Kim S, Park JY, Na YC, Chang JW, Chung S, Chang WS. Long-lasting restoration of memory function and hippocampal synaptic plasticity by focused ultrasound in Alzheimer's disease. Brain Stimul 2023; 16:857-866. [PMID: 37211337 DOI: 10.1016/j.brs.2023.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS) is a medical technology that non-invasively stimulates the brain and has been applied in thermal ablation, blood-brain barrier (BBB) opening, and neuromodulation. In recent years, numerous experiences and indications for the use of FUS in clinical and preclinical studies have rapidly expanded. Focused ultrasound-mediated BBB opening induces cognitive enhancement and neurogenesis; however, the underlying mechanisms have not been elucidated. METHODS Here, we investigate the effects of FUS-mediated BBB opening on hippocampal long-term potentiation (LTP) and cognitive function in a 5xFAD mouse model of Alzheimer's disease (AD). We applied FUS with microbubble to the hippocampus and LTP was measured 6 weeks after BBB opening using FUS. Field recordings were made with a concentric bipolar electrode positioned in the CA1 region using an extracellular glass pipette filled with artificial cerebrospinal fluid. Morris water maze and Y-maze was performed to test cognitive function. RESULTS Our results demonstrated that FUS-mediated BBB opening has a significant impact on increasing LTP at Schaffer collateral - CA1 synapses and rescues cognitive dysfunction and working memory. These effects persisted for up to 7 weeks post-treatment. Also, FUS-mediated BBB opening in the hippocampus increased PKA phosphorylation. CONCLUSION Therefore, it could be a promising treatment for neurodegenerative diseases as it remarkably increases LTP, thereby improving working memory.
Collapse
Affiliation(s)
- Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Woong Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Young Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St Mary's Hospital, Incheon, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Phan TN, Fan CH, Yeh CK. Application of Ultrasound to Enhancing Stem Cells Associated Therapies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10546-w. [PMID: 37119453 DOI: 10.1007/s12015-023-10546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pluripotent stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for the treatment of several diseases. However, insufficient cell transplantation efficiency, uncontrollable differentiation, low cell viability, and difficult tracing limit its clinical applications and treatment outcome. Ultrasound (US) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. US can be combined with different US-responsive particles for enhanced physical-chemical stimulation and drug delivery. In the meantime, US also can provide a noninvasive and harmless imaging modality for deep tissue in vivo. An in-depth evaluation of the role and mechanism of action of US in stem cell therapy would enhance understanding of US and encourage research in this field. In this article, we comprehensively review progress in the application of US alone and combined with US-responsive particles for the promotion of proliferation, differentiation, migration, and in vivo detection of stem cells and the potential clinical applications.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
9
|
Seo Y, Han S, Song BW, Chang JW, Na YC, Chang WS. Endogenous Neural Stem Cell Activation after Low-Intensity Focused Ultrasound-Induced Blood-Brain Barrier Modulation. Int J Mol Sci 2023; 24:5712. [PMID: 36982785 PMCID: PMC10056062 DOI: 10.3390/ijms24065712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Endogenous neural stem cells (eNSCs) in the adult brain, which have the potential to self-renew and differentiate into functional, tissue-appropriate cell types, have raised new expectations for neurological disease therapy. Low-intensity focused ultrasound (LIFUS)-induced blood-brain barrier modulation has been reported to promote neurogenesis. Although these studies have reported improved behavioral performance and enhanced expression of brain biomarkers after LIFUS, indicating increased neurogenesis, the precise mechanism remains unclear. In this study, we evaluated eNSC activation as a mechanism for neurogenesis after LIFUS-induced blood-brain barrier modulation. We evaluated the specific eNSC markers, Sox-2 and nestin, to confirm the activation of eNSCs. We also performed 3'-deoxy-3'[18F] fluoro-L-thymidine positron emission tomography ([18F] FLT-PET) to evaluate the activation of eNSCs. The expression of Sox-2 and nestin was significantly upregulated 1 week after LIFUS. After 1 week, the upregulated expression decreased sequentially; after 4 weeks, the upregulated expression returned to that of the control group. [18F] FLT-PET images also showed higher stem cell activity after 1 week. The results of this study indicated that LIFUS could activate eNSCs and induce adult neurogenesis. These results show that LIFUS may be useful as an effective treatment for patients with neurological damage or neurological disorders in clinical settings.
Collapse
Affiliation(s)
- Younghee Seo
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangheon Han
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byeong-Wook Song
- Department for Medical Science, College of Medicine, Catholic Kwandong University, Gangwon-do, Gangneung City 25601, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Seo-gu, Incheon Metropolitan City 22711, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Zhang J, Yan F, Zhang W, He L, Li Y, Zheng S, Wang Y, Yu T, Du L, Shen Y, He W. Biosynthetic Gas Vesicles Combined with Focused Ultrasound for Blood-Brain Barrier Opening. Int J Nanomedicine 2022; 17:6759-6772. [PMID: 36597431 PMCID: PMC9805716 DOI: 10.2147/ijn.s374039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background Focused ultrasound (FUS) combined with microbubbles (MBs) has emerged as a potential approach for opening the blood-brain barrier (BBB) for delivering drugs into the brain. However, MBs range in size of microns and thus can hardly extravasate into the brain parenchyma. Recently, growing attention has been paid to gas vesicles (GVs), which are genetically encoded gas-filled nanostructures with protein shells, due to their potential for extravascular targeting in ultrasound imaging and therapy. However, the use of GVs as agents for BBB opening has not yet been investigated. Methods In this study, GVs were extracted and purified from Halobacterium NRC-1. Ultrasound imaging performance of GVs was assessed in vitro and in vivo. Then, FUS/GVs-mediated BBB opening for small molecular Evans blue or large molecular liposome delivery across the BBB was examined. Results The results showed a good contrast performance of GVs for brain perfusion ultrasound imaging in vivo. At the acoustic negative pressure of 1.5 MPa, FUS/GVs opened the BBB safely, and effectively enhanced Evans blue and 200-nm liposome delivery into the brain parenchyma. Conclusion Our study suggests that biosynthetic GVs hold great potential to serve as local BBB-opening agents in the development of new targeted drug delivery strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lei He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Li
- Department of Radiology, Peking Union Medical College Hospital, Beijing, People’s Republic of China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuanyuan Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lijuan Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Bio Medical Engineering, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China,Correspondence: Yuanyuan Shen; Wen He, Email ;
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Kong C, Yang EJ, Shin J, Park J, Kim SH, Park SW, Chang WS, Lee CH, Kim H, Kim HS, Chang JW. Enhanced delivery of a low dose of aducanumab via FUS in 5×FAD mice, an AD model. Transl Neurodegener 2022; 11:57. [PMID: 36575534 PMCID: PMC9793531 DOI: 10.1186/s40035-022-00333-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aducanumab (Adu), which is a human IgG1 monoclonal antibody that targets oligomer and fibril forms of beta-amyloid, has been reported to reduce amyloid pathology and improve impaired cognition after administration of a high dose (10 mg/kg) of the drug in Alzheimer's disease (AD) clinical trials. The purpose of this study was to investigate the effects of a lower dose of Adu (3 mg/kg) with enhanced delivery via focused ultrasound (FUS) in an AD mouse model. METHODS The FUS with microbubbles opened the blood-brain barrier (BBB) of the hippocampus for the delivery of Adu. The combined therapy of FUS and Adu was performed three times in total and each treatment was performed biweekly. Y-maze test, Brdu labeling, and immunohistochemical experimental methods were employed in this study. In addition, RNA sequencing and ingenuity pathway analysis were employed to investigate gene expression profiles in the hippocampi of experimental animals. RESULTS The FUS-mediated BBB opening markedly increased the delivery of Adu into the brain by approximately 8.1 times in the brains. The combined treatment induced significantly less cognitive decline and decreased the level of amyloid plaques in the hippocampi of the 5×FAD mice compared with Adu or FUS alone. Combined treatment with FUS and Adu activated phagocytic microglia and increased the number of astrocytes associated with amyloid plaques in the hippocampi of 5×FAD mice. Furthermore, RNA sequencing identified that 4 enriched canonical pathways including phagosome formation, neuroinflammation signaling, CREB signaling and reelin signaling were altered in the hippocami of 5×FAD mice receiving the combined treatment. CONCLUSION In conclusion, the enhanced delivery of a low dose of Adu (3 mg/kg) via FUS decreases amyloid deposits and attenuates cognitive function deficits. FUS-mediated BBB opening increases adult hippocampal neurogenesis as well as drug delivery. We present an AD treatment strategy through the synergistic effect of the combined therapy of FUS and Adu.
Collapse
Affiliation(s)
- Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Si-Hyun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Chang-Han Lee
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
| | - Hye-Sun Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Bundang Hospital, Seoul National University College of Medicine, Bundang-Gu, Sungnam, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Regmi S, Liu DD, Shen M, Kevadiya BD, Ganguly A, Primavera R, Chetty S, Yarani R, Thakor AS. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Front Mol Neurosci 2022; 15:1011225. [PMID: 36277497 PMCID: PMC9584646 DOI: 10.3389/fnmol.2022.1011225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient’s ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects. MSCs not only secret neuroprotective and anti-inflammatory factors to promote the survival of neurons, but they also transfer functional mitochondria and miRNAs to boost their bioenergetic profile as well as improve microglial clearance of accumulated protein aggregates. This review focuses on different clinical and preclinical studies using MSC as a therapy for treating AD, their outcomes, limitations and the strategies to potentiate their clinical translation.
Collapse
|
14
|
Tan L, Liu X, Gao W, Zhao Q. Identification of Four Hub Genes as Promising Biomarkers for the Evaluation of Ovarian Cancer Prognosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian malignant growth is perhaps the most lethal disease in females. There are no exact biomarkers for the early determination of ovarian disease. We obtained a total of 12 gene clusters through WGCNA and studied the azure gene modules related to the lymphatic infiltration of ovarian
cancer further. What’s more, endurance investigation was utilized to decide three qualities connected with the by and large and infection-free endurance in ovarian disease patients, including GOGA8B [Hazard Ratio (HR)=1.53, p=0.037, 95% CI: 1.05–2.24], LRRC26
(HR=0.7, p =0.045, 95% CI: 0.48–1.01), and CCDC114 (HR = 0.72, p = 0.042, 95% CI: 0.53–0.98). A prognostic risk score model was built to anticipate the endurance pace of patients at 1, 3, and 5 years, individually. The area under the receiver operating characteristic
(ROC) curve (AUC) of the training set was 0.749, 0.764, and 0.784, respectively; the test AUC was 0.601, 0.623, and 0.709. Our review gives a point of view on significant possible biomarkers for the determination, anticipation, and therapy of ovarian malignant growth.
Collapse
Affiliation(s)
- Li Tan
- Department of Gynaecology and Obstetrics, The Second People’s Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xiaoting Liu
- Department of Gynaecology and Obstetrics, The Second People’s Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Wei Gao
- Department of Orthopedics, The Second People’s Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, Hunan, 470007, China
| | - Qiong Zhao
- Department of Gynaecology and Obstetrics, The Second People’s Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| |
Collapse
|
15
|
Maric DM, Velikic G, Maric DL, Supic G, Vojvodic D, Petric V, Abazovic D. Stem Cell Homing in Intrathecal Applications and Inspirations for Improvement Paths. Int J Mol Sci 2022; 23:ijms23084290. [PMID: 35457107 PMCID: PMC9027729 DOI: 10.3390/ijms23084290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
A transplanted stem cell homing is a directed migration from the application site to the targeted tissue. Intrathecal application of stem cells is their direct delivery to cerebrospinal fluid, which defines the homing path from the point of injection to the brain. In the case of neurodegenerative diseases, this application method has the advantage of no blood–brain barrier restriction. However, the homing efficiency still needs improvement and homing mechanisms elucidation. Analysis of current research results on homing mechanisms in the light of intrathecal administration revealed a discrepancy between in vivo and in vitro results and a gap between preclinical and clinical research. Combining the existing research with novel insights from cutting-edge biochips, nano, and other technologies and computational models may bridge this gap faster.
Collapse
Affiliation(s)
- Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia;
- Faculty of Dentistry Pancevo, University Business Academy, 26000 Pancevo, Serbia
- Vincula Biotech Group, 11000 Belgrade, Serbia;
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia;
- Vincula Biotech Group, 11000 Belgrade, Serbia;
- Correspondence: (G.V.); (D.L.M.)
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: (G.V.); (D.L.M.)
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Vedrana Petric
- Infectious Diseases Clinic, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia;
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dzihan Abazovic
- Vincula Biotech Group, 11000 Belgrade, Serbia;
- Department for Regenerative Medicine, Biocell Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Hurd MD, Goel I, Sakai Y, Teramura Y. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regen Ther 2021; 18:408-417. [PMID: 34722837 PMCID: PMC8517544 DOI: 10.1016/j.reth.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide and is expected to increase in the future with the aging population. Currently, there are no clinically available treatments for damage sustained during an ischemic stroke, but much research is being conducted in this area. In this review, we will introduce current ischemic stroke treatments along with their limitations, as well as research on potential short and long-term future treatments. There are advantages and disadvantages in these potential treatments, but our understanding of these methods and their effectiveness in clinical trials are improving. We are confident that some future treatments introduced in this review will become commonly used in clinical settings in the future.
Collapse
Affiliation(s)
- Mason Daniel Hurd
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| |
Collapse
|
17
|
The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke: A Review. Biomedicines 2021; 9:biomedicines9111609. [PMID: 34829837 PMCID: PMC8615437 DOI: 10.3390/biomedicines9111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research. This review covers the current status of ultrasound applied to monitoring and treatment in experimental animal models of stroke and examines the safety, limitations, and future perspectives.
Collapse
|
18
|
Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. J Control Release 2021; 338:837-857. [PMID: 34509587 DOI: 10.1016/j.jconrel.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
To date, although the microscopic alterations present in Alzheimer's disease (AD) have been well known for over a century only a handful of symptomatic treatments have been developed which are a far cry from a full cure providing volatile benefits. In this context, the intervention of stem cell therapy (SCT) has been proposed as an auxiliary treatment for AD as suggested by the rising number of pre-clinical studies that stem cell engraftment could provide an exciting future treatment regimen against neurodegeneration. Although, most of the primary enthusiasm about this approach was based on replacing deteriorating neurons, the latest studies have implied that the positive modulations fostered by stem cells are fuelled by bystander effects. Present review provides a detailed update on stem cell therapy for AD along with meticulous discussion regarding challenges in developing different stem cells from an aspect of experiment to clinical research and their potential in the milieu of AD hallmarks. Specifically, we focus and provide in depth view on recent advancements in the discipline of SCT aiming to repopulate or regenerate the degenerating neuronal circuitry in AD using stem-cell-on-a-chip and 3D bioprinting techniques. The focus is specifically on the successful restoration of cognitive functions upon engraftment of stem cells on in vivo models for the benefit of the current researchers and their understanding about the status of SCT in AD and finally summarizing on what future holds for SCT in the treatment of AD.
Collapse
|
19
|
des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Ahmed N, Gandhi D, Melhem ER, Frenkel V. MRI Guided Focused Ultrasound-Mediated Delivery of Therapeutic Cells to the Brain: A Review of the State-of-the-Art Methodology and Future Applications. Front Neurol 2021; 12:669449. [PMID: 34220679 PMCID: PMC8248790 DOI: 10.3389/fneur.2021.669449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stem cell and immune cell therapies are being investigated as a potential therapeutic modality for CNS disorders, performing functions such as targeted drug or growth factor delivery, tumor cell destruction, or inflammatory regulation. Despite promising preclinical studies, delivery routes for maximizing cell engraftment, such as stereotactic or intrathecal injection, are invasive and carry risks of hemorrhage and infection. Recent developments in MRI-guided focused ultrasound (MRgFUS) technology have significant implications for treating focal CNS pathologies including neurodegenerative, vascular and malignant processes. MRgFUS is currently employed in the clinic for treating essential tremor and Parkinson's Disease by producing precise, incisionless, transcranial lesions. This non-invasive technology can also be modified for non-destructive applications to safely and transiently open the blood-brain barrier (BBB) to deliver a range of therapeutics, including cells. This review is meant to familiarize the neuro-interventionalist with this topic and discusses the use of MRgFUS for facilitating cellular delivery to the brain. A detailed and comprehensive description is provided on routes of cell administration, imaging strategies for targeting and tracking cellular delivery and engraftment, biophysical mechanisms of BBB enhanced permeability, supportive proof-of-concept studies, and potential for clinical translation.
Collapse
Affiliation(s)
- Nabid Ahmed
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor Frenkel
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neuroradiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
22
|
Jang KW, Tu TW, Rosenblatt RB, Burks SR, Frank JA. MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium. J Cell Mol Med 2020; 24:13278-13288. [PMID: 33067927 PMCID: PMC7701528 DOI: 10.1111/jcmm.15944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert B Rosenblatt
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|