1
|
Han HJ, Kim H, Kim DJ. Systematic review for VNS vs. pharmaceutical modulations for multifaceted neurological disorder management through cross-case, network meta-analysis. Brain Stimul 2025; 18:909-936. [PMID: 40220956 DOI: 10.1016/j.brs.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND As an adjunct or alternative to conventional pharmacotherapy, vagus nerve stimulation (VNS) which is FDA-approved has arisen as a novel means for various neurological disorders. METHOD We searched multiple databases (through 2024) for randomised trials and observational studies of VNS (invasive and transcutaneous) and pharmacological treatments (e.g. cholinergic agents, antiepileptics, antidepressants) across several neurological disorders. Prior to comparing between VNS and pharmacological treatments, subgroup analyses of VNS studies were performed for disorder type, patient demographics, VNS stimulation parameters, and treatment duration to illustrate whether VNS itself can be effective to a satisfactory extent to be compared against the conventional method. Efficacy and adverse effects were evaluated, based on the proportion of patients achieving more than 50 % symptom reduction or equivalent clinical improvement, or all-cause mortality where applicable. Evaluation between VNS and pharmacological treatments was performed through network meta-analysis, followed by assessment of heterogeneity (I2) and meta-regression. Risk of bias was evaluated with Cochrane criteria, and all studies (including those with high risk of bias) were included in the primary analysis (with sensitivity analyses excluding high-bias studies). RESULTS We included 56 VNS-related studies (n = 5773 participants) and 29 pharmacological drug-based studies (n = 14827 participants) from spanning epilepsy, depression, migraine/headache, Alzheimer's disease, inflammatory disorders, and heart failure. A network meta-analysis directly comparing VNS to pharmacological drugs yielded an overall advantage for VNS (summary SMD = 0.27 favouring VNS, 95 % CI 0.19-0.35). However, the high heterogeneity and risk of bias have been assessed, indicating potential issues with the VNS studies. CONCLUSION Overall, VNS was shown to be a viable therapeutic modality across diverse neurological disorders, superior to standard pharmacological treatments with a distinct adverse effect profile. It appears particularly beneficial in conditions where conventional drugs have limited success (e.g. refractory epilepsy, depression), although patient-specific factors influence outcomes. Further high-quality trials are anticipated to optimise stimulation parameters, confirm long-term benefits, and manage patient selection for VNS.
Collapse
Affiliation(s)
- Hyun-Jee Han
- Department of Pharmacology, University of Cambridge, UK
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea; Department of Neurology, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Muniyandi M, Chelvanayagam K, Salam SA, Vadamalai S, Rajsekar K, Ramachandran R. Significant reduction of seizure frequency in patients with drug-resistant epilepsy by vagus nerve stimulation: Systematic review and meta-analysis. Epilepsy Res 2025; 210:107510. [PMID: 39809131 DOI: 10.1016/j.eplepsyres.2025.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Epilepsy is a major neurological disorder, typically managed with Anti-Seizure Medication (ASM). Nevertheless, a substantial 30 % of patients did not respond satisfactorily to ASMs, classifying their condition as Drug-Resistant Epilepsy (DRE). Vagus Nerve Stimulation (VNS) was recommended as a potential solution. OBJECTIVE To evaluate clinical efficacy of VNS on patients with DRE in reduction of seizures through a systematic review and meta-analysis using a random effects model. METHODS A systematic search was done from PubMed, ScienceDirect, Cochrane Library and Google Scholar databases on observational studies and randomized controlled trials (RCTs) for the clinical effectiveness of VNS among DRE patients. A meta-analysis was performed to obtain the pooled estimate of the clinical effectiveness of VNS in terms of seizure reduction and the odds ratio (OR) for patients achieving > 50 % seizure reduction. Heterogeneity was assessed using visual inspection of forest plots and I2 statistic. RESULTS A total of 1023 articles were retrieved from the electronic search. After removing duplicates, non-relevance and non-availability of efficacy data, 28 articles were included in the final analysis. Of these, 9 are RCTs and 19 are observational studies. The pooled estimate of > 50 % seizure reduction was 0.46 (95 % CI: 0.40-0.51) and the pooled estimate of the OR comparing > 50 % vs ≤ 50 % seizure reduction was 0.76 (95 % CI: 0.44-1.29). CONCLUSION Our meta-analysis showed that 46 % of DRE patients have experienced ≥ 50 % seizure reduction with VNS treatment. It should be considered in patients in whom ASM has failed or who continue to experience seizures after medication.
Collapse
Affiliation(s)
| | | | - Sahil Abdul Salam
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | - Kavitha Rajsekar
- Department of Health Research, Ministry of Health and Family Welfare, New Delhi, India
| | | |
Collapse
|
3
|
Clifford HJ, Paranathala MP, Wang Y, Thomas RH, da Silva Costa T, Duncan JS, Taylor PN. Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response. Epilepsia 2024; 65:3441-3456. [PMID: 39412361 PMCID: PMC11647441 DOI: 10.1111/epi.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.
Collapse
Affiliation(s)
- Harry J. Clifford
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Yujiang Wang
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| | - Rhys H. Thomas
- NeurosciencesRoyal Victoria InfirmaryNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Tiago da Silva Costa
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Northern Centre for Mood Disorders, Newcastle University, Cumbria, NorthumberlandTyne and Wear NHS Foundation TrustNewcastle Upon TyneUK
- National Institute for Health and Care Research, Newcastle Biomedical Research CentreNewcastle Upon TyneUK
| | | | - Peter N. Taylor
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
4
|
Cheng T, Hu Y, Qin X, Ma J, Zha D, Xie H, Ji T, Liu Q, Wang Z, Hao H, Wu Y, Li L. A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy. CNS Neurosci Ther 2024; 30:e14751. [PMID: 39015946 PMCID: PMC11252558 DOI: 10.1111/cns.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS To predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy. METHODS Sixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy. A Support Vector Machine (SVM) integrated these biomarkers to distinguish the efficacy groups. RESULTS The proportion of VNS responders was 58.5% (38/65) at the last follow-up. In the analysis of parieto-occipital α band activity, higher synchronization level and nodal efficiency were found in responders. The central-frontal θ band activity showed significantly lower entropy in responders. The prediction model reached an accuracy of 81.5%, a precision of 80.1%, and an AUC (area under the receiver operating characteristic curve) of 0.838. CONCLUSION Our results revealed that, compared to nonresponders, VNS responders had a more efficient α band brain network, especially in the parieto-occipital region, and less spectral complexity of θ brain activities in the central-frontal region. We established a predictive model integrating both preimplantation clinical and EEG features and exhibited great potential for discriminating the VNS responders. This study contributed to the understanding of the VNS mechanism and improved the performance of the current predictive model.
Collapse
Affiliation(s)
- Tung‐yang Cheng
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yingbing Hu
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Xiaoya Qin
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Jiayi Ma
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Daqi Zha
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Han Xie
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Taoyun Ji
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Qingzhu Liu
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Ye Wu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Yuruk D, Ozger C, Garzon JF, Nakonezny PA, Vande Voort JL, Croarkin PE. A retrospective, naturalistic study of deep brain stimulation and vagal nerve stimulation in young patients. Brain Behav 2024; 14:e3452. [PMID: 38468454 PMCID: PMC10928335 DOI: 10.1002/brb3.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION Invasive neuromodulation interventions such as deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are important treatments for movement disorders and epilepsy, but literature focused on young patients treated with DBS and VNS is limited. This retrospective study aimed to examine naturalistic outcomes of VNS and DBS treatment of epilepsy and dystonia in children, adolescents, and young adults. METHODS We retrospectively assessed patient demographic and outcome data that were obtained from electronic health records. Two researchers used the Clinical Global Impression scale to retrospectively rate the severity of neurologic and psychiatric symptoms before and after patients underwent surgery to implant DBS electrodes or a VNS device. Descriptive and inferential statistics were used to examine clinical effects. RESULTS Data from 73 patients were evaluated. Neurologic symptoms improved for patients treated with DBS and VNS (p < .001). Patients treated with DBS did not have a change in psychiatric symptoms, whereas psychiatric symptoms worsened for patients treated with VNS (p = .008). The frequency of postoperative complications did not differ between VNS and DBS groups. CONCLUSION Young patients may have distinct vulnerabilities for increased psychiatric symptoms during treatment with invasive neuromodulation. Child and adolescent psychiatrists should consider a more proactive approach and greater engagement with DBS and VNS teams that treat younger patients.
Collapse
Affiliation(s)
- Deniz Yuruk
- Research Fellow in the Department of Psychiatry and PsychologyMayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Can Ozger
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| | - Juan F. Garzon
- Research Fellow in the Department of Psychiatry and PsychologyMayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Paul A. Nakonezny
- Department Of Population And Data SciencesUT Southwestern Medical CenterDallasTexasUSA
| | - Jennifer L. Vande Voort
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| | - Paul E. Croarkin
- Department of Psychiatry and PsychologyMayo Clinic Children's Research Center, and Mayo Clinic Depression Center, Mayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Li G, Li Z, Liu Y. Research progress on the electrophysiological indicators to predict the efficacy of vagus nerve stimulation for drug-refractory epilepsy. ACTA EPILEPTOLOGICA 2024; 6:7. [PMID: 40217388 PMCID: PMC11960364 DOI: 10.1186/s42494-023-00147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 04/15/2025] Open
Abstract
Vagus nerve stimulation (VNS) is an important treatment option for drug-refractory epilepsy (DRE), with well-established efficacy and safety in clinical practice for more than 20 years. However, it is very difficult to find the optimal electrophysiological indicators for the effectiveness of VNS on DRE because the mechanism of action is unknown. In this review, we provide an update of the potential applications of VNS outcomes in patients with drug-resistant epilepsy. Electroencephalographic (EEG) activity, event-related potentials, EEG synchronization levels, magnetoencephalographic, laryngeal muscle evoked potentials, and heart rate variability are potential biomarkers for VNS outcomes in people with DRE.
Collapse
Affiliation(s)
- Guangli Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Zhenguang Li
- Epilepsy Center of Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, China.
| | - Yingting Liu
- Epilepsy Center of Brain Hospital of Hunan Province, Changsha, 410007, Hunan Province, China
| |
Collapse
|
7
|
Fukuda M, Matsuo T, Fujimoto S, Kashii H, Hoshino A, Ishiyama A, Kumada S. Vagus Nerve Stimulation Therapy for Drug-Resistant Epilepsy in Children-A Literature Review. J Clin Med 2024; 13:780. [PMID: 38337474 PMCID: PMC10856244 DOI: 10.3390/jcm13030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Vagus nerve stimulation (VNS) is a palliative treatment for drug-resistant epilepsy (DRE) that has been in use for over two decades. VNS suppresses epileptic seizures, prevents emotional disorders, and improves cognitive function and sleep quality, a parallel effect associated with the control of epileptic seizures. The seizure suppression rate with VNS increases monthly to annually, and the incidence of side effects reduces over time. This method is effective in treating DRE in children as well as adults, such as epilepsy associated with tuberous sclerosis, Dravet syndrome, and Lennox-Gastaut syndrome. In children, it has been reported that seizures decreased by >70% approximately 8 years after initiating VNS, and the 50% responder rate was reported to be approximately 70%. VNS regulates stimulation and has multiple useful systems, including self-seizure suppression using magnets, additional stimulation using an automatic seizure detection system, different stimulation settings for day and night, and an automatic stimulation adjustment system that reduces hospital visits. VNS suppresses seizures and has beneficial behavioral effects in children with DRE. This review describes the VNS system, the mechanism of the therapeutic effect, the specific stimulation adjustment method, antiepileptic effects, and other clinical effects in patients with childhood DRE.
Collapse
Affiliation(s)
- Mitsumasa Fukuda
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Takeshi Matsuo
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (T.M.); (S.F.)
| | - So Fujimoto
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (T.M.); (S.F.)
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Ai Hoshino
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Akihiko Ishiyama
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| |
Collapse
|
8
|
Germany E, Teixeira I, Danthine V, Santalucia R, Cakiroglu I, Torres A, Verleysen M, Delbeke J, Nonclercq A, Tahry RE. Functional brain connectivity indexes derived from low-density EEG of pre-implanted patients as VNS outcome predictors. J Neural Eng 2023; 20:046039. [PMID: 37595607 DOI: 10.1088/1741-2552/acf1cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Objective. In 1/3 of patients, anti-seizure medications may be insufficient, and resective surgery may be offered whenever the seizure onset is localized and situated in a non-eloquent brain region. When surgery is not feasible or fails, vagus nerve stimulation (VNS) therapy can be used as an add-on treatment to reduce seizure frequency and/or severity. However, screening tools or methods for predicting patient response to VNS and avoiding unnecessary implantation are unavailable, and confident biomarkers of clinical efficacy are unclear.Approach. To predict the response of patients to VNS, functional brain connectivity measures in combination with graph measures have been primarily used with respect to imaging techniques such as functional magnetic resonance imaging, but connectivity graph-based analysis based on electrophysiological signals such as electroencephalogram, have been barely explored. Although the study of the influence of VNS on functional connectivity is not new, this work is distinguished by using preimplantation low-density EEG data to analyze discriminative measures between responders and non-responder patients using functional connectivity and graph theory metrics.Main results. By calculating five functional brain connectivity indexes per frequency band upon partial directed coherence and direct transform function connectivity matrices in a population of 37 refractory epilepsy patients, we found significant differences (p< 0.05) between the global efficiency, average clustering coefficient, and modularity of responders and non-responders using the Mann-Whitney U test with Benjamini-Hochberg correction procedure and use of a false discovery rate of 5%.Significance. Our results indicate that these measures may potentially be used as biomarkers to predict responsiveness to VNS therapy.
Collapse
Affiliation(s)
- Enrique Germany
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Igor Teixeira
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | | | | | - Inci Cakiroglu
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | - Andres Torres
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | | | - Jean Delbeke
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-Electro-and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Riëm El Tahry
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
9
|
Pires do Prado HJ, Pinto LF, Bezerra DF, de Paola L, Arruda F, de Oliveira AJ, Romão TT, Lessa VCC, Silva JDS, D’Andrea-Meira I. Predictive factors for successful vagus nerve stimulation in patients with refractory epilepsy: real-life insights from a multicenter study. Front Neurosci 2023; 17:1210221. [PMID: 37575303 PMCID: PMC10413387 DOI: 10.3389/fnins.2023.1210221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Vagus nerve stimulation (VNS) therapy is an established treatment for patients with drug-resistant epilepsy that reduces seizure frequency by at least 50% in approximately half of patients; however, the characteristics of the patients with the best response have not yet been identified. Thus, it is important to identify the profile of patients who would have the best response to guide early indications and better patient selection. Methods This retrospective study evaluated vagus nerve stimulation (VNS) as an adjuvant therapy for patients with drug-resistant epilepsy from six epilepsy centers in Brazil. Data from 192 patients aged 2-66 years were analyzed, and all patients received at least 6 months of therapy to be included. Results Included patients were aged 2-66 years (25.6 ± 14.3), 105 (54.7%) males and 87 (45.8%) females. Median follow-up interval was 5 years (range, 2005-2018). Overall, the response rate (≥50% seizure reduction) after VNS implantation was 65.6% (126/192 patients). Most patients had 50-90% seizure reduction (60.9%) and nine patients became seizure-free. There were no serious complications associated with VNS implantation. The rate of a ≥ 50% seizure reduction response was significantly higher in patients with no history of neurosurgery. The presence of focal without generalized seizures and focal discharges on interictal EEG was associated with better response. Overall, etiological predictors of a better VNS response profile were tumors while a worse response to VNS was related to the presence of vascular malformations and Lennox-Gastaut Syndrome. Discussion We observed an association between a better response to VNS therapy no history of neurosurgery, focal interictal epileptiform activity, and focal seizure pattern. Additionally, it is important to highlight that age was not a determinant factor of the response, as children and adults had similar response rates. Thus, VNS therapy should be considered in both adults and children with DRE.
Collapse
Affiliation(s)
- Henrique Jannuzzelli Pires do Prado
- Department of Epilepsy, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Postgraduate Program in Neurology/Neurosciences, Universidade Federal Fluminense, Niterói, Brazil
| | - Lécio Figueira Pinto
- Department of Epilepsy, Hospital das Clínicas da Faculdade de Medicina USP, São Paulo, Brazil
| | | | - Luciano de Paola
- Department of Epilepsy, Universidade Federal do Paraná, Curitiba, Brazil
| | - Francisco Arruda
- Department of Epilepsy, Instituto de Neurologia de Goiânia, Goiânia, Brazil
| | | | - Tayla Taynan Romão
- Postgraduate Program in Neurology/Neurosciences, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Jonadab dos Santos Silva
- Postgraduate Program in Neurology/Neurosciences, Universidade Federal Fluminense, Niterói, Brazil
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isabella D’Andrea-Meira
- Department of Epilepsy, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Postgraduate Program in Neurology/Neurosciences, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
10
|
Guo Z, Mo J, Zhang C, Zhang J, Hu W, Zhang K. Brain-clinical signatures for vagus nerve stimulation response. CNS Neurosci Ther 2022; 29:855-865. [PMID: 36415145 PMCID: PMC9928539 DOI: 10.1111/cns.14021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
AIM Vagus nerve stimulation (VNS) is a valuable treatment for drug-resistant epilepsy (DRE) without the indication of surgical resection. The clinical heterogeneity of DRE has limited the optimal indication of choice and diagnosis prediction. The study aimed to explore the correlations of brain-clinical signatures with the clinical phenotype and VNS responsiveness. METHODS A total of 89 DRE patients, including VNS- (n = 44) and drug-treated (n = 45) patients, were retrospectively recruited. The brain-clinical signature consisted of demographic information and brain structural deformations, which were measured using deformation-based morphometry and presented as Jacobian determinant maps. The efficacy and presurgical differences between these two cohorts were compared. Then, the potential of predicting VNS response using brain-clinical signature was investigated according to the different prognosis evaluation approaches. RESULTS The seizure reduction was higher in the VNS-treated group (42.50%) as compared to the drug-treated group (12.09%) (p = 0.11). Abnormal imaging representation, showing encephalomalacia (pcorrected = 0.03), was commonly observed in the VNS-treated group (p = 0.04). In the patients treated with VNS, the mild/subtle brain abnormalities indicated higher seizure frequency (p = 0.03) and worse VNS response (p = 0.04). The partial least square regression analysis showed a moderate prediction potential of brain-clinical signature for VNS response (p < 0.01). The increase in the pre-VNS seizure frequency and structural etiology could indicate a worse prognosis (higher McHugh classification). CONCLUSION The brain-clinical signature illustrated its clinical potential in predicting the VNS response, which might allow clinicians to personalize treatment decisions for DRE patients.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jianguo Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina,Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Wenhan Hu
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina,Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Kai Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurosurgeryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina,Beijing Key Laboratory of NeurostimulationBeijingChina
| |
Collapse
|
11
|
Electroencephalogram and heart rate variability features as predictors of responsiveness to vagus nerve stimulation in patients with epilepsy: a systematic review. Childs Nerv Syst 2022; 38:2083-2090. [PMID: 36136103 DOI: 10.1007/s00381-022-05653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) is a mainstay treatment in people with medically refractive epilepsy with a growing interest to identify biomarkers that are predictive of VNS efficacy. In this review, we looked at electroencephalography (EEG) and heart rate variability (HRV) parameters as potential biomarkers. METHODOLOGY A comprehensive search of several databases limited to the English language and excluding animal studies was conducted. Data was collected from studies that specifically reviewed preoperative EEG and HRV characteristics as predictive factors of VNS outcomes. RESULTS Ten out of 1078 collected studies were included in this review, of which EEG characteristics were reported in seven studies; HRV parameters were reported in two studies, and one study reported both. For EEG, studies reported a lower global rate of synchronization in alpha, delta, and gamma waves as predictors of the VNS response. The P300 wave, an evoked response on EEG, had conflicting results. Two studies reported high P300 wave amplitudes in nonresponders and low amplitudes in responders, whereas another study reported high P300 wave amplitudes in responders. For HRV, one study reported high-frequency power as the only parameter to be significantly lower in responders. In contrast, two studies from the same authors showed that HRV parameters were not different between responders and nonresponders. CONCLUSION HRV parameters and EEG characteristics including focal seizures and P300 wave have been reported as potential biomarkers for VNS outcomes in people with medically refractive epilepsy. However, the contradictory findings imply a need for validation through clinical trials.
Collapse
|
12
|
Broncel A, Bocian R, Konopacki J. Vagal Nerve Stimulation: The Effect on the Brain Oscillatory Field Potential. Neuroscience 2021; 483:127-138. [PMID: 34952159 DOI: 10.1016/j.neuroscience.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
More than thirty years of medical treatment with the use of vagal nerve stimulation (VNS) has shown that this therapeutic procedure works in a number of homeostatic disturbances. Although the clinical usage of VNS has a long history, our knowledge about the central mechanisms underlying this treatment is still limited. In the present paper we review the effects of VNS on brain oscillations as a possible electrophysiological bio-marker of VNS efficacy. The review was prepared mainly on the basis of data delivered from clinical observations and the outcomes of electrophysiological experiments conducted on laboratory animals that are available in PubMed. We consciously did not focus on epileptiform activity understood as a pathologic oscillatory activity, which was widely discussed in the numerous previously published reviews. The main conclusion of the present paper is that further, well-designed experiments on laboratory animals are absolutely necessary to address the electrophysiological issues. These will fill a number of gaps in our present knowledge of the central mechanisms underlying VNS therapy.
Collapse
Affiliation(s)
- Adam Broncel
- Medical Technology Centre, Natolin 15, 92-701 Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
13
|
Russo A, Hyslop A, Gentile V, Chiarello D, Messana T, Miller I, Zucchelli M, Lima M, Ragheb J, Pini A, Cordelli DM, Resnick T, Jayakar P, Duchowny M. Early Implantation as a Main Predictor of Response to Vagus Nerve Stimulation in Childhood-Onset Refractory Epilepsy. J Child Neurol 2021; 36:365-370. [PMID: 33236677 DOI: 10.1177/0883073820974855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We describe a multicenter experience with vagus nerve stimulator implantation in pediatric patients with drug-resistant epilepsy. Our goal was to assess vagus nerve stimulation efficacy and identify potential predictors of favorable outcome. METHODS This is a retrospective study. Inclusion criteria: ≤18 years at time of vagus nerve stimulator implantation, at least 1 year of follow-up. All patients were previously found to be unsuitable for an excisional procedure. Favorable clinical outcome and effective vagus nerve stimulation therapy were defined as seizure reduction >50%. Outcome data were reviewed at 1, 2, 3, and 5 years after vagus nerve stimulator implantation. Fisher exact test and multiple logistic regression analysis were employed. RESULTS Eighty-nine patients met inclusion criteria. Responder rate (seizure frequency reduction >50%) at 1-year follow-up was 25.8% (4.5% seizure-free). At last follow-up, 31.5% had a favorable outcome and 5.2% were seizure free. The only factor significantly predicting favorable outcome was time to vagus nerve stimulator implantation, with the best outcome achieved when vagus nerve stimulator implantation was performed within 3 years of seizure onset. Implantation between 3 and 5 years after epilepsy onset correlated with better long-term seizure freedom (13.3% at T5). Overall, 65.2% of patients evidenced improved quality of life at last follow-up. However, 12.4% had adverse events, but most were mild and disappeared after 3-4 months. CONCLUSIONS Early vagus nerve stimulator implantation within 5 years of seizure onset was the only predictor of favorable clinical outcome in pediatric patients. Improved quality of life and a low incidence of significant adverse events were observed.
Collapse
Affiliation(s)
- Angelo Russo
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Ann Hyslop
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Valentina Gentile
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Daniela Chiarello
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Tullio Messana
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Mino Zucchelli
- 9296IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neurochirurgia, Bologna, Italy
| | - Mario Lima
- Pediatric Surgery, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, University of Bologna, Italy
| | - John Ragheb
- Department of Neurological Surgery, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Antonella Pini
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Duccio Maria Cordelli
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Trevor Resnick
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Prasanna Jayakar
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Michael Duchowny
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Workewych AM, Arski ON, Mithani K, Ibrahim GM. Biomarkers of seizure response to vagus nerve stimulation: A scoping review. Epilepsia 2020; 61:2069-2085. [PMID: 32862454 DOI: 10.1111/epi.16661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Although vagus nerve stimulation (VNS) is a common procedure, seizure outcomes are heterogeneous, with few available means to preoperatively identify the ideal surgical candidate. Here, we perform a scoping review of the literature to identify biomarkers of VNS response in patients with drug-resistant epilepsy. Several databases (Ovid MEDLINE, Ovid Embase, BIOSIS Previews, and Web of Science) were searched for all relevant articles that reported at least one biomarker of VNS response following implantation for intractable epilepsy. Patient demographics, seizure data, and details related to biomarkers were abstracted from all studies. From the 288 records screened, 28 articles reporting on 16 putative biomarkers were identified. These were grouped into four categories: network/connectomic-based biomarkers, electrophysiological signatures, structural findings on neuroimaging, and systemic assays. Differences in brain network organization, connectivity, and electrophysiological synchronicity demonstrated the most robust ability to identify VNS responders. Structural findings on neuroimaging yielded inconsistent associations with VNS responsiveness. With regard to systemic biomarkers, heart rate variability was shown to be an independent marker of VNS response, whereas inflammatory markers were not useful. There is an unmet need to preoperatively identify candidates who are likely to benefit from VNS. Several biomarkers demonstrate promise in predicting seizure responsiveness to VNS, particularly measures of brain network connectivity. Further efforts are required to validate existing biomarkers to inform clinical decision-making.
Collapse
Affiliation(s)
- Adriana M Workewych
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mithani
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - George M Ibrahim
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Marras CE, Colicchio G, De Palma L, De Benedictis A, Di Gennaro G, Cavaliere M, Cesaroni E, Consales A, Asioli S, Caulo M, Villani F, Zamponi N. Health Technology Assessment Report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6150. [PMID: 32847092 PMCID: PMC7504285 DOI: 10.3390/ijerph17176150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023]
Abstract
Background: Vagus nerve stimulation (VNS) is a palliative treatment for medical intractable epileptic syndromes not eligible for resective surgery. Health technology assessment (HTA) represents a modern approach to the analysis of technologies used for healthcare. The purpose of this study is to assess the clinical, organizational, financial, and economic impact of VNS therapy in drug-resistant epilepsies and to establish the congruity between costs incurred and health service reimbursement. Methods: The present study used an HTA approach. It is based on an extensive detailed bibliographic search on databases (Medline, Pubmed, Embase and Cochrane, sites of scientific societies and institutional sites). The HTA study includes the following issues: (a) social impact and costs of the disease; (b) VNS eligibility and clinical results; (c) quality of life (QoL) after VNS therapy; (d) economic impact and productivity regained after VNS; and (e) costs of VNS. Results: Literature data indicate VNS as an effective treatment with a potential positive impact on social aspects and on quality of life. The diagnosis-related group (DRG) financing, both on national and regional levels, does not cover the cost of the medical device. There was an evident insufficient coverage of the DRG compared to the full cost of implanting the device. Conclusions: VNS is a palliative treatment for reducing seizure frequency and intensity. Despite its economic cost, VNS should improve patients' quality of life and reduce care needs.
Collapse
Affiliation(s)
- Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | - Gabriella Colicchio
- Department of Neurosurgery, UCSC Gemelli University Hospital, 00167 Rome, Italy;
| | - Luca De Palma
- Pediatric Neurology Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | | | - Marilou Cavaliere
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
- Institute of Neurosurgery, University of Milan Bicocca, 20900 Milan, Italy
| | - Elisabetta Cesaroni
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, Bellaria Hospital, University of Bologna, 40139 Bologna, Italy;
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Flavio Villani
- Division of Clinical Neurophysiology and Epilepsy Center, IRCCS, San Martino Hospital, 16132 Genoa, Italy;
| | - Nelia Zamponi
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| |
Collapse
|
16
|
Wang ZJ, Kim ES, Noh BH, Liang JG, Lee D, Hur YJ, Kim NY, Kim HD. Alteration in brain connectivity in patients with Dravet syndrome after vagus nerve stimulation (VNS): exploration of its effectiveness using graph theory analysis with electroencephalography. J Neural Eng 2020; 17:036014. [PMID: 32380482 DOI: 10.1088/1741-2552/ab914f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) is a nonpharmacologic therapeutic option for patients who have pharmaco-resistant Dravet syndrome (DS). Plentiful efforts have been made for delivering VNS to DS patients, but its effectiveness still requires further verification. We investigated the effectiveness of the VNS treatment of DS patients using brain connectivity analysis with electroencephalography (EEG). APPROACH Twenty pharmaco-resistant DS patients were selected to undergo VNS implantation and classified into responder and non-responder groups after 24 months post-VNS. The effect of VNS between 6 months pre- and 6, 12, and 24 months post-VNS in all patients, responders, and non-responders on four different frequency categories of four brain parameters were compared using resting-state EEG. MAIN RESULTS In alpha and beta bands, all patients showed positive results for characteristic path length (CPL), global efficiency (GE), and transitivity after VNS treatment, and changes in betweenness centrality (BC) were not significant. The difference in transitivity between responders and non-responders is more pronounced than those in CPL and GE are, in both the alpha (p < 0.015) and beta (p < 0.001) bands. There was an obvious change in BC, especially in the alpha band, as the hubs tended to move from frontal lobe to parietal lobe for responders; however, there was no change for the non-responders. SIGNIFICANCE We investigated the alteration in brain connectivity of DS patients in alpha and beta bands during a long-term follow-up and found the responders have a decreased transitivity after the VNS treatment. Moreover, the hubs with high values in the alpha band tended to move from frontal lobe to parietal lobe for responders after VNS treatment.
Collapse
Affiliation(s)
- Zhi-Ji Wang
- RFIC Center, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Ku, Seoul 139-701, Republic of Korea. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kavčič A, Kajdič N, Rener-Primec Z, Krajnc N, Žgur T. Efficacy and tolerability of vagus nerve stimulation therapy (VNS) in Slovenian epilepsy patients: younger age and shorter duration of epilepsy might result in better outcome. Acta Clin Croat 2019; 58:255-264. [PMID: 31819321 PMCID: PMC6884381 DOI: 10.20471/acc.2019.58.02.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To review the outcome of vagus nerve stimulation (VNS) therapy in all implanted Slovenian patients with drug-resistant epilepsy, data on 48 patients implanted between 2001 and 2015 were obtained retrospectively from medical records. The outcome was assessed in 2016. Out of 48 patients, 39 responded at follow up. The seizure frequency was reduced in 18 (46.2%) patients; 13 (33.3%) of them reported ≥50% reduction after 12 months of therapy. The responder rate was higher among patients implanted before the age of six years. Ictal severity decreased in 22 (56.4%), seizure duration in 19 (48.7%) and post-ictal recovery time in 22 (56.4%) patients. Favorable effects on the quality of life (QOL) were improved alertness in 33.3%, concentration in 41.0%, energy and mood in 38.5%, and memory in 17.9% of patients. Reduced seizure burden and improved QOL were more often observed in patients implanted at a younger age. Shorter duration of epilepsy was significantly associated with QOL improvement. Adverse effects were transient. Overall positive effects showed VNS to be a safe, well-tolerated and effective adjunctive treatment in most severe drug-resistant epilepsy patients. Implantation at a younger age and shorter duration of epilepsy before implantation could be important predictors of better outcome.
Collapse
Affiliation(s)
| | - Nina Kajdič
- 1Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Department of Child, Adolescent and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Pediatrics, Slovenj Gradec General Hospital, Slovenj Gradec, Slovenia; 4Department of Clinical Neurophysiology, Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Zvonka Rener-Primec
- 1Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Department of Child, Adolescent and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Pediatrics, Slovenj Gradec General Hospital, Slovenj Gradec, Slovenia; 4Department of Clinical Neurophysiology, Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Natalija Krajnc
- 1Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Department of Child, Adolescent and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Pediatrics, Slovenj Gradec General Hospital, Slovenj Gradec, Slovenia; 4Department of Clinical Neurophysiology, Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tomaž Žgur
- 1Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Department of Child, Adolescent and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia; 3Department of Pediatrics, Slovenj Gradec General Hospital, Slovenj Gradec, Slovenia; 4Department of Clinical Neurophysiology, Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. Seizure 2019; 66:53-60. [DOI: 10.1016/j.seizure.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
|
19
|
Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav 2018; 88S:2-10. [PMID: 30017839 DOI: 10.1016/j.yebeh.2018.06.032] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
Abstract
Epilepsy affects millions of people worldwide. Approximately one-third have pharmacoresistant epilepsy, and of these, the majority are not candidates for epilepsy surgery. Vagus nerve stimulation (VNS) therapy has been an option to treat pharmacoresistant seizures for 30 years. In this update, we will review the clinical data that support the device's efficacy in children, adolescents, and adults. We will also review its side-effect profile, quality of life and cost benefits, and the impact the device has on sudden unexpected death in epilepsy (SUDEP). We will then discuss candidate selection and provide guidance on dosing and future models. Vagus nerve stimulation therapy is an effective treatment for many seizure types and epilepsy syndromes with a predictable and benign side-effect profile that supports its role as the most commonly prescribed device to treat pharmacoresistant epilepsy. "This article is part of the Supplement issue Neurostimulation for Epilepsy."
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Comprehensive Epilepsy Program, Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Department of Pediatrics, Pediatric Neurology Division, University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Andrew J Gienapp
- Medical Education, Methodist University Hospital, Memphis, TN, United States; Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Phillippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
20
|
Preoperative Heart Rate Variability as Predictors of Vagus Nerve Stimulation Outcome in Patients with Drug-resistant Epilepsy. Sci Rep 2018; 8:3856. [PMID: 29497072 PMCID: PMC5832772 DOI: 10.1038/s41598-018-21669-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an adjunctive treatment for drug-resistant epilepsy (DRE). However, it is still difficult to predict which patients will respond to VNS treatment and to what extent. We aim to explore the relationship between preoperative heart rate variability (HRV) and VNS outcome. 50 healthy control subjects and 63 DRE patients who had received VNS implants and had at least one year of follow up were included. The preoperative HRV were analyzed by traditional linear methods and heart rhythm complexity analyses with multiscale entropy (MSE). DRE patients had significantly lower complexity indices (CI) as well as traditional linear HRV measurements than healthy controls. We also found that non-responders0 had significantly lower preoperative CI including Area 1-5, Area 6-15 and Area 6-20 than those in the responders0 while those of the non-responders50 had significantly lower RMSSD, pNN50, VLF, LF, HF, TP and LF/HF than the responders50. In receiver operating characteristic (ROC) curve analysis, Area 6-20 and RMSSD had the greatest discriminatory power for the responders0 and non-responders0, responders50 and non-responders50, respectively. Our results suggest that preoperative assessment of HRV by linear and MSE analysis can help in predicting VNS outcomes in patients with DRE.
Collapse
|
21
|
Casalia ML, Howard MA, Baraban SC. Persistent seizure control in epileptic mice transplanted with gamma-aminobutyric acid progenitors. Ann Neurol 2017; 82:530-542. [PMID: 28833459 PMCID: PMC5771437 DOI: 10.1002/ana.25021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A significant proportion of the more than 50 million people worldwide currently suffering with epilepsy are resistant to antiepileptic drugs (AEDs). As an alternative to AEDs, novel therapies based on cell transplantation offer an opportunity for long-lasting modification of epileptic circuits. To develop such a treatment requires careful preclinical studies in a chronic epilepsy model featuring unprovoked seizures, hippocampal histopathology, and behavioral comorbidities. METHODS Transplantation of progenitor cells from embryonic medial or caudal ganglionic eminence (MGE, CGE) were made in a well-characterized mouse model of status epilepticus-induced epilepsy (systemic pilocarpine). Behavioral testing (handling and open field), continuous video-electroencephalographic (vEEG) monitoring, and slice electrophysiology outcomes were obtained up to 270 days after transplantation (DAT). Post-hoc immunohistochemistry was used to confirm cell identity. RESULTS MGE progenitors transplanted into the hippocampus of epileptic mice rescued handling and open field deficits starting at 60 DAT. In these same mice, an 84% to 88% reduction in seizure activity was observed between 180 and 210 DAT. Inhibitory postsynaptic current frequency, measured on pyramidal neurons in acute hippocampal slices at 270 DAT, was reduced in epileptic mice but restored to naïve levels in epileptic mice receiving MGE transplants. No reduction in seizure activity was observed in epileptic mice receiving intrahippocampal CGE progenitors. INTERPRETATION Our findings demonstrate that transplanted MGE progenitors enhance functional GABA-mediated inhibition, reduce spontaneous seizure frequency, and rescue behavioral deficits in a chronic epileptic animal model more than 6 months after treatment. Ann Neurol 2017;82:530-542.
Collapse
Affiliation(s)
- Mariana L Casalia
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - MacKenzie A Howard
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|