1
|
Tayal V, Mandal A, Haque M I, Mishra A, Kalra BS, Roy V. Anticonvulsant potential of rosuvastatin in combination with carbamazepine and valproate in animal models of epilepsy. World J Methodol 2025; 15:99580. [DOI: 10.5662/wjm.v15.i2.99580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Epilepsy impacts millions of people, with many not responding to existing treatments. Some evidence links neuroinflammatory processes to epilepsy. Statins exhibit anti-inflammatory and neuroprotective properties, potentially offering antiepileptic effects.
AIM To evaluate the anticonvulsant effects of rosuvastatin in animal models of epilepsy.
METHODS Ninety-six albino mice were divided into 16 groups. In the maximal electroshock seizure (MES) model, eight groups received intraperitoneal vehicle, carbamazepine, rosuvastatin, or a combination. Outcomes measured included seizure protection [tonic hind limb extension (THLE)], duration of THLE, seizure duration, and mortality. In the pentylenetetrazol (PTZ) model, eight groups were pretreated with vehicle, valproate, rosuvastatin, or a combination, with outcomes measured as seizure latency, seizure duration, and mortality.
RESULTS In the MES model, rosuvastatin exhibited protection against THLE in a small percentage of mice. Rosuvastatin shortens the duration of THLE in a dose-dependent manner. However, none of these were statistically significant compared to the control group. The combination of rosuvastatin 10 mg/kg with carbamazepine 4 mg/kg resulted in a significant reduction in seizure duration compared to the control group, better than carbamazepine alone at 4 mg/kg and 6 mg/kg. In the PTZ model, rosuvastatin alone showed no significant effects on latency, duration of seizure, or mortality. However, rosuvastatin 10 mg/kg combined with valproate 100 mg/kg significantly delayed the onset of seizures, seizure duration and mortality percentage, better than valproate alone at 100 mg/kg.
CONCLUSION Rosuvastatin enhanced the anticonvulsant effects of carbamazepine and valproate. Further studies are required to explore the antiepileptic potential of rosuvastatin at various doses, durations, dosage forms, routes and models.
Collapse
Affiliation(s)
- Vandana Tayal
- Department of Pharmacology, Maulana Azad Medical College, New Delhi 110002, India
| | - Akash Mandal
- Department of Pharmacology, Maulana Azad Medical College, New Delhi 110002, India
| | - Ijasul Haque M
- Department of Pharmacology, MES Medical College, Perintalmanna 679338, Kerala, India
| | - Akhilesh Mishra
- Department of Central Animal Facility, Maulana Azad Medical College, New Delhi 110002, India
| | - Bhupinder S Kalra
- Department of Pharmacology, Maulana Azad Medical College, New Delhi 110002, India
| | - Vandana Roy
- Department of Pharmacology, Maulana Azad Medical College, New Delhi 110002, India
| |
Collapse
|
2
|
Sirakanyan SN, Hakobyan EK, Geronikaki A, Spinelli D, Petrou A, Kartsev VG, Yegoryan HA, Jughetsyan HV, Manukyan ME, Paronikyan RG, Araqelyan TA, Hovakimyan AA. Synthesis and Neurotropic Activity of New 5-Piperazinopyrazolo[3,4- c]-2,7-naphthyridines and Isoxazolo[5,4- c]-2,7-naphthyridines. Pharmaceuticals (Basel) 2025; 18:597. [PMID: 40284032 PMCID: PMC12030261 DOI: 10.3390/ph18040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Approximately 1% of people worldwide suffer from epilepsy. The development of safer and more effective antiepileptic medications (AEDs) is still urgently needed because all AEDs have some unwanted side effects and roughly 30% of epileptic patients cannot stop having seizures when taking current AEDs. It should be noted that the derivatives of pyrazolo[3,4-b]pyridine are important core structures in many drug substances. The aim of this study is to synthesize new derivatives of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines and 9,11-dimethylpyrimido[1',2':1,5]pyrazolo[3,4-c]-2,7-naphthyridines for the evaluation of their neurotropic activity. Methods: The synthesis of the target compounds was performed starting from 1-amino-3-chloro-2,7-naphthyridines and using well-known methods. The structures of all the synthesized compounds were confirmed by spectroscopic data. Compounds were studied for their potential neurotropic activities (anticonvulsant, sedative, anti-anxiety, and antidepressive), as well as side effects, in 450 white mice of both sexes and 50 male Wistar rats. The anticonvulsant effect of the newly synthesized compounds was investigated by using the following tests: pentylenetetrazole, thiosemicarbazide-induced convulsions, and maximal electroshock. The psychotropic properties of the selected compounds were evaluated by using the following tests: the Open Field test, the Elevated Plus Maze (EPM), the Forced Swimming test, and Rotating Rod Test to study muscle relaxation. For the docking studies, AutoDock 4 (version 4.2.6) was used, as well as the structures of the GABAA receptor (PDB ID: 4COF), the SERT transporter (PDB ID: 3F3A), and the 5-HT1A receptor (PDB ID: 3NYA) obtained from the Protein Data Bank. Results: A series of piperazino-substituted pyrazolo[3,4-c]-2,7-naphthyridines (3a-j) and 9,11-dimethylpyrimido[1',2':1,5]pyrazolo[3,4-c]-2,7-naphthyridines (4a-j), as well as new heterocyclic systems, i.e., isoxazolo[5,4-c]-2,7-naphthyridines 6a-d, were synthesized and evaluated for their neurotropic activity. The investigation showed that some of these compounds (3a,b,d,f-i and 4a,d,f,i) display high anticonvulsant activity, especially in the test of antagonism with pentylenetetrazol, surpassing the well-known antiepileptic drug ethosuximide. Thus, the most active compounds in the pentylenpotetrazole test are 3h, 3i, and 4i; the ED50 of compound 4i is 23.8, and the therapeutic index is more than 33.6, which is the highest among these three active compounds. On the other hand, they simultaneously exhibit psychotropic (anxiolytic, antidepressant, or sedative) or behavioral depressant) effects. The effective compounds do not cause myorelaxation at the tested doses and have high therapeutic indices. Docking on the most active compounds, i.e., 3h, 3i, and 4i, is in agreement with the experimental results. Conclusions: The studies reveled that some of these compounds (3i, 4a, and 4i) display high anticonvulsant and psychotropic activities. The most active compounds contained methyl and diphenylmethyl groups in the piperazine ring. The docking studies identified compounds 3i, 4i, and 4a as the most potent anticonvulsants, showing strong affinity for GABAA, 5-HT1A receptors, and the SERT transporter. Notably, compound 4i formed two hydrogen bonds with Thr176 and Arg180 on GABAA and exhibited a binding energy (-8.81 kcal/mol) comparable to that of diazepam (-8.90 kcal/mol). It also showed the strongest binding to SERT (-7.28 kcal/mol), stabilized by interactions with Gly439, Ile441, and Arg11. Furthermore, 4i displayed the best docking score with 5-HT1A (-9.10 kcal/mol) due to multiple hydrogen bonds and hydrophobic interactions, supporting its potential as a dual-acting agent targeting both SERT and 5-HT1A.
Collapse
Affiliation(s)
- Samvel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Hasmik A. Yegoryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Hasmik V. Jughetsyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Mariam E. Manukyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Ruzanna G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Tatevik A. Araqelyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan 0014, Armenia; (S.N.S.); (H.A.Y.); (H.V.J.); (M.E.M.); (R.G.P.); (T.A.A.); (A.A.H.)
| |
Collapse
|
3
|
Çarçak N, Mutlu N, Erdeve ET, Turan TT, Sarıyıldız Ö, Ulusoy C, Şanlı E, Tüzün E, Küçükali Cİ, Brandolini L, Aramini A, Allegretti M, Onat F, De Filippis L. Reparixin as a Potential Antiepileptogenic Agent: Modulation of the CXCL1-CXCR1/2 Axis and Seizure Activity in a Kindling Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2025; 26:2831. [PMID: 40243443 PMCID: PMC11989020 DOI: 10.3390/ijms26072831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Chemokine (CXC motif) ligand 8 (CXCL8) is a pro-inflammatory chemokine binding to CXC motif receptors 1/2 (CXCR1/2). Patients with temporal lobe epilepsy (TLE) exhibit increased serum CXCL8 levels. CXC motif ligand 1 (CXCL1), a murine ortholog of CXCL8, has been implicated in seizure generation and neuronal loss. This study evaluated the antiepileptogenic and antiseizure effects of reparixin in amygdaloid kindling rat model of TLE. Reparixin was administered during the kindling period for 14 days, and seizures were induced twice daily via electrical stimulation. To assess the antiseizure effects, reparixin was administered to fully kindled animals, and stimulations were performed 24 and 48 h later. Levetiracetam, a broad-spectrum antiseizure drug, was administered intraperitoneally (i.p.) as positive control 1 h before each stimulation. Reparixin delayed secondary seizure generalization during kindling. Reparixin reduced seizure severity and after-discharge duration in fully kindled animals at 24 h from treatment initiation. CXCR1/2 and protein kinase B pathway proteins exhibited no significant changes; reparixin reduced the phospho-extracellular signal-regulated kinase (pERK)/ERK ratio in the cortex and hippocampus. CXCL1 expression was significantly decreased in the cortex. Reparixin exhibited antiepileptogenic and partial antiseizure effects by modulating the CXCL1-CXCR1/2 axis and reducing ERK signaling. Already in clinical trials on respiratory diseases, reparixin could be repurposed for epilepsy therapy.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
- Department of Neuroscience, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye; (N.M.); (T.T.T.); (Ö.S.)
| | - Nursima Mutlu
- Department of Neuroscience, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye; (N.M.); (T.T.T.); (Ö.S.)
| | - Elif Tuğçe Erdeve
- Department of Pharmacology, Institute of Health Sciences, Istanbul University, 34126 Istanbul, Türkiye;
| | - Talat Taygun Turan
- Department of Neuroscience, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye; (N.M.); (T.T.T.); (Ö.S.)
| | - Özge Sarıyıldız
- Department of Neuroscience, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye; (N.M.); (T.T.T.); (Ö.S.)
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (C.U.); (E.Ş.); (E.T.); (C.İ.K.)
| | - Elif Şanlı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (C.U.); (E.Ş.); (E.T.); (C.İ.K.)
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (C.U.); (E.Ş.); (E.T.); (C.İ.K.)
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye; (C.U.); (E.Ş.); (E.T.); (C.İ.K.)
| | - Laura Brandolini
- R&D, Dompé Farmaceutici SpA, 67100 L’Aquila, Italy; (L.B.); (A.A.); (M.A.)
| | - Andrea Aramini
- R&D, Dompé Farmaceutici SpA, 67100 L’Aquila, Italy; (L.B.); (A.A.); (M.A.)
| | | | - Filiz Onat
- Department of Neuroscience, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye; (N.M.); (T.T.T.); (Ö.S.)
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | | |
Collapse
|
4
|
Sirakanyan SN, Spinelli D, Geronikaki A, Hakobyan EK, Petrou A, Kartsev VG, Yegoryan HA, Paronikyan EG, Zuppiroli L, Jughetsyan HV, Paronikyan RG, Arakelyan TA, Hovakimyan AA. New triazole-based hybrids as neurotropic agents. RSC Adv 2024; 14:32922-32943. [PMID: 39429923 PMCID: PMC11487511 DOI: 10.1039/d4ra06121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Herein, we describe the synthesis of new hybrids linked to 1,2,3- and 1,2,4-triazole units. Hybrids connected to a 1,2,3-triazole ring were synthesized using the well-known click reaction. The synthesis of the 1,2,4-triazole-based hybrids was carried out using 2-[(4-cyano-1-methyl(2-furyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)oxy]acetohydrazides as starting compounds. The compounds were evaluated for their anticonvulsive activity via antagonism towards pentylenetetrazole (PTZ) - and thiosemicarbazide (TSC)-induced convulsion and maximal electroshock-induced seizure (MES). Furthermore, the most active compounds were studied for their locomotory and anxiolytic activity via the "open field" and elevated plus maze (EPM) assays. Finally, their antidepressant activity was studied via the "forced swim" method. All the hybrids displayed pentylenetetrazole antagonism, ranging from 40% to 80%, while in the TSC model, the most active compounds increased latency of thiosemicarbazide seizures to 1.9-4.65 times compared to that of the control. Some of the tested compounds exhibited a pronounced anxiolytic and antidepressant effect. Docking study demonstrated complete agreement with experimental pharmacological data. It was revealed that the most active compounds have a pyrano[3,4-c]pyridine ring in their structure.
Collapse
Affiliation(s)
- Samvel N Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna Via F. Selmi 2 Bologna 40126 Italy
| | - Athina Geronikaki
- Aristotle University of Thessaloniki, School of Pharmacy Thessaloniki-54124 Greece
| | - Elmira K Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Anti Petrou
- Aristotle University of Thessaloniki, School of Pharmacy Thessaloniki-54124 Greece
| | | | - Hasmik A Yegoryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Ervand G Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Luca Zuppiroli
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum-Università di Bologna Viale del Risorgimento 4 Bologna 40136 Italy
| | - Hasmik V Jughetsyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Ruzanna G Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Tatevik A Arakelyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| | - Anush A Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L. Mnjoyan 0014 Armenia
| |
Collapse
|
5
|
Paronikyan EG, Dashyan SS, Mamyan SS, Paronikyan RG, Nazaryan IM, Balyan KV, Gasparyan HV, Buloyan SA, Hunanyan LS, Hobosyan NG. Synthesis and Psychotropic Properties of Novel Condensed Triazines for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:829. [PMID: 39065680 PMCID: PMC11280098 DOI: 10.3390/ph17070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest for new neurotropic drugs among derivatives of these heterocycles with pharmacophore groups remains a significant research challenge. The aim of this research work was to develop a synthesis method for new heterocyclic compounds, evaluate their neurotropic and neuroprotective activities, study histological changes, and perform docking analysis. Classical organic synthesis methods were used in the creation of novel heterocyclic systems containing pharmacophore rings. To evaluate the neurotropic activity of these synthesized compounds, a range of biological assays were employed. Docking analysis was conducted using various software packages and methodologies. The neuroprotective activity of compound 13 was tested in seizures with and without pentylenetetrazole (PTZ) administration. Histopathological examinations were performed in different experimental groups in the hippocampus and the entorhinal cortex. As a result of chemical reactions, 16 new, tetra- and pentacyclic heterocyclic compounds were obtained. The biologically studied compounds exhibited protection against PTZ seizures as well as some psychotropic effects. The biological assays evidenced that 13 of the 16 studied compounds showed a high anticonvulsant activity by antagonism with PTZ. The toxicity of the compounds was low. According to the results of the study of psychotropic activity, it was found that the selected compounds have a sedative effect, except compound 13, which exhibited activating behavior and antianxiety effects (especially compound 13). The studied compounds exhibited antidepressant effects, especially compound 13, which is similar to diazepam. Histopathological examination showed that compound 13 produced moderate changes in the brain and exhibited neuroprotective effects in the entorhinal cortex against PTZ-induced damage, reducing gliosis and neuronal loss. Docking studies revealed that out of 16 compounds, 3 compounds bound to the γ-aminobutyric acid type A (GABAA) receptor. Thus, the selected compounds demonstrated anticonvulsant, sedative, and activating behavior, and at the same time exhibited antianxiety and antidepressant effects. Compound 13 bound to the GABAA receptor and exhibited antianxiety, antidepressant, and neuroprotective effects in the entorhinal cortex against PTZ-induced changes.
Collapse
Affiliation(s)
- Ervand G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Shushanik Sh. Dashyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Suren S. Mamyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Ruzanna G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Ivetta M. Nazaryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Kristine V. Balyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Hrachik V. Gasparyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Sona A. Buloyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| | - Lernik S. Hunanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
| | - Nina G. Hobosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences of Republic of Armenia, Ave. Azatutyan 26, Yerevan 0014, Armenia; (E.G.P.); (S.S.M.); (R.G.P.); (I.M.N.); (K.V.B.); (H.V.G.); (L.S.H.); (N.G.H.)
- Pharmacy Faculty, Haybusak University of Yerevan, 6 Abelyan St., Yerevan 0038, Armenia
| |
Collapse
|
6
|
Eghbali F, Dehkordi HT, Amini-Khoei H, Lorigooini Z, Rahimi-Madiseh M. The potential role of nitric oxide in the anticonvulsant effects of betulin in pentylenetetrazole (PTZ)-induced seizures in mice. IBRO Neurosci Rep 2024; 16:527-534. [PMID: 38706971 PMCID: PMC11068554 DOI: 10.1016/j.ibneur.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
Epilepsy poses a significant challenge, especially for drug-resistant cases, necessitating novel treatment avenues. This study explores the potential interplay between nitric oxide (NO) and the anticonvulsant effects of betulin, a triterpene with promising neuroprotective properties. While betulin exhibits anticonvulsant effects, the specific involvement of NO remains inadequately understood, constituting a pivotal gap in current knowledge. One hundred NMRI mice were randomly assigned to diverse treatment groups, with seizures induced by pentylenetetrazol (PTZ). Parameters such as seizure threshold, nitrite levels, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and iNOS/nNOS gene expressions were assessed. Betulin significantly increased seizure thresholds and mitigated PTZ-induced NO levels. These findings suggest a potential modulation of NO-related pathways, emphasizing betulin's anti-inflammatory and antioxidant attributes. The study sheds light on betulin's multifaceted impact on oxidative stress, NO regulation, and iNOS/nNOS gene expressions. The ability of betulin to suppress iNOS/nNOS gene expressions, leading to reduce NO production, underscores its potential as an anticonvulsant.
Collapse
Affiliation(s)
- Fatemeh Eghbali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Balcazar-Ochoa LG, Ventura-Martínez R, Ángeles-López GE, Gómez-Acevedo C, Carrasco OF, Sampieri-Cabrera R, Chavarría A, González-Hernández A. Clavulanic Acid and its Potential Therapeutic Effects on the Central Nervous System. Arch Med Res 2024; 55:102916. [PMID: 38039802 DOI: 10.1016/j.arcmed.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Clavulanic acid (CLAV) is a non-antibiotic β-lactam that has been used since the late 1970s as a β-lactamase inhibitor in combination with amoxicillin, another ß-lactam with antibiotic activity. Its long-observed adverse reaction profile allows it to say that CLAV is a well-tolerated drug with mainly mild adverse reactions. Interestingly, in 2005, it was discovered that β-lactams enhance the astrocytic expression of GLT-1, a glutamate transporter essential for maintaining synaptic glutamate homeostasis involved in several pathologies of the central nervous system (CNS). This finding, along with a favorable pharmacokinetic profile, prompted the appearance of several studies that intended to evaluate the effect of CLAV in preclinical disease models. Studies have revealed that CLAV can increase GLT-1 expression in the nucleus accumbens (NAcc), medial prefrontal cortex (PFC), and spinal cord of rodents, to affect glutamate and dopaminergic neurotransmission, and exert an anti-inflammatory effect by modulating the levels of the cytokines TNF-α and interleukin 10 (IL-10). CLAV has been tested with positive results in preclinical models of epilepsy, addiction, stroke, neuropathic and inflammatory pain, dementia, Parkinson's disease, and sexual and anxiety behavior. These properties make CLAV a potential therapeutic drug if repurposed. Therefore, this review aims to gather information on CLAV's effect on preclinical neurological disease models and to give some perspectives on its potential therapeutic use in some diseases of the CNS.
Collapse
Affiliation(s)
| | - Rosa Ventura-Martínez
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Claudia Gómez-Acevedo
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Francisco Carrasco
- Farmacology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl Sampieri-Cabrera
- Phyisiology Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Experimental Medicine Research Unit, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
8
|
Design, Synthesis, and Pharmacology of New Triazole-Containing Quinolinones as CNS Active Agents. Molecules 2023; 28:molecules28041987. [PMID: 36838975 PMCID: PMC9965477 DOI: 10.3390/molecules28041987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy and major depressive disorder are the two of the most common central nervous system (CNS) diseases. Clinicians and patients call for new antidepressants, antiseizure medicines, and in particular drugs for depression and epilepsy comorbidities. In this work, a dozen new triazole-quinolinones were designed, synthesized, and investigated as CNS active agents. All compounds reduced the immobility time significantly during the forced swim test (FST) in mice at the dosage of 50 mg/kg. Compounds 3f-3j gave superior performance over fluoxetine in the FST with more reductions of the immobility time. Compound 3g also reduced immobility time significantly in a tail suspension test (TST) at the dosage of 50 mg/kg, though its anti-immobility activity was inferior to that of fluoxetine. An open field test was carried out and it eliminated the false-positive possibility of 3g in the FST and TST, which complementarily supported the antidepressant activity of 3g. We also found that almost all compounds except 3k exhibited antiseizure activity in the maximal electroshock seizure (MES) model at 100 or 300 mg/kg. Compounds 3c, 3f, and 3g displayed the ED50 of 63.4, 78.9, and 84.9 mg/kg, and TD50 of 264.1, 253.5, and 439.9 mg/kg, respectively. ELISA assays proved that the mechanism for the antiseizure and antidepressant activities of compound 3g was via affecting the concentration of GABA in mice brain. The molecular docking study showed a good interaction between 3g and the amino acid residue of the GABAA receptor. Excellent drug-like properties and pharmacokinetic properties of compound 3a-l were also predicted by Discovery Studio. These findings provided a new skeleton to develop agents for the treatment of epilepsy and depression comorbidities.
Collapse
|
9
|
Sirakanyan SN, Spinelli D, Petrou A, Geronikaki A, Kartsev VG, Hakobyan EK, Yegoryan HA, Zuppiroli L, Zuppiroli R, Ayvazyan AG, Paronikyan RG, Arakelyan TA, Hovakimyan AA. New Bicyclic Pyridine-Based Hybrids Linked to the 1,2,3-Triazole Unit: Synthesis via Click Reaction and Evaluation of Neurotropic Activity and Molecular Docking. Molecules 2023; 28:molecules28030921. [PMID: 36770592 PMCID: PMC9920413 DOI: 10.3390/molecules28030921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The synthesis of new original bicyclic pyridine-based hybrids linked to the 1,2,3-triazole unit was described via a click reaction. The anticonvulsant activity and some psychotropic properties of the new compounds were evaluated. The biological assays demonstrated that some of the studied compounds showed high anticonvulsant and psychotropic properties. The five most active compounds (7a, d, g, j, and m) contain a pyrano [3,4-c]pyridine cycle with a methyl group in the pyridine ring in their structures. Furthermore, molecular docking studies were performed, and their results are in agreement with experimental data.
Collapse
Affiliation(s)
- Samvel N. Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
- Correspondence: (S.N.S.); (D.S.); Tel.: +374-9132-1599 (S.N.S.); +39-34-8773-3265 (D.S.)
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.N.S.); (D.S.); Tel.: +374-9132-1599 (S.N.S.); +39-34-8773-3265 (D.S.)
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Elmira K. Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
| | - Hasmik A. Yegoryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
| | - Luca Zuppiroli
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Riccardo Zuppiroli
- Department of Industrial Chemistry ‘Toso Montanari’, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Armen G. Ayvazyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Molecule Structure Research Centre, Ave. Azatutyan 26, Yerevan 0014, Armenia
| | - Ruzanna G. Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
| | - Tatevik A. Arakelyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
| | - Anush A. Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave. Azatutyan 26, Yerevan 0014, Armenia
| |
Collapse
|
10
|
Shin JN, Lee KB, Butterworth W, Park SK, Kim JY, Kim S. Zebrafish EEG predicts the efficacy of antiepileptic drugs. Front Pharmacol 2022; 13:1055424. [PMID: 36569331 PMCID: PMC9772616 DOI: 10.3389/fphar.2022.1055424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Pharmacological evaluation of antiepileptic drugs (AEDs) using mammalian animals takes long time and is expensive. The zebrafish is a species commonly used to study brain functions, neurological diseases, and drug toxicity, and attracts more attention as an alternative animal model to substitute or supplement mammalian animals in drug development. Electroencephalogram (EEG) is a key indicator for diagnosing brain diseases such as epilepsy, by directly measuring the brain activity. We propose a novel method for pharmacological evaluation of AEDs based on EEG from adult zebrafish, which allows researchers to select more clinically valuable drugs at the early stage of AED screening. Methods: To evaluate the efficacy of AEDs, zebrafish EEG signals were measured after administering six AEDs (valproate acid, gabapentin, ethosuximide, oxcarbazepine, tiagabine, and topiramate) at various doses to pentylenetetrazol (PTZ)-induced seizure models. The change in seizure activity was investigated according to doses. The antiepileptic effect was determined by observing a significant decrease in at least one out of three indicators of the number, total duration, and mean duration of ictal events. Results: Using EEG signals from adult zebrafish, antiepileptic effects were observed with all six AEDs. Among them, antiepileptic effects depending on dose were confirmed with valproate acid, gabapentin, ethosuximide, and tiagabine. Moreover, the 50% effective doses (ED50) of valproate acid and tiagabine were determined based on zebrafish EEG for the first time, indicating that the quantitative inter-species comparison of the AED efficacy is possible between zebrafish and mammals such as rodents. Significance: The results show that zebrafish can be used to effectively and quantitatively evaluate the efficacy of AEDs based on EEG, the same method to evaluate antiepileptic effects in mammals, suggesting that the proposed method can contribute in reducing the cost and duration of search for AEDs and thus accelerate the drug development cycles.
Collapse
Affiliation(s)
- Jun-Nyeong Shin
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea,Zefit Inc, Daegu, South Korea
| | - Ki-Baek Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Woojae Butterworth
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | | | | | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea,*Correspondence: Sohee Kim,
| |
Collapse
|
11
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
12
|
Siang LH, Arulsamy A, Yoon YK, Shaikh MF. Fruits for Seizures? A Systematic Review on the Potential Anti-Convulsant Effects of Fruits and their Phytochemicals. Curr Neuropharmacol 2022; 20:1925-1940. [PMID: 34517803 PMCID: PMC9886799 DOI: 10.2174/1570159x19666210913120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is a devastating neurological disorder. Current anti-convulsant drugs are only effective in about 70% of patients, while the rest remain drug-resistant. Thus, alternative methods have been explored to control seizures in these drug-resistant patients. One such method may be through the utilization of fruit phytochemicals. These phytochemicals have been reported to have beneficial properties such as anti-convulsant, anti-oxidant, and anti-inflammatory activities. However, some fruits may also elicit harmful effects. This review aims to summarize and elucidate the anti- or pro-convulsant effects of fruits used in relation to seizures in hopes of providing a good therapeutic reference to epileptic patients and their carers. Three databases, SCOPUS, ScienceDirect, and PubMed, were utilized for the literature search. Based on the PRISMA guidelines, a total of 40 articles were selected for critical appraisal in this review. Overall, the extracts and phytochemicals of fruits managed to effectively reduce seizure activities in various preclinical seizure models, acting mainly through the activation of the inhibitory neurotransmission and blocking the excitatory neurotransmission. Only star fruit has been identified as a pro-convulsant fruit due to its caramboxin and oxalate compounds. Future studies should focus more on utilizing these fruits as possible treatment strategies for epilepsy.
Collapse
Affiliation(s)
| | | | | | - Mohd. Farooq Shaikh
- Address correspondence to this author at the Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia; Tel/Fax: +60 3 5514 4483; E-mail:
| |
Collapse
|
13
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Metcalf CS, Vanegas F, Underwood T, Johnson K, West PJ, Smith MD, Wilcox KS. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler's murine encephalomyelitis virus model of epilepsy. Epilepsia Open 2021; 7:46-58. [PMID: 34668659 PMCID: PMC8886069 DOI: 10.1002/epi4.12550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice results in handling-induced seizures and is useful for evaluating compounds effective against infection-induced seizures. However, to date only a few compounds have been evaluated in this model, and a comprehensive study of antiseizure medications (ASMs) has not yet been performed. Furthermore, as the TMEV infection produces marked neuroinflammation, an evaluation of prototype anti-inflammatory compounds is needed as well. METHODS Male C57Bl/6J mice were inoculated with TMEV (day 0) followed by daily administrations of test compounds (day 3-7) and subsequent handling sessions (day 3-7). Doses of ASMs, comprising several mechanistic classes, were selected based on previously published data demonstrating the effect of these compounds in reducing seizures in the 6 Hz model of pharmacoresistant seizures. Doses of anti-inflammatory compounds, comprising several mechanistic classes, were selected based on published evidence of reduction of inflammation or inflammation-related endpoints. RESULTS Several prototype ASMs reduced acute seizures following TMEV infection: lacosamide, phenytoin, ezogabine, phenobarbital, tiagabine, gabapentin, levetiracetam, topiramate, and sodium valproate. Of these, phenobarbital and sodium valproate had the greatest effect (>95% seizure burden reduction). Prototype anti-inflammatory drugs celecoxib, dexamethasone, and prednisone also moderately reduced seizure burden. SIGNIFICANCE The TMEV model is utilized by the Epilepsy Therapy Screening Program (ETSP) as a tool for evaluation of novel compounds. Compounds reducing seizures in the TMEV comprise distinct mechanistic classes, some with mechanisms of action that extend beyond traditional ASMs.
Collapse
Affiliation(s)
- Cameron S Metcalf
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Fabiola Vanegas
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Tristan Underwood
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Kristina Johnson
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Peter J West
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Misty D Smith
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.,School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Karen S Wilcox
- Epilepsy Therapy Screening Program Contract Site, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Badawi GA, Shokr MM, Zaki HF, Mohamed AF. Pentoxifylline prevents epileptic seizure via modulating HMGB1/RAGE/TLR4 signalling pathway and improves memory in pentylenetetrazol kindling rats. Clin Exp Pharmacol Physiol 2021; 48:1111-1124. [PMID: 33899956 DOI: 10.1111/1440-1681.13508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Epilepsy is a chronic widely prevalent neurologic disorder, affecting brain functions with a broad spectrum of deleterious consequences. High mobility group box1 (HMGB1) is a nuclear non-histone protein that targets vital cell receptor of toll-like receptor 4 (TLR4) and advanced glycation end products (RAGE). HMGB1 mediated TLR4/RAGE cascade has been scored as a key culprit in neuroinflammatory signalling that critically evokes development of impaired cognition and epilepsy. The current study aimed to investigate the neuroprotective effect of pentoxifylline (PTX) on pentylenetetrazol (PTZ)-kindling rats by its anti-inflammatory/antioxidant capacity and its impact on memory and cognition were investigated, too. PTZ was intraperitoneally injected 35 mg/kg, every 48 h, for 14 doses, to evoke kindling model. Phenytoin (30 mg/kg, i.p.) and PTX (60 mg/kg, i.p.) or their combination were given once daily for 27 days. PTX treatment showed a statistically significant effect on behavioural, histopathological and neurochemical analysis. PTX protected the PTZ kindling rats from epileptic seizures and improved memory and cognitive impairment through the Morris water maze (MWM) test. Furthermore, PTX reversed PTZ hippocampal neuronal loss by decreasing protein expression of amyloid-β peptide (Aβ), Tau and β site-amyloid precursor protein cleavage enzyme 1 (BACE1), associated with a marked reduction in expression of inflammatory mediators such as HMGB1, TL4, and RAGE proteins. Furthermore, PTX inhibited hippocampal apoptotic caspase 1 protein, total reactive oxygen species (TROS) along with upregulated erythroid 2-related factor 2 (Nrf2) content. In conclusion, PTX or its combination with phenytoin represent a promising drug to inhibit the epilepsy progression via targeting the HMGB1/TLR4/RAGE signalling pathway.
Collapse
Affiliation(s)
- Ghada A Badawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Synthesis, in silico, in vitro and in vivo evaluations of isatin aroylhydrazones as highly potent anticonvulsant agents. Bioorg Chem 2021; 112:104943. [PMID: 33964578 DOI: 10.1016/j.bioorg.2021.104943] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
In this study, a series of new isatin aroylhydrazones (5a-e and 6a-e) was synthesized and evaluated for their anticonvulsant activities. The (Z)-configuration of compounds was confirmed by 1H NMR. In vivo studies using maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy in mice revealed that while most of compounds had no effect on chemically-induced seizures at the higher dose of 100 mg/kg but showed significant protection against electrically-induced seizures at the lower dose of 5 mg/kg. Certainly, N-methyl analogs 6a and 6e were found to be the most effective compounds, displaying 100% protection at the dose of 5 mg/kg. Protein binding and lipophilicity(logP) of the selected compounds (6a and 6e) were also determined experimentally. In silico evaluations of title compounds showed acceptable ADME parameters, and drug-likeness properties. Distance mapping and docking of the selected compounds with different targets proposed the possible action of them on VGSCs and GABAA receptors. The cytotoxicity evaluation of 6a and 6e against SH-SY5Y and Hep-G2 cell lines indicated safety profile of compounds on the neuronal and hepatic cells.
Collapse
|
17
|
Loshali A, Joshi BC, Sundriyal A, Uniyal S. Antiepileptic effects of antioxidant potent extract from Urtica dioica Linn. root on pentylenetetrazole and maximal electroshock induced seizure models. Heliyon 2021; 7:e06195. [PMID: 33644470 PMCID: PMC7887401 DOI: 10.1016/j.heliyon.2021.e06195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Urtica dioica Linn. (Urticaceae) is a medicinal plant that has shown various therapeutic utilities in folklore medicine along with its use in the treatment of epilepsy. The entire plant has a sensible reservoir of nutritional elements and micronutrients. The purpose of the present study was to investigate the antiepileptic effect of antioxidant potent extract of Urtica dioica root on animal models. Antioxidant activity of various solvent extracts i.e. Petroleum ether extract (PEE), Ethyl acetate extract (EAE), Chloroform extract (CE) and Ethanolic extract (EE) were screened by DPPH radical scavenging assay using Ascorbic acid as the standard. Further the most potent antioxidant extract was subjected to antiepileptic activity against MES and PTZ model. The IC50 values of different Urtica dioica extracts (PEE, CE, EAE, and EE) in antioxidant assay were found to be 167.54 ± 1.97, 134.41 ± 0.82, 88.15 ± 1.39 and 186.38 ± 1.91 μg/ml in DPPH radical scavenging assay, respectively. The EAE has showed the potent antioxidant activity. In experimental study the EAE (100 and 200 mg/kg, p.o) has found to be effective and significant against MES and PTZ induced seizures. The present study also suggested that antioxidant potent extract (EAE) of Urtica dioica root has antiepileptic effect against MES and PTZ induced seizures. However, further research studies will investigate the active component(s) of Urtica dioica responsible for the observed anticonvulsant effects.
Collapse
Affiliation(s)
- Aanchal Loshali
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Bhuwan Chandra Joshi
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences &Research, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Sushmita Uniyal
- School of Pharmaceutical Sciences, Shri Guru Ram Rai Institute of Technology & Science, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| |
Collapse
|
18
|
Zhao Y, An L, Guo S, Huang X, Tian H, Liu L, Chen T, Sun X, Mei Q, Wang R. LMR-101, a novel derivative of propofol, exhibits potent anticonvulsant effects and possibly interacts with a novel target on γ-aminobutyric acid type A receptors. Epilepsia 2021; 62:238-249. [PMID: 33417274 DOI: 10.1111/epi.16757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE LMR-101 is a bisphenol derivative of propofol, a short-acting general anesthetic, which is also used to manage status epilepticus (SE). We evaluated the sedative and anticonvulsant effects of LMR-101 to discover its potential to manage epilepsy and SE in the clinic. METHODS Comparative studies between LMR-101 and propofol were performed in mice to elucidate an appropriate dose range for LMR-101 that produced anticonvulsant effects without significant sedation. Then, the anticonvulsive efficacy for LMR-101 was evaluated using seizure models induced by pentylenetetrazol and (+)-bicuculline. The ability of LMR-101 to inhibit SE was assessed using a rat model of SE induced by pilocarpine. Radioligand binding assay profiles for LMR-101 were performed to evaluate the potential mechanisms of action underlying its anticonvulsant properties. RESULTS In the mouse study, LMR-101 exhibited greater anticonvulsant and lesser sedative effect compared with propofol. LMR-101 completely inhibited pentylenetetrazol-induced seizures at a dose of 50 mg/kg and exhibited heavy sedation at 300 mg/kg. Propofol anesthetized all mice and only decreased the seizure rate at 25 mg/kg. LMR-101 also suppressed seizure behaviors evoked by (+)-bicuculline in mice in a dose-dependent manner. In the pilocarpine-induced SE model, LMR-101 significantly decreased the maximum seizure score and seizure duration in a dose-dependent manner. The median effective dose for LMR-101 was 14.30 mg/kg and 121.87 mg/kg to prevent and inhibit sustained SE, respectively. In binding assays, LMR-101 primarily inhibited tert-[35 S] butylbicyclophosphorothionate binding to γ-aminobutyric acid type A (GABAA ) receptors (half-maximal inhibitory concentration = 2.06 μmol·L-1 ), but it did not affect [3 H] flunitrazepam or [3 H] muscimol binding. SIGNIFICANCE It is anticipated that LMR-101 might play an essential role in the clinical management of epilepsy and SE. LMR-101 also might bind to a novel target site on the GABAA receptor that is different from existing antiepileptic drugs. Further study of the mechanisms of action of LMR-101 would be of considerable value in the search for new active drug sites on GABAA receptors.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.,Pharmacology Research Center, Shanghai Institute of Pharmaceutical Industry, Shanghai, China.,Department of New Drug Research, Xi'An Libang Pharmaceutical Co, Xi'An, Shaanxi, China
| | - Long An
- Department of New Drug Research, Xi'An Libang Pharmaceutical Co, Xi'An, Shaanxi, China
| | - Shupan Guo
- Department of New Drug Research, Xi'An Libang Pharmaceutical Co, Xi'An, Shaanxi, China
| | - Xiaoxing Huang
- Pharmacology Research Center, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Huajie Tian
- Pharmacology Research Center, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Li Liu
- Pharmacology Research Center, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Tao Chen
- Department of New Drug Research, Xi'An Libang Pharmaceutical Co, Xi'An, Shaanxi, China
| | - Xun Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Qibing Mei
- Pharmacology Research Center, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Rutao Wang
- Department of New Drug Research, Xi'An Libang Pharmaceutical Co, Xi'An, Shaanxi, China
| |
Collapse
|
19
|
Sarangi SC, Pattnaik SS, Joshi D, Chandra PP, Kaleekal T. Adjuvant role of Ocimum sanctum hydroalcoholic extract with carbamazepine and phenytoin in experimental model of acute seizures. Saudi Pharm J 2020; 28:1440-1450. [PMID: 33250652 PMCID: PMC7679441 DOI: 10.1016/j.jsps.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose This study assessed adjuvant potential of Ocimum sanctum hydroalcoholic extract (OSHE) with antiepileptic drugs (AEDs) carbamazepine (CBZ) and phenytoin (PHT) in maximal electroshock seizure (MES) model in male Wistar rats. Material and Methods Pharmacodynamic effect of OSHE (1000 mg/kg) was assessed through seizure protection potential, neurobehavioral tests and oxidative stress estimation in MES model after 14 days administration of OSHE alone or combination with maximal (M) and sub-maximal (SM) dose of CBZ or PHT. Pharmacokinetic interaction of OSHE with AEDs was also assessed after 14 days of drug treatment. Results OSHE per se showed 50% protection against MES-induced seizures. Combination of OSHE with AEDs' SM dose enhanced its seizure protection potential. Significant reduction in duration of tonic hind limb extension was observed in CBZ-SM + OSHE as compared to control group (p = 0.006). Among neurobehavioral tests in Morris water maze test rats of CBZ-M + OSHE took significantly less time to reach the platform (p = 0.022) and spent more time in target quadrant (p = 0.016) as compared to other groups. Similarly, rats of PHT-SM + OSHE group spent significantly more time in the target quadrant (p = 0.013). In elevated plus maze test, CBZ-M + OSHE had significantly decreased transfer latency compared to other groups (p = 0.013). OSHE alone treated group had significantly lower oxidative stress as compared to other groups. No significant pharmacokinetic interaction was observed between OSHE and AEDs (CBZ, PHT). Conclusion Ocimum's potential of enhanced seizure protection and neuroprotection along with minimal drug interaction with AEDs substantiate its adjuvant role in the management of epilepsy.
Collapse
Affiliation(s)
| | | | - Dipesh Joshi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - P Prarthana Chandra
- Center of Excellence Epilepsy, All India Institute of Medical Sciences, New Delhi, India
| | - Thomas Kaleekal
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, Sadek B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr Pharm Des 2020; 26:1693-1711. [PMID: 32003682 DOI: 10.2174/1381612826666200131105324] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Adel Sadeq
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| |
Collapse
|
21
|
Mombeini T, Asadpour Behzadi B, Ejtemaei R, Tahmasbi F, Kamalinejad M, Dehpour AR. Anticonvulsant Effect of Alcea aucheri on Pentylenetetrazole and Maximal Electroshock Seizures in Mice. Basic Clin Neurosci 2020; 11:369-377. [PMID: 32963729 PMCID: PMC7502187 DOI: 10.32598/bcn.11.2.2064.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: This study was designed to investigate the possible anticonvulsant effect of acute administration of an aqueous extract of flowers of Alcea aucheri (EFA) in two in vivo seizure models. Methods: Seizures were induced in male adult Swiss mice by administration of Pentylenetetrazol (PTZ) or Maximal Electroshock (MES). Mice were randomly subjected to receive saline, EFA (8.75–175 mg.kg−1), or diazepam intraperitoneally (i.p.) 15 or 30 min before PTZ injection. In another experiment, mice were treated (i.p.) with saline, EFA (8.75–350 mg.kg−1), or phenytoin 15 or 30 min before the MES test. Diazepam and phenytoin were used as reference drugs. Results: EFA (175 mg.kg−1) significantly increased the PTZ-induced seizure threshold compared with the saline control group 15 min after its administration. In the MES test, the extract (35 mg.kg−1) increased the latency to onset of tonic Hind Limb Extension (HLE) (seizure activity) compared with the saline group 15 min after treatment. Also, 30 min after treatment, EFA (35, 70, and 175 mg.kg−1) increased the latency to onset of the seizure, decreased the duration of the seizure (70 mg.kg−1), and decreased seizure occurrence (350 mg.kg−1) compared with those of the saline group. At both time points, the extract at all doses significantly reduced the mortality rate compared with the saline group. Conclusion: These findings provide evidence of a possible anticonvulsant effect of A. aucheri in PTZ and MES seizure models in mice.
Collapse
Affiliation(s)
- Tajmah Mombeini
- Department of Pharmacology, School of Medicine, Shahed University, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Asadpour Behzadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Ejtemaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Freidoun Tahmasbi
- School of Paramedics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
de Oliveira DD, da Silva CP, Iglesias BB, Beleboni RO. Vitexin Possesses Anticonvulsant and Anxiolytic-Like Effects in Murine Animal Models. Front Pharmacol 2020; 11:1181. [PMID: 32848784 PMCID: PMC7431698 DOI: 10.3389/fphar.2020.01181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Different types of epilepsy and forms of pathological anxiety have been described as significant neurological disorders that may exist as comorbidities. Some of those disorders share the association of affected limbic areas/neuropathological triggers as well as the use of drugs for their clinical management. The aim of this work was to investigate the anticonvulsant and anxiolytic properties of the vitexin (apigenin-8-C-glucoside), since this compound is a flavonoid usually found as one of the major constituents in several medicinal plants claimed as anxiolytics and/or anticonvulsants. This investigation was performed by the use of a series of classical murine animal models of chemically induced-seizures and of anxiety-related tests (open-field, elevated plus-maze, and light-dark box tests). Here, we show that the systemic administration of vitexin (1.25; 2.5 and 5 mg/kg; i.p.) exhibited selective protection against chemically-induced seizures. Vitexin did not block seizures evoked by glutamate receptors agonists (NMDA and kainic acid), and it did not interfere with the latencies for these seizures. Conversely, the same treatments protected the animals in a dose-dependent manner against the seizures evoked by the Gabaergic antagonists picrotoxin and PTZ and rise the latency time for the first seizure on non-protected animals. The higher dose of vitexin protected 100% of animals against the tonic-clonic seizures triggered by GABA antagonists. The results from open-field, elevated plus-maze, and light-dark box tests indicated the anxiolytic properties of vitexin at similar range of doses described for the anticonvulsant action screening. Furthermore, these results pointed that vitexin did not cause sedation or locomotor impairment on animals. The selective action of vitexin against picrotoxin and PTZ may reinforce the hypothesis by which this compound acts mainly by the modulation of GABAergic neurotransmission and/or related pathways. This could be useful to explain the dual activity of vitexin as anticonvulsant and anxiolytic, and highlight the pharmacological interest on this promising flavonoid.
Collapse
Affiliation(s)
| | | | | | - Renê O. Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Aghamiri H, Shafaroodi H, Asgarpanah J. Anticonvulsant Activity of Essential Oil From Leaves of Zhumeria majdae (Rech.) in Mice: The Role of GABA A Neurotransmission and the Nitric Oxide Pathway. Clin Transl Sci 2020; 13:785-797. [PMID: 32027449 PMCID: PMC7359939 DOI: 10.1111/cts.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The essential oil from the leaves of Zhumeria majdae Rech. (ZMEO) has been shown to have several beneficial effects in the clinic. In this work we examined the anticonvulsant activities of ZMEO in an experimental mouse model of seizure and aimed to identify any possible underlying mechanisms. ZMEO (5, 10, 20, and 40 mg/kg intraperitoneally (i.p.)) or diazepam, as the reference anticonvulsant drug (25, 50 and 100 µg/kg i.p.), were administered 60 minutes prior to pentylenetetrazol (PTZ) injection (intravenously (i.v.) or i.p.) and changes in threshold, latency, and frequency of clonic seizure were examined. The PTZ i.p.-induced model of seizure was also applied for examining the protective effects of ZMEO pretreatment against PTZ-induced mortality. In some studies, the anticonvulsant effect of the combination of diazepam and ZMEO was also studied. The protective effects of ZMEO against hindlimb tonic extensions (HLTEs) were also examined by maximal electroshock (MES) seizure testing. The γ-aminobutyric acid (GABA)ergic mechanism and nitric oxide (NO) pathway involvement in anticonvulsant activity of ZMEO were assessed by pretreating animals with flumazenil, Nω -nitro-L-arginine methyl ester (L-NAME), aminoguanidine, and L-arginine in a PTZ-induced model of seizure. Administration of 20 mg/kg ZMEO significantly increased chronic seizure threshold and latency while reducing frequency of convulsions and mortality in the PTZ-induced model. In the doses studied, ZMEO could not protect mice from HLTE and mortality induced by MES. Pretreatment with L-arginine and diazepam potentiated the anticonvulsant effects of ZMEO, whereas pretreatment with L-NAME, aminoguanidine, and flumazenil reversed anticonvulsant activity. The anticonvulsant activity of ZMEO may be mediated in part through a GABAergic mechanism and the NO signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology and ToxicologyFaculty of Pharmacy and Pharmaceutical SciencesTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of PharmacologySchool of MedicineIran University of Medical SciencesTehranIran
| | - Hamed Shafaroodi
- Department of PharmacologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Jinous Asgarpanah
- Department of PharmacognosyFaculty of Pharmacy and Pharmaceutical SciencesTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
24
|
Kharouf Q, Phillips AM, Bleakley LE, Morrisroe E, Oyrer J, Jia L, Ludwig A, Jin L, Nicolazzo JA, Cerbai E, Romanelli MN, Petrou S, Reid CA. The hyperpolarization-activated cyclic nucleotide-gated 4 channel as a potential anti-seizure drug target. Br J Pharmacol 2020; 177:3712-3729. [PMID: 32364262 DOI: 10.1111/bph.15088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by four genes (HCN1-4) with distinct biophysical properties and functions within the brain. HCN4 channels activate slowly at robust hyperpolarizing potentials, making them more likely to be engaged during hyperexcitable neuronal network activity seen during seizures. HCN4 channels are also highly expressed in thalamic nuclei, a brain region implicated in seizure generalization. Here, we assessed the utility of targeting the HCN4 channel as an anti-seizure strategy using pharmacological and genetic approaches. EXPERIMENTAL APPROACH The impact of reducing HCN4 channel function on seizure susceptibility and neuronal network excitability was studied using an HCN4 channel preferring blocker (EC18) and a conditional brain specific HCN4 knockout mouse model. KEY RESULTS EC18 (10 mg·kg-1 ) and brain-specific HCN4 channel knockout reduced seizure susceptibility and proconvulsant-mediated cortical spiking recorded using electrocorticography, with minimal effects on other mouse behaviours. EC18 (10 μM) decreased neuronal network bursting in mouse cortical cultures. Importantly, EC18 was not protective against proconvulsant-mediated seizures in the conditional HCN4 channel knockout mouse and did not reduce bursting behaviour in AAV-HCN4 shRNA infected mouse cortical cultures. CONCLUSIONS AND IMPLICATIONS These data suggest the HCN4 channel as a potential pharmacologically relevant target for anti-seizure drugs that is likely to have a low side-effect liability in the CNS.
Collapse
Affiliation(s)
- Qays Kharouf
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Emma Morrisroe
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Julia Oyrer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - M Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Anticonvulsant activity of new 3- and 4-benzoilpiridines oxime derivatives in comparison with valproic acid. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02523-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Jahani R, Khoramjouy M, Nasiri A, Sojoodi Moghaddam M, Asgharzadeh Salteh Y, Faizi M. Neuro-Behavioral Profile and Toxicity of the Essential Oil of Dorema ammoniacum Gum as an Anti-seizure, Anti-nociceptive, and Hypnotic Agent with Memory-enhancing Properties in D-Galactose Induced Aging Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:110-121. [PMID: 33680015 PMCID: PMC7757986 DOI: 10.22037/ijpr.2020.113738.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we focused on the neuro-behavioral profile, toxicity, and possible mechanisms of action of Dorema ammoniacum gum essential oil (DAG-EO). For this purpose, passive avoidance and Y-maze tests were performed to evaluate the potential effect of DAG-EO in the attenuation of memory impairment induced by 49 days administration of D-galactose and acute injection of scopolamine. Anticonvulsant and anti-nociceptive activities of DAG-EO were evaluated in the pentylenetetrazole and maximal electroshock-induced models of seizure and acetic acid-induced writhing tests, respectively. To find the possible mechanism of action, flumazenil and naloxone were used. Furthermore, the possible side effects were determined in the open field, grip strength, and rotarod tests. Our findings supported that 7-day administration of DAG-EO (50 and 100 mg/kg) improves memory impairment induced following administration of D-galactose and scopolamine. It was also revealed that DAG-EO possesses a dose-dependent sedative-hypnotic (100 mg/kg), anticonvulsant (ED50 ≈ 170 mg/kg), and anti-nociceptive (ED50 ≈ 175 mg/kg) activities possibly mediated via directly and/or indirectly modulation of GABAA and opioid receptors. No side effect was observed except muscle relaxation which was less than that of diazepam. The output of this study confirms anti-seizure, anti-nociceptive, sedative-hypnotic, and memory-enhancing properties of DAG-EO by modulation of GABAA receptors.
Collapse
Affiliation(s)
- Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Sojoodi Moghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Asgharzadeh Salteh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, Othman I, Shaikh MF. Effect of newer anti-epileptic drugs (AEDs) on the cognitive status in pentylenetetrazol induced seizures in a zebrafish model. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:483-493. [PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022]
Abstract
Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
Collapse
Affiliation(s)
- Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Uday P Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Muhammad Faiz Bin Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Chee Piau Wong
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
28
|
Palestro PH, Enrique N, Goicoechea S, Villalba ML, Sabatier LL, Martin P, Milesi V, Bruno Blanch LE, Gavernet L. Searching for New Leads To Treat Epilepsy: Target-Based Virtual Screening for the Discovery of Anticonvulsant Agents. J Chem Inf Model 2018; 58:1331-1342. [PMID: 29870230 DOI: 10.1021/acs.jcim.7b00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp, and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by the maximal electroshock seizure (MES) test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan, and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N, N'-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin, and N, N'-diphenethylsulfamide.
Collapse
Affiliation(s)
- Pablo H Palestro
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Nicolas Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Sofia Goicoechea
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Maria L Villalba
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Laureano L Sabatier
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Pedro Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Veronica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luis E Bruno Blanch
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| |
Collapse
|
29
|
Gauvin DV, Zimmermann ZJ, Yoder J, Harter M, Holdsworth D, Kilgus Q, May J, Dalton J, Baird TJ. A predictive index of biomarkers for ictogenesis from tier I safety pharmacology testing that may warrant tier II EEG studies. J Pharmacol Toxicol Methods 2018; 94:50-63. [PMID: 29751085 DOI: 10.1016/j.vascn.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Three significant contributions to the field of safety pharmacology were recently published detailing the use of electroencephalography (EEG) by telemetry in a critical role in the successful evaluation of a compound during drug development (1] Authier, Delatte, Kallman, Stevens & Markgraf; JPTM 2016; 81:274-285; 2] Accardi, Pugsley, Forster, Troncy, Huang & Authier; JPTM; 81: 47-59; 3] Bassett, Troncy, Pouliot, Paquette, Ascaha, & Authier; JPTM 2016; 70: 230-240). These authors present a convincing case for monitoring neocortical biopotential waveforms (EEG, ECoG, etc) during preclinical toxicology studies as an opportunity for early identification of a central nervous system (CNS) risk during Investigational New Drug (IND) Enabling Studies. This review is about "ictogenesis" not "epileptogenesis". It is intended to characterize overt behavioral and physiological changes suggestive of drug-induced neurotoxicity/ictogenesis in experimental animals during Tier 1 safety pharmacology testing, prior to first dose administration in man. It is the presence of these predictive or comorbid biomarkers expressed during the requisite conduct of daily clinical or cage side observations, and in early ICH S7A Tier I CNS, pulmonary and cardiovascular safety study designs that should initiate an early conversation regarding Tier II inclusion of EEG monitoring. We conclude that there is no single definitive clinical marker for seizure liability but plasma exposures might add to set proper safety margins when clinical convulsions are observed. Even the observation of a study-related full tonic-clonic convulsion does not establish solid ground to require the financial and temporal investment of a full EEG study under the current regulatory standards. PREFATORY NOTE For purposes of this review, we have adopted the FDA term "sponsor" as it refers to any person who takes the responsibility for and initiates a nonclinical investigations of new molecular entities; FDA uses the term "sponsor" primarily in relation to investigational new drug application submissions.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States.
| | - Zachary J Zimmermann
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Joshua Yoder
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Marci Harter
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - David Holdsworth
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Quinn Kilgus
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jonelle May
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jill Dalton
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Theodore J Baird
- Drug Safety Assessment, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| |
Collapse
|
30
|
Nieoczym D, Socała K, Wlaź P. Assessment of the Anticonvulsant Potency of Ursolic Acid in Seizure Threshold Tests in Mice. Neurochem Res 2018; 43:995-1002. [PMID: 29541930 PMCID: PMC5949134 DOI: 10.1007/s11064-018-2505-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
31
|
Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int 2018; 115:11-23. [DOI: 10.1016/j.neuint.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
|
32
|
Daanaa S, Abotsi WKM, Boakye-Gyasi E, Woode E. Anticonvulsant effect of the hydroethanolic leaf extract of Psydrax subcordata (DC.) Bridson in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:384-394. [PMID: 29183747 DOI: 10.1016/j.jep.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psydrax subcordata (DC.) Bridson is a tropical medicinal plant used traditionally for the management of epilepsy. However, there is little scientific evidence to support its use. AIM OF STUDY The current study investigated the anticonvulsant properties of the hydroethanolic leaf extract of Psydrax subcordata (PSE) in animal models. MATERIALS AND METHODS The anticonvulsant effects were evaluated in mouse models of acute seizures (pentylenetetrazole-, picrotoxin-, 4-aminopyridine-, strychnine- and maximal electroshock-induced seizure tests) and status epilepticus (Lithium/pilocarpine-induced SE). The role of GABAergic mechanisms in the actions of the extract was also examined by pre-treatment of animals with flumazenil in the pentylenetetrazole test. RESULTS The extract (30, 100 and 300mg/kg, p.o.) significantly delayed the onset and decreased the duration and frequency of pentylenetetrazole- and picrotoxin-convulsions. PSE also reduced the duration of tonic hind limb extensions in the maximal electroshock-induced seizure test. Furthermore, PSE pre-treatment significantly delayed the onset of seizures and improved survival in the 4-aminopyridine-induced seizure test. In the strychnine-induced seizure test, PSE treatment did not significantly affect the latency to convulsions and time until death when compared to controls. PSE exhibited anticonvulsant effects in the lithium/pilocarpine test by delaying the onset of seizures and status epilepticus as well as reducing the severity of seizures and mortality of mice. Again, the anticonvulsant effect of PSE (100mg/kg, p.o.) was blocked by pre-treatment with flumazenil in the PTZ test. CONCLUSION PSE has anticonvulsant activity in animal models, and this effect may be mediated, at least partly, through GABAergic mechanisms.
Collapse
Affiliation(s)
- Samuel Daanaa
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Wonder Kofi Mensah Abotsi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
33
|
Yuen E, Swanson S, Witkin JM. Prediction of human efficacious antidepressant doses using the mouse forced swim test. Pharmacol Biochem Behav 2017; 161:22-29. [DOI: 10.1016/j.pbb.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022]
|
34
|
Mundo J, Villeda-Hernández J, Herrera-Ruiz M, Gutiérrez MDC, Arellano-García J, León-Rivera I, Perea-Arango I. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn. Biomed Pharmacother 2017; 94:129-139. [PMID: 28759750 DOI: 10.1016/j.biopha.2017.07.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H2O and WAsc-CH2Cl2. For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H2O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H2O and WAsc-CH2Cl2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system.
Collapse
Affiliation(s)
- Jorge Mundo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Juana Villeda-Hernández
- Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur No. 3877, Tlalpan, La Fama, 14269 Ciudad de México, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, IMSS, Argentina 1, Col. Centro, Xochitepec, Morelos, Mexico
| | - María Del Carmen Gutiérrez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Jesús Arellano-García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
35
|
Paiva DDS, Romariz SAA, Valente MF, Moraes LB, Covolan L, Calcagnotto ME, Monteiro Longo B. Transplantation of inhibitory precursor cells from medial ganglionic eminence produces distinct responses in two different models of acute seizure induction. Epilepsy Behav 2017; 70:125-130. [PMID: 28427019 DOI: 10.1016/j.yebeh.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
Abstract
Medial ganglionic eminence (MGE) is one of the sources of inhibitory interneurons during development. Following transplantation in postnatal developing brain, MGE cells can increase local inhibition suggesting a possible protection to GABAergic dysfunction in brain disorders, such as epilepsy. Since it has been shown that MGE-derived cells harvested as neurospheres are able to suppress seizures, it might be important to investigate whether these protective effects would change in different seizure models. Here, we used pentylenetetrazole-(PTZ) and maximal electroshock (MES)-induced seizure models to test whether the transplantation of MGE cells would increase the threshold to trigger acute seizures. When transplanted into the neocortex (layers 3-4) of neonatal mice (postnatal days 3-4), MGE cells were able to survive and were mainly found in piriform cortex, fimbria, and ventricular wall regions. Additionally, the number of GFP+ cells found in the brains of mice induced with PTZ and MES differed significantly and suggests proliferation and larger survival rate of MGE-transplanted cells after PTZ, but not MES-induced seizures. Following transplantation, there was a reduction in the number of animals presenting mild and severe seizures induced by PTZ. Furthermore, MGE-cell transplantation was able to increase threshold to seizures induced by PTZ, but was not able to prevent seizure spread induced by MES.
Collapse
Affiliation(s)
- Daisyléa de Souza Paiva
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Maria Fernanda Valente
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luiz Bruno Moraes
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luciene Covolan
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil.
| |
Collapse
|
36
|
Antidepressant drugs in convulsive seizures: Pre-clinical evaluation of duloxetine in mice. Neurochem Int 2016; 99:62-71. [DOI: 10.1016/j.neuint.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
|
37
|
Fischer W, Franke H, Krügel U, Müller H, Dinkel K, Lord B, Letavic MA, Henshall DC, Engel T. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS One 2016; 11:e0156468. [PMID: 27281030 PMCID: PMC4900628 DOI: 10.1371/journal.pone.0156468] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 01/03/2023] Open
Abstract
The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Klaus Dinkel
- Lead Discovery Center GmbH, Dortmund, Germany
- Affectis Pharmaceutical AG, Dortmund, Germany
| | - Brian Lord
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Michael A. Letavic
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
38
|
Li JL, Gao ZB, Zhao WM. Identification and Evaluation of Antiepileptic Activity of C21 Steroidal Glycosides from the Roots of Cynanchum wilfordii. JOURNAL OF NATURAL PRODUCTS 2016; 79:89-97. [PMID: 26716755 DOI: 10.1021/acs.jnatprod.5b00766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nine new C21 steroidal glycosides, named cynawilfosides A-I (1-9), along with 12 known compounds were isolated from the roots of Cynanchum wilfordii. The structures of the new compounds were elucidated by spectroscopic analysis and chemical methods. The five major components, cynawilfoside A (1), cynauricoside A (11), wilfoside C1N (16), wilfoside K1N (17), and cyanoauriculoside G (18), exhibited significant protection activity in a maximal electroshock (MES)-induced mouse seizure model with ED50 values of 48.5, 95.3, 124.1, 72.3, and 88.1 mg/kg, respectively.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Natural Product Chemistry and ‡Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
| | - Zhao-Bing Gao
- Department of Natural Product Chemistry and ‡Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
| | - Wei-Min Zhao
- Department of Natural Product Chemistry and ‡Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
| |
Collapse
|
39
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
40
|
Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arrifano GP, Paraense RS, Costa-Malaquias A, Mendonça JR, da Silva RF, Monteiro WS, Rogez H, de Oliveira DL, do Nascimento JLM, Crespo-López ME. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem Int 2015; 90:20-7. [DOI: 10.1016/j.neuint.2015.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/09/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
|