1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Lee SY, Lee H, Cho JW, Kang KW, Seo JG, Kim JS, Kang JW, Kim D, Kim YS, Choi SA, Park J, Phi JH, Nam SO, Kim WS, Kim JM, Kim KJ. Long-term outcome and predictors of vagus nerve stimulation for drug-resistant epilepsy: Real-world evidence from the Korean national hospital consortium. Epilepsy Res 2025; 210:107511. [PMID: 39848013 DOI: 10.1016/j.eplepsyres.2025.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/10/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE This study aimed to assess the long-term outcome and prognostic factors of vagus nerve stimulation (VNS) for drug-resistant epilepsy (DRE) using real-world data. METHOD We included 189 DRE patients who underwent VNS implantation between 2005 and 2018 at nine national hospitals in Korea. Seizure-frequency data obtained quarterly one year before and after surgery and annually up to four years after surgery were collected from medical records. Health resource utilization trends over the four years preceding and following surgery were assessed through linkage with national health insurance data. We performed interrupted time series analysis to examine the trend in seizure frequency before and after one year following surgery. RESULTS The seizure frequency exhibited a decreasing trend in 27.5 % and an increasing trend in 3.8 % during the first year following VNS implantation without a significant change in efficacy over the subsequent three years. Patients with focal spikes with secondary bilateral synchrony (SBS) in electroencephalography had a higher responder rate (adjusted odds ratio (aOR)= 3.06 [1.36-6.90]), whereas those with Lennox-Gastaut syndrome had a lower responder rate (aOR=0.38 [0.15-0.94]). One-year seizure-freedom was achieved in 6.0 % of patients at some point during the four-year follow-up. Over an eight-year period, the number of antiseizure medications (ASMs) tended to increase before surgery and remained at a median of 5 [4-6] after surgery. While the total medical and epilepsy-related costs tended to decrease after surgery, the ASM cost continued to increase. CONCLUSION VNS was substantially beneficial for one in four patients with DRE, offering the chance of seizure-freedom. However, the efficacy of VNS fell within the efficacy range of recently introduced medical treatments and did not lead to a decrease in the ASM burden. Focal spike with SBS is a potential biomarker for a favorable response to VNS.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea,; Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyesung Lee
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae-Wook Cho
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Kwangju, Republic of Korea
| | - Jong-Geun Seo
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jon Soo Kim
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Joon-Won Kang
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Young-Soo Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Sun Ah Choi
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jeonghoon Park
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sang Ook Nam
- Department of Pediatrics, Pusan National University School of Medicine, Pusan, Republic of Korea.
| | - Won Seop Kim
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhu J, Gu R, Ji F. Independent component analysis of brain network in drug-resistant epilepsy patients with vagus nerve stimulators. Int J Neurosci 2025:1-8. [PMID: 39745504 DOI: 10.1080/00207454.2024.2449382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE To investigate the activity of default mode network (DMN), frontoparietal network (FPN) and cerebellar network (CN) in drug-resistant epilepsy (DRE) patients undergoing vagus nerve stimulation (VNS). METHODS Fifteen patients were recruited and underwent resting-state functional magnetic resonance imaging (fMRI) scans. Independent component analysis and paired sample t-tests were used to examine activity changes of DMN, FPN and CN before and after VNS. RESULTS Compared with preoperative patients, DMN exhibited decreased activity in left cuneus/precuneus, left median cingulate gyrus, left superior/middle occipital gyrus, right superior parietal gyrus, right precentral/postcentral gyrus, right rolandic operculum and right insula, while increased activity was observed in right supramarginal gyrus, left fusiform gyrus, right supplementary motor area, left amygdala, and right inferior frontal gyrus. FPN displayed decreased activity in left cuneus, left anterior cingulate gyrus, right precentral gyrus, left middle/inferior frontal gyrus, right middle frontal gyrus, left superior/middle temporal gyrus, left superior/middle occipital gyrus, and right superior parietal gyrus, but increased activity in right inferior temporal gyrus. CN showed decreased activity in left superior/middle frontal gyrus, right inferior frontal gyrus, left supplementary motor area, left precuneus, left postcentral gyrus, left middle occipital gyrus, right middle temporal gyrus, and left inferior cerebellum, while increased activity was detected in bilateral superior cerebellum and right fusiform gyrus. CONCLUSIONS DMN, FPN and CN exhibited distinct changes in DRE patients following VNS. The suppression or activation of sensorimotor, language, memory and emotion-related regions may represent the underlying neurological mechanisms of VNS. However, the contrasting activity patterns between superior and inferior cerebellum require further investigation.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Neurosurgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Rui Gu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fan Ji
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Urian FI, Toader C, Covache Busuioc RA, Corlatescu AD, Costin HP, Iacob G, Ciurea AV. Introducing the Index of Response to Stimulation (IRES): A Novel Metric for Assessing Vagus Nerve Stimulation Outcomes in Drug-Resistant Epilepsy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:75. [PMID: 39859056 PMCID: PMC11766910 DOI: 10.3390/medicina61010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: The Index of Response to Stimulation (IRES) is a new index that we introduce in this study to grade the effectiveness of vagus nerve stimulation in the treatment of drug-resistant epilepsy. We assessed 76 patients at 6, 12, and 18 months after VNS evaluating improvement with the IRES in four key dimensions: seizure duration decrease, seizure intensity decrease, improvement in quality of life, and seizure frequency decrease. This scale goes from 0, meaning no improvement, to 8, meaning maximal improvement, making the scale a really good measure of clinical utility. Materials and Methods: This retrospective study followed 76 patients aged 20-65, assessing changes in their IRES scores after VNS therapy using the ASPIRE SR 106 device. Therapy settings were adjusted biweekly to optimize efficacy and patient tolerance. Results: There were improvements in the control of the seizures, measured in terms of increased IRES scores. Improvements were associated with quality-of-life enhancements for the patient and a lesser frequency and intensity of the seizures, testifying further to the predictive ability of the IRES toward successful outcomes. This fact reveals that epilepsy treatment must be individual, according to the profile of the patient. Conclusions: The study confirms the IRES to be a valid tool for the assessment of the impact of VNS on drug-resistant epilepsy and promotes it as an integral part of the evaluation of the patient for personalized therapy. The findings encourage the use of IRES among the elements that support patient selection and insist on its role in the advancement of precision medicine and optimization of treatment.
Collapse
Affiliation(s)
- Flavius-Iuliu Urian
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
- Neurosurgical Department, University Emergency Hospital Bucharest, 050098 București, Romania
| | - Corneliu Toader
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
- National Institute of Neurovascular Disease, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache Busuioc
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
| | - Gabriel Iacob
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
- Neurosurgical Department, University Emergency Hospital Bucharest, 050098 București, Romania
| | - Alexadru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy “Carol Davila”, 030147 Bucharest, Romania; (F.-I.U.); (R.-A.C.B.); (A.-D.C.); (H.P.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Science Section, Romanian Academy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Patil A, Jayalakshmi S, Somayajula S, Shah D, Vooturi S, Panigrahi M. Long-Term Outcome of Vagus Nerve Stimulation for Drug-Resistant Epilepsy. Ann Indian Acad Neurol 2025; 28:32-37. [PMID: 39951020 DOI: 10.4103/aian.aian_389_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AND OBJECTIVES In this study, we aimed to assess the long-term outcome of vagus nerve stimulation (VNS) in patients with drug-resistant epilepsy (DRE). METHODS A retrospective analysis of outcome data of 24 patients with DRE, who had been implanted with VNS and had at least 5 years of post-surgery follow-up was performed. The seizure outcome at the latest follow-up was classified as class I-V as proposed by John C. McHugh. The cognitive, psychiatric, and behavioral outcomes were recorded using standardized tests. RESULTS Mean age at the time of VNS implantation was 18.7 (6-38) years; nine (37.5%) of the patients were females. Mean duration of epilepsy was 13.6 years (range: 2.5-35 years); 18 (75%) patients had multiple (≥2) seizure types and 15 (62.5%) had daily seizures. The most common etiology was perinatal hypoxic injury (15, 62.5%). More than 50% seizure reduction (class 1 and 2) was noted in 54.2% of patients at 1 year, which increased to 75% at ≥5 years follow-up. A significantly higher number of patients with other etiologies had >50% reduction in seizures at the latest follow-up, when compared to those with hypoxic-ischemic encephalopathy (53.3% vs. 100%, P = 0.0024). The average intelligence quotient (IQ; 71.17 ± 28.92 vs. 64.65 ± 29.61, P = 0.014) and quality of life (66.64 ± 14.63 vs. 64.65 ± 29.61, P < 0.001) scores were significantly higher in patients post-VNS implantation, when compared to their baseline scores. Furthermore, significant number of patients had improvement in psychiatric diagnosis (29.2% vs. 4.2%, P = 0.047) and behavioral problems (50% vs. 4.2%, P < 0.001) post-VNS implantation. CONCLUSIONS The present study shows >50% seizure reduction in 75% of patients after VNS implantation at long-term follow-up, with improvement in IQ, quality of life, psychiatric and behavioral problems.
Collapse
Affiliation(s)
- Anuja Patil
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Sita Jayalakshmi
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Shanmukhi Somayajula
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Dhrumil Shah
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Sudhindra Vooturi
- Department of Neurology, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| |
Collapse
|
6
|
Wheless JW, Raskin JS, Fine AL, Knupp KG, Schreiber J, Ostendorf AP, Albert GW, Kossoff EH, Madsen JR, Kotagal P, Numis AL, Gadgil N, Holder DL, Thiele EA, Ibrahim GM. Expert opinion on use of vagus nerve stimulation therapy in the management of pediatric epilepsy: A Delphi consensus study. Seizure 2024; 123:97-103. [PMID: 39536380 DOI: 10.1016/j.seizure.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To provide consensus-based recommendations for use of vagus nerve stimulation (VNS) therapy in the management of pediatric epilepsy. METHODS Delphi methodology with two rounds of online survey was used to build consensus. A steering committee developed 43 statements related to pediatric epilepsy and the use of VNS therapy, which were evaluated by a panel of 12 neurologists/neurosurgeons with expertise in pediatric epilepsy, who graded their agreement with each statement on a scale of 1 ("I do not agree at all") to 5 ("I strongly agree"). For each statement, consensus was established if ≥70% of the agreement scores were 4 or 5 and <30% were 1 or 2 in the final survey. RESULTS Twenty-four statements regarding the need for seizure reduction in pediatric epilepsy, the recommended treatment algorithm, the benefits and safety of VNS therapy, management of side effects of VNS therapy, patient selection for VNS therapy, and the use, dosing, and titration of VNS therapy achieved consensus. VNS and other neuromodulation therapies should be considered for pediatric patients with drug-resistant epilepsy who are not candidates for resective surgery, or who do not remain seizure free after resective surgery. When VNS therapy is initiated, the target dose range should be achieved via the fastest and safest titration schedule for each patient. Scheduled programming can be helpful in dose titration. CONCLUSION The expert consensus statements represent the panelists' collective opinion on the best practice use of VNS therapy to optimize outcomes in the management of pediatric epilepsy.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 49 N Dunlap Ave, 3rd Floor FOB, Memphis, TN 38105, United States.
| | - Jeffrey S Raskin
- Lurie Children's Hospital, 225 E Chicago Ave, Northwestern University Feinberg School of Medicine, 420 E Superior St, Chicago, IL 60611, United States.
| | - Anthony L Fine
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Kelly G Knupp
- University of Colorado, Anschutz Campus, 13001 E 17th Pl, Aurora, CO 80045, United States.
| | - John Schreiber
- Children's National Medical Center, 111 Michigan Ave, NW, Washington District of Columbia, United States.
| | - Adam P Ostendorf
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States.
| | - Gregory W Albert
- Arkansas Children's Hospital, 1 Children's Way, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States.
| | - Eric H Kossoff
- Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States.
| | - Joseph R Madsen
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| | - Prakash Kotagal
- Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States.
| | - Adam L Numis
- University of California San Francisco, 1825 Fourth St Fifth Floor, 5A, San Francisco, CA 94158, United States.
| | - Nisha Gadgil
- Texas Children's Hospital, 6701 Fannin Street, Houston, TX 77030, United States.
| | - Deborah L Holder
- Guerin Children's Hospital, Cedars Sinai, 127 S San Vicente Blvd a3600, Los Angeles, CA, United States.
| | - Elizabeth A Thiele
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States.
| | - George M Ibrahim
- Hospital for Sick Children, Department of Surgery, 170 Elizabeth St, University of Toronto, Toronto, ON M5G 1E8, Canada.
| |
Collapse
|
7
|
Clifford HJ, Paranathala MP, Wang Y, Thomas RH, da Silva Costa T, Duncan JS, Taylor PN. Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response. Epilepsia 2024; 65:3441-3456. [PMID: 39412361 PMCID: PMC11647441 DOI: 10.1111/epi.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.
Collapse
Affiliation(s)
- Harry J. Clifford
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Yujiang Wang
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| | - Rhys H. Thomas
- NeurosciencesRoyal Victoria InfirmaryNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Tiago da Silva Costa
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Northern Centre for Mood Disorders, Newcastle University, Cumbria, NorthumberlandTyne and Wear NHS Foundation TrustNewcastle Upon TyneUK
- National Institute for Health and Care Research, Newcastle Biomedical Research CentreNewcastle Upon TyneUK
| | | | - Peter N. Taylor
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
8
|
Kwan P, Boffini M, Fahoum F, El Tahry R, O'Brien TJ, Keough K, Boggs J, Goldberg‐Stern H, Beraldi F, Giannicola G, Lee Y, Sen A. Baseline characteristics and predictors for early implantation of vagus nerve stimulation therapy in people with drug-resistant epilepsy: Observations from an international prospective outcomes registry (CORE-VNS). Epilepsia Open 2024; 9:1837-1846. [PMID: 39180426 PMCID: PMC11450613 DOI: 10.1002/epi4.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) Therapy is routinely indicated for people with drug-resistant epilepsy (DRE). We analyzed the baseline characteristics of individuals receiving the recently released VNS models and identified factors associated with early or late implantation. METHODS The Comprehensive Outcomes Registry of subjects with Epilepsy (CORE-VNS), a prospective observational study evaluating the clinical and psychosocial outcomes of VNS Therapy®, is following participants for up to 60 months after VNS implantation. In this analysis, we used Cox proportional hazards model to identify baseline characteristics associated with the time from diagnosis to first implantation. RESULTS Of the 819 enrolled, 792 (96.7%) participants implanted with a VNS device were evaluated. 529 (64.6%) underwent the first implantation and 263 (32.1%) a re-implantation. Participants' median age at first implant was 24 years; 492 (62.1%) were ≥18 years old and 166 (20.3%) were < 12 years old. The average number of failed ASMs prior to VNS implantation was 7.1, and 145 (17.7%) had undergone previous epilepsy-related surgery. Epilepsy was classified as focal in 47.7% of participants, generalized in 16.1% and combined focal and generalized in 34.2%. Many of the participants (40.9%) had epilepsy of unknown etiology. The median time from diagnosis to first implantation was 10.33 years and was significantly shorter in participants with combined focal and generalized epilepsy compared to those with focal epilepsy alone, and in participants with genetic and immune epilepsy compared to those with unknown etiologies. SIGNIFICANCE In people with DRE, VNS Therapy is provided after multiple failures of ASMs and after failure of epilepsy surgery in one in six individuals. Time from diagnosis to first implantation is associated with epilepsy type and etiology, likely reflecting variable treatment pathways. Clearer guidelines on when and how non-drug therapies should be deployed in people with DRE related to different epilepsy factors are needed. PLAIN LANGUAGE SUMMARY Neuromodulation can be a very helpful treatment in people who have seizures that do not respond to medications. The most widely utilized neuromodulation therapy is vagus nerve stimulation (VNS). We present data from a large, global study to show that people use an average of seven anti-seizure medications before attempting VNS Therapy and that it takes about 10 years for people to get their first VNS implant. We advocate for clearer treatment guidelines on how and when to consider VNS Therapy in people with seizures that are resistant to medication.
Collapse
Affiliation(s)
- Patrick Kwan
- The Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | | | - Firas Fahoum
- Tel Aviv Sourasky Medical Center and Tel Aviv University, Neurological InstituteTel AvivIsrael
| | - Riëm El Tahry
- Centre for Refractory EpilepsyCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Terence J. O'Brien
- The Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
- The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Karen Keough
- Child Neurology Consultants of AustinAustinTexasUSA
| | - Jane Boggs
- Comprehensive Epilepsy CenterWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Hadassa Goldberg‐Stern
- Institute of Pediatric NeurologySchneider Children's Medical Center of IsraelPetahTiqvaIsrael
| | | | | | | | - Arjune Sen
- Oxford Epilepsy Research GroupJohn Radcliffe HospitalOxfordUK
| | | |
Collapse
|
9
|
Urian FI, Rizea RE, Costin HP, Corlatescu AD, Iacob G, Ciurea AV. Integrating the 5-SENSE Score for Patient Selection in Vagus Nerve Stimulation for Drug-Resistant Epilepsy. Cureus 2024; 16:e68003. [PMID: 39347157 PMCID: PMC11428179 DOI: 10.7759/cureus.68003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Addressing the challenge of drug-resistant epilepsy, our study offers a novel perspective by retrospectively applying the 5-SENSE score, initially created for stereoelectroencephalography (SEEG) planning, to evaluate its predictive value in patients undergoing vagus nerve stimulation (VNS) therapy. We conducted a comprehensive preoperative diagnostic work-up, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography-CT (PET-CT), video-electroencephalogram (video-EEG), and clinical semiology. We then stratified 76 patients into three groups - low, moderate, and high focality - based on the focality of the seizure-onset zone. Such stratification was made to check the scoring ability in predicting VNS therapy seizure reduction. Our findings demonstrate an association between the extent of focality at the seizure-onset zone and the effectiveness of VNS, which may help to define the role of the 5-SENSE score in patient selection for VNS. This high dispersion of responses in the group with high focality reinforces the idea that outcome estimation is difficult and argues for an individualized strategy in the treatment of drug-resistant epilepsy. A study at the level of the 5-SENSE score indicates the importance of detailed preoperative assessments that may better optimize selection for VNS therapy and further improve clinical outcomes.
Collapse
Affiliation(s)
| | - Radu Eugen Rizea
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", Bucharest, ROU
| | - Horia Petre Costin
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Gabriel Iacob
- Department of Neurosurgery, University Emergency Hospital, Bucharest, ROU
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| |
Collapse
|
10
|
Chen S, Li M, Huang M. Vagus nerve stimulation for the therapy of Dravet syndrome: a systematic review and meta-analysis. Front Neurol 2024; 15:1402989. [PMID: 39045432 PMCID: PMC11263285 DOI: 10.3389/fneur.2024.1402989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Dravet syndrome (DS) is a refractory developmental and epileptic encephalopathy characterized by seizures, developmental delay and cognitive impairment with a variety of comorbidities, including autism-like behavior, speech dysfunction, and ataxia. Vagus nerve stimulation (VNS) is one of the common therapies for DS. Here, we aim to perform a meta-analysis and systematic review of the efficacy of VNS in DS patients. Methods We systematically searched four databases (PubMed, Embase, Cochrane and CNKI) to identify potentially eligible studies from their inception to January 2024. These studies provided the effective rate of VNS in treating patients with DS. The proportions of DS patients achieving ≥50% reduction of seizure frequency were extracted from these studies. Meta-analyses were performed to respectively evaluate the efficacy of VNS for DS after 3, 6, 12, 18, 24 and 36 months. Results Sixteen trials with a total of 173 patients were included. Meta-analyses showed that the pooled efficiency was 0.54 (95% CI 0.43-0.65) in the DS patients treated with VNS (p < 0.05). Meanwhile, the pooled efficiency respectively was 0.42 (95% CI 0.25-0.61), 0.54 (95% CI 0.39-0.69), 0.51 (95% CI 0.39-0.66), and 0.49 (95% CI 0.36-0.63) in the DS patients treated with VNS after 3, 6, 12 and 24 months (p < 0.05). Conclusion This study suggests that VNS is effective in the treatment of DS. However, few studies have focused on VNS for DS, and there is a lack of high-quality evidence. Thus, high-quality randomized controlled trials are needed to confirm the efficacy of VNS in DS.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
11
|
Cheng T, Hu Y, Qin X, Ma J, Zha D, Xie H, Ji T, Liu Q, Wang Z, Hao H, Wu Y, Li L. A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy. CNS Neurosci Ther 2024; 30:e14751. [PMID: 39015946 PMCID: PMC11252558 DOI: 10.1111/cns.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS To predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy. METHODS Sixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy. A Support Vector Machine (SVM) integrated these biomarkers to distinguish the efficacy groups. RESULTS The proportion of VNS responders was 58.5% (38/65) at the last follow-up. In the analysis of parieto-occipital α band activity, higher synchronization level and nodal efficiency were found in responders. The central-frontal θ band activity showed significantly lower entropy in responders. The prediction model reached an accuracy of 81.5%, a precision of 80.1%, and an AUC (area under the receiver operating characteristic curve) of 0.838. CONCLUSION Our results revealed that, compared to nonresponders, VNS responders had a more efficient α band brain network, especially in the parieto-occipital region, and less spectral complexity of θ brain activities in the central-frontal region. We established a predictive model integrating both preimplantation clinical and EEG features and exhibited great potential for discriminating the VNS responders. This study contributed to the understanding of the VNS mechanism and improved the performance of the current predictive model.
Collapse
Affiliation(s)
- Tung‐yang Cheng
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yingbing Hu
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Xiaoya Qin
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Jiayi Ma
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Daqi Zha
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Han Xie
- Department of PediatricsPeking University First HospitalBeijingChina
| | - Taoyun Ji
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Qingzhu Liu
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Ye Wu
- Department of PediatricsPeking University First HospitalBeijingChina
- Pediatric Epilepsy CenterPeking University First HospitalBeijingChina
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijingChina
| |
Collapse
|
12
|
Durez A, Theys T, van Loon J, Van Paesschen W. Retention rate of vagus nerve stimulation for the treatment of drug-resistant epilepsy: A single-centre, retrospective study. Epilepsy Res 2024; 203:107383. [PMID: 38795656 DOI: 10.1016/j.eplepsyres.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The aim of this single-centre, retrospective, observational study was to evaluate long-term effectiveness of vagus nerve stimulation (VNS) in drug-resistant epilepsy (DRE) by using retention rate as a surrogate measure for seizure reduction. We included all patients with DRE, treated at the adult neurology department of the University Hospitals Leuven and who started VNS therapy from January 1, 1994, until May 1, 2021, with follow-up data cutoff on January 1, 2023. Retention rate of VNS was defined as the percentage of patients who maintain VNS at established time points. We estimated cumulative retention rate and battery replacement rate and correlated these with seizure reduction, using Kaplan-Meier analysis. Statistical analysis of potential predictors of VNS outcome (age, sex and epilepsy duration at implantation) was performed using mono- and multivariate analyses. VNS was started in 110 patients with DRE, with a mean follow-up of 8.7 years (SD 6.5). VNS was discontinued in 55 patients (50%), with ineffectiveness as the main reason for discontinuation (98%). The battery was replaced at least once in 42 patients (38%). Estimated retention rates were 70%, 52%, 45% and 33% after 5, 10, 15 and 20 years, respectively. Estimated first battery replacement rates were 16%, 42% and 47% after 5, 10 and 15 years, respectively. Both estimates showed a statistically significant correlation with seizure reduction. No independent predictors of long-term outcome of VNS were found. This is the first long-term study using retention rate of VNS to assess effectiveness. VNS is a well-tolerated therapy, but retention rates decline with long follow-up.
Collapse
Affiliation(s)
- Astrid Durez
- Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Johannes van Loon
- Department of Neurosurgery, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wim Van Paesschen
- Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Su L, Chang M, Li Y, Ding H, Zhao X, Li B, Li J. Analysis of factors influencing the efficacy of vagus nerve stimulation for the treatment of drug-resistant epilepsy in children and prediction model for efficacy evaluation. Front Neurol 2024; 15:1321245. [PMID: 38419715 PMCID: PMC10899677 DOI: 10.3389/fneur.2024.1321245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Vagus nerve stimulation (VNS) has been widely used in the treatment of drug-resistant epilepsy (DRE) in children. We aimed to explore the efficacy and safety of VNS, focusing on factors that can influence the efficacy of VNS, and construct a prediction model for the efficacy of VNS in the treatment of DRE children. Methods Retrospectively analyzed 45 DRE children who underwent VNS at Qilu Hospital of Shandong University from June 2016 to November 2022. A ≥50% reduction in seizure frequency was defined as responder, logistic regression analyses were performed to analyze factors affecting the efficacy of VNS, and a predictive model was constructed. The predictive model was evaluated by receiver operating characteristic curve (ROC), calibration curves, and decision curve analyses (DCA). Results A total of 45 DRE children were included in this study, and the frequency of seizures was significantly reduced after VNS treatment, with 25 responders (55.6%), of whom 6 (13.3%) achieved seizure freedom. There was a significant improvement in the Quality of Life in Childhood Epilepsy Questionnaire (15.5%) and Seizure Severity Score (46.2%). 16 potential factors affecting the efficacy of VNS were included, and three statistically significant positive predictors were ultimately screened: shorter seizure duration, focal seizure, and absence of intellectual disability. We developed a nomogram for predicting the efficacy of VNS in the treatment of DRE children. The ROC curve confirmed that the predictive model has good diagnostic performance (AUC = 0.864, P < 0.05), and the nomogram can be further validated by bootstrapping for 1,000 repetitions, with a C-index of 0.837. Besides, this model showed good fitting and calibration and positive net benefits in decision curve analysis. Conclusion VNS is a safe and effective treatment for DRE children. We developed a predictive nomogram for the efficacy of VNS, which provides a basis for more accurate selection of VNS patients.
Collapse
Affiliation(s)
- Li Su
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengmeng Chang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yumei Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Ding
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyu Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Li
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Berger A, Beckers E, Joris V, Duchêne G, Danthine V, Delinte N, Cakiroglu I, Sherif S, Morrison EIG, Sánchez AT, Macq B, Dricot L, Vandewalle G, El Tahry R. Locus coeruleus features are linked to vagus nerve stimulation response in drug-resistant epilepsy. Front Neurosci 2024; 18:1296161. [PMID: 38469571 PMCID: PMC10926962 DOI: 10.3389/fnins.2024.1296161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
The locus coeruleus-norepinephrine system is thought to be involved in the clinical effects of vagus nerve stimulation. This system is known to prevent seizure development and induce long-term plastic changes, particularly with the release of norepinephrine in the hippocampus. However, the requisites to become responder to the therapy and the mechanisms of action are still under investigation. Using MRI, we assessed the structural and functional characteristics of the locus coeruleus and microstructural properties of locus coeruleus-hippocampus white matter tracts in patients with drug-resistant epilepsy responding or not to the therapy. Twenty-three drug-resistant epileptic patients with cervical vagus nerve stimulation were recruited for this pilot study, including 13 responders or partial responders and 10 non-responders. A dedicated structural MRI acquisition allowed in vivo localization of the locus coeruleus and computation of its contrast (an accepted marker of LC integrity). Locus coeruleus activity was estimated using functional MRI during an auditory oddball task. Finally, multi-shell diffusion MRI was used to estimate the structural properties of locus coeruleus-hippocampus tracts. These characteristics were compared between responders/partial responders and non-responders and their association with therapy duration was also explored. In patients with a better response to the therapy, trends toward a lower activity and a higher contrast were found in the left medial and right caudal portions of the locus coeruleus, respectively. An increased locus coeruleus contrast, bilaterally over its medial portions, correlated with duration of the treatment. Finally, a higher integrity of locus coeruleus-hippocampus connections was found in patients with a better response to the treatment. These new insights into the neurobiology of vagus nerve stimulation may provide novel markers of the response to the treatment and may reflect neuroplasticity effects occurring in the brain following the implantation.
Collapse
Affiliation(s)
- Alexandre Berger
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer’s Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Vincent Joris
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurosurgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Gaëtan Duchêne
- GE Center MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Venethia Danthine
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Nicolas Delinte
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Inci Cakiroglu
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | | | - Andres Torres Sánchez
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Innoviris, Brussels Institute for Research and Innovation, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Dricot
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
15
|
Sauer V, Glaser M, Ellwardt E, Saryyeva A, Krauss JK, Ringel F, Groppa S, Winter Y. Favorable combinations of antiseizure medication with vagus nerve stimulation to improve health-related quality of life in patients with epilepsy. Epilepsy Behav 2024; 150:109562. [PMID: 38071825 DOI: 10.1016/j.yebeh.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a non-pharmacological treatment of refractory epilepsy, which also has an antidepressive effect. The favorable combinations of VNS with specific mechanisms of action of antiseizure medication (ASM) on mood and health-related quality of life (HrQol) have not yet been studied. The objective was to identify favourable combinations of specific ASMs with VNS for the HrQoL and depression in refractory epilepsy. METHODS We performed an observational study including patients with refractory epilepsy and an implanted VNS (N = 151). In the first 24 months after VNS implantation, all patients were on stable ASM therapy. We used the standardized questionnaires QOLIE10, EQVAS and EQ5D to evaluate HrQoL as well as the Beck Depression Inventory (BDI). Multiple regression analysis was performed to evaluate the synergistic combinations of ASM with VNS for HrQoL. RESULTS At the year-two follow-up (N = 151, age 45.2 ± 17.0 years), significant improvement (p < 0.05) in BDI scores was found for combination of VNS with SV2A modulators (58.4 %) or AMPA antagonists (44.4 %). A significant increase of HrQoL by at least 30 % (p < 0.05) was measured for a combination of VNS with SV2A modulators (brivaracetam, levetiracetam) or slow sodium channel inhibitors (eslicarbazepine, lacosamide). CONCLUSION The results of our study suggests a favorable effect of the combination of SV2A modulators or slow sodium channel inhibitors with VNS on the HrQoL in comparison to other ASMs. Besides the possible synergistic effects on the seizure frequency, the amelioration of behavioral side effects of SV2A modulators by VNS is an important factor of HrQoL-improvement in these combinations.
Collapse
Affiliation(s)
- Victoria Sauer
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Neurology, Philipps-University Marburg, Germany
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erik Ellwardt
- Department of Neurology, Helios-HSK Wiesbaden, Wiesbaden, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Neurology, Philipps-University Marburg, Germany.
| |
Collapse
|
16
|
Shatokhin AA, Karpov SM, Kushnareva EV, Peshkova IA, Shatokhin AV, Vyshlova IA. The experience of applying vagus nerve stimulation in treatment of pharmacoresistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2023; 15:348-353. [DOI: 10.17749/2077-8333/epi.par.con.2023.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The article presents a clinical case of adult patient with pharmacoresistant epilepsy lacking focal cerebral morphological changes, who was surgically implanted with a vagus nerve stimulation (VNS) system. The results of 6 months-long treatment were analyzed. In addition, available publications were reviewed to evaluate effectiveness of the VNS system in different patient groups. Current clinical case was featured with significant positive dynamics revealed by regression of epileptic seizures and no recorded epileptiform activity based on electroencephalography during VNS stimulation. In the absence of morphological cerebral focal changes in adult patients, installation of the VNS system is an effective and safe method to control pharmacoresistant epilepsy.
Collapse
|
17
|
Geng G, Hu W, Meng Y, Zhang H, Zhang H, Chen C, Zhang Y, Gao Z, Liu Y, Shi J. Vagus nerve stimulation for treating developmental and epileptic encephalopathy in young children. Front Neurol 2023; 14:1191831. [PMID: 37928141 PMCID: PMC10624125 DOI: 10.3389/fneur.2023.1191831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To investigate the clinical variables that might predict the outcome of developmental and epileptic encephalopathy (DEE) after vagus nerve stimulation (VNS) therapy and identify the risk factors for poor long-term outcome. Patients and methods We retrospectively studied 32 consecutive children with drug-resistant DEE who had undergone VNS surgery from April 2019 to July 2021, which were not suitable for corpus callosotomy. In spite of combining valproic acid, levetiracetam, lamotrigine, topiramate, etc. (standard anti-seizure medicine available in China) it has not been possible to effectively reduce seizures in the population we investigate (Cannabidiol and brivaracetam were not available in China). A responder was defined as a frequency reduction decrease > 50%. Seizure freedom was defined as freedom from seizures for at least 6 months. Sex, electroencephalograph (EEG) group, neurodevelopment, time lag, gene mutation, magnetic resonance imaging (MRI), and epilepsy syndrome were analyzed with Fisher's exact test, The age at onset and age at VNS therapy were analyzed with Kruskal-Wallis test, statistical significance was defined as p < 0.05. And used the effect size to correction. Results Among the 32 patients, the median age at VNS implantation was 4.7 years (range: 1-12 years). At the most recent follow-up, five children (15.6%) were seizure-free and 22 (68.8%) were responders. Univariate analysis demonstrated that the responders were significantly associated with mild development delay/intellectual disability (p = 0.044; phi coefficient = 0.357) and a multifocal EEG pattern (p = 0.022; phi coefficient = -0.405). Kaplan-Meier survival analyses demonstrated that a multifocal EEG pattern (p = 0.049) and DEE without epileptic spasm (ES) (p = 0.012) were statistically significant (p = 0.030). Multivariate analysis demonstrated that DEE with ES had significant predictive value for poor long-term outcome (p = 0.014, hazard ratio = 5.433, confidence interval = 1.402-21.058). Conclusions Our study suggested that VNS was a generally effective adjunct treatment for DEE. Although the predictive factors for VNS efficacy remain unclear, it should be emphasized that patients with ES are not suitable candidates for epilepsy surgery. Further investigations are needed to validate the present results.
Collapse
Affiliation(s)
- Guifu Geng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yao Meng
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Chuanmei Chen
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Zaifen Gao
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Department of Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
- Department of Functional Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
18
|
Germany E, Teixeira I, Danthine V, Santalucia R, Cakiroglu I, Torres A, Verleysen M, Delbeke J, Nonclercq A, Tahry RE. Functional brain connectivity indexes derived from low-density EEG of pre-implanted patients as VNS outcome predictors. J Neural Eng 2023; 20:046039. [PMID: 37595607 DOI: 10.1088/1741-2552/acf1cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Objective. In 1/3 of patients, anti-seizure medications may be insufficient, and resective surgery may be offered whenever the seizure onset is localized and situated in a non-eloquent brain region. When surgery is not feasible or fails, vagus nerve stimulation (VNS) therapy can be used as an add-on treatment to reduce seizure frequency and/or severity. However, screening tools or methods for predicting patient response to VNS and avoiding unnecessary implantation are unavailable, and confident biomarkers of clinical efficacy are unclear.Approach. To predict the response of patients to VNS, functional brain connectivity measures in combination with graph measures have been primarily used with respect to imaging techniques such as functional magnetic resonance imaging, but connectivity graph-based analysis based on electrophysiological signals such as electroencephalogram, have been barely explored. Although the study of the influence of VNS on functional connectivity is not new, this work is distinguished by using preimplantation low-density EEG data to analyze discriminative measures between responders and non-responder patients using functional connectivity and graph theory metrics.Main results. By calculating five functional brain connectivity indexes per frequency band upon partial directed coherence and direct transform function connectivity matrices in a population of 37 refractory epilepsy patients, we found significant differences (p< 0.05) between the global efficiency, average clustering coefficient, and modularity of responders and non-responders using the Mann-Whitney U test with Benjamini-Hochberg correction procedure and use of a false discovery rate of 5%.Significance. Our results indicate that these measures may potentially be used as biomarkers to predict responsiveness to VNS therapy.
Collapse
Affiliation(s)
- Enrique Germany
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Igor Teixeira
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | | | | | - Inci Cakiroglu
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | - Andres Torres
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | | | - Jean Delbeke
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-Electro-and Mechanical Systems (BEAMS), Université Libre de Bruxelles, Brussels, Belgium
| | - Riëm El Tahry
- IoNS, Universite Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
19
|
Xie H, Ma J, Ji T, Liu Q, Cai L, Wu Y. Efficacy of vagus nerve stimulation in 95 children of drug-resistant epilepsy with structural etiology. Epilepsy Behav 2023; 140:109107. [PMID: 36758359 DOI: 10.1016/j.yebeh.2023.109107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 02/10/2023]
Abstract
Vagus nerve stimulation (VNS) is one of the treatment options for drug-resistant epilepsy (DRE). To analyze the efficacy of VNS in children of DRE with structural etiology, we conducted a cohort study including 95 patients of DRE with structural etiology who underwent VNS treatment. Patients were followed up every 3 months at the outpatient department or via a remote programming platform. The median follow-up period was 2.6 years (range 1.0-4.6 years). The respective responder rates at 6, 12, 18, and 24 months of follow-up were 40.0% (38/95), 52.6% (50/95), 56.0% (47/84), and 59.7% (37/62). The respective seizure-free rates at 12, 18, and 24 months of follow-up were 8.4% (8/95), 9.5% (8/84), and 9.7% (6/62). The patients were divided into four groups based on etiologies: malformations of cortical development (n = 26), post-encephalitic lesions (n = 36), perinatal brain injury lesions (n = 31), and hippocampal sclerosis (n = 2). The respective responder rates at 12 months of follow-up in these groups were 53.8% (14/26), 52.8% (19/36), 51.6% (16/31), and 50.0% (1/2). There were no significant differences in gender, age at onset, age at stimulator implantation, epilepsy duration prior to VNS implantation, number of anti-seizure medications ever tried before VNS treatment, pulse amplitude of VNS, specific structural etiologies, lobe distribution or hemispheric side of structural lesions between responders and non-responders. Of the 95 patients, 8 (8.4%) underwent lesion surgery or hemispherectomy before VNS implantation, and 6/8 (75%) of these patients had a >50% reduction in seizure frequency. One patient who had a corpus callosotomy before VNS implantation had no response to VNS treatment. In conclusion, VNS is an effective treatment in children of DRE with structural etiology. There was no significant difference in VNS efficacy in patients with different structural etiologies. Vagus nerve stimulation treatment may also control seizures well in some patients with poor outcomes after lesion resection or hemispherectomy before VNS implantation.
Collapse
Affiliation(s)
- Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jiayi Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China; Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.
| |
Collapse
|
20
|
Shan M, Mao H, Xie H, Gan Y, Wu D, Song J, Bai Y, Zhang J. Vagus Nerve Stimulation for Drug Resistant Epilepsy: Clinical Outcome, Adverse Events, and Potential Prognostic Factors in a Single Center Experience. J Clin Med 2022; 11:jcm11247536. [PMID: 36556153 PMCID: PMC9783695 DOI: 10.3390/jcm11247536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has been used for adjunctive treatment in drug resistant epilepsy (DRE) for decades. Nevertheless, information is lacking on possible potential prognostic factors. Our study presents the efficacy and safety of VNS with a focus on prognostic factors in 45 patients with DRE. METHODS We retrospectively evaluated the clinical outcome of 45 consecutive patients with DRE undergoing VNS implantation in The First Affiliated Hospital of Anhui Medical University between November 2016 and August 2021. Medical records were aggregated across all patient visits. Cox proportional hazards regression was used to estimate the prognostic factors. RESULTS Significant decrease in seizure frequency was observed after intermittent stimulation of the vagus nerve. According to the modified McHugh classification, 11 patients (24.4%) were Class I, 11 patients (24.4%) were Class II, four patients (8.9%) were Class III, 10 patients (22.2%) were Class IV, and nine patients (20.0%) were Class V. Notably, 22 patients (48.9%) were responders and four patients (8.9%) were seizure-free at the final follow-up. No significant prognostic factors were found in this cohort. Furthermore, 37 patients reported improved quality of life. Of the patients, 22 (48.9%) experienced adverse events after surgery; hoarseness, discomfort at the surgical site, and coughing were the most common. CONCLUSION The results confirmed the efficacy and safety of VNS. No prognostic factors were identified.
Collapse
Affiliation(s)
- Ming Shan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Hongliang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- First Clinical Medical College, Anhui Medical University, Meishan Road 81, Hefei 230032, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Delong Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
| | - Jian Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Correspondence: (Y.B.); (J.Z.)
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China
- Beijing Key Laboratory of Neurostimulation, Beijing 100070, China
- Correspondence: (Y.B.); (J.Z.)
| |
Collapse
|
21
|
Hebel JM, Holtkamp M. Epilepsy surgery in older patients – English Version. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Electroencephalogram and heart rate variability features as predictors of responsiveness to vagus nerve stimulation in patients with epilepsy: a systematic review. Childs Nerv Syst 2022; 38:2083-2090. [PMID: 36136103 DOI: 10.1007/s00381-022-05653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) is a mainstay treatment in people with medically refractive epilepsy with a growing interest to identify biomarkers that are predictive of VNS efficacy. In this review, we looked at electroencephalography (EEG) and heart rate variability (HRV) parameters as potential biomarkers. METHODOLOGY A comprehensive search of several databases limited to the English language and excluding animal studies was conducted. Data was collected from studies that specifically reviewed preoperative EEG and HRV characteristics as predictive factors of VNS outcomes. RESULTS Ten out of 1078 collected studies were included in this review, of which EEG characteristics were reported in seven studies; HRV parameters were reported in two studies, and one study reported both. For EEG, studies reported a lower global rate of synchronization in alpha, delta, and gamma waves as predictors of the VNS response. The P300 wave, an evoked response on EEG, had conflicting results. Two studies reported high P300 wave amplitudes in nonresponders and low amplitudes in responders, whereas another study reported high P300 wave amplitudes in responders. For HRV, one study reported high-frequency power as the only parameter to be significantly lower in responders. In contrast, two studies from the same authors showed that HRV parameters were not different between responders and nonresponders. CONCLUSION HRV parameters and EEG characteristics including focal seizures and P300 wave have been reported as potential biomarkers for VNS outcomes in people with medically refractive epilepsy. However, the contradictory findings imply a need for validation through clinical trials.
Collapse
|
23
|
Xu C, Lin H, Xu J, Zhang X, Hao G, Liu QQ, Ding C, Wang S, Zhao Q, Bai X, Chen K, Ni D, Li Y, Yu T, Wang Y. Long-term outcomes and prognosis factors of vagus nerve stimulation in patients with refractory epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vagus nerve stimulation (VNS) is an effective treatment for patients with refractory epilepsy, yet with varied predictive factors and heterogeneous long-term outcomes. Adjustment of VNS parameters is critical for obtaining favorable efficacy. In this study, we aimed to investigate the long-term outcomes and the possible predictive factors of VNS in patients with refractory epilepsy.
Methods
Eighty-six patients (59 males and 27 females) who underwent VNS implantation for treatment of refractory epilepsy between May 2016 and May 2017 at five Epilepsy Centers were enrolled. The clinical data, including sex, age at epilepsy onset, VNS implantation, epilepsy duration, seizure type, MRI findings, history of neurosurgical operations, and responder rate (responders were those with ≥50% seizure reduction), were analyzed.
Results
Four-year follow-up data were available for 76 patients (53 males and 23 females). The mean current intensity at the last follow-up was 1.8 ± 0.3 mA (range: 0.75–2.5 mA). The mean seizure reduction was 36.2% at 6 months, 38.5% at 1 year, 69.4% at 3 years, and 56.7% at 4 years. A favorable outcome of ≥50% reduction in seizure frequency occurred in 40.0% of the patients at 6 months, 55.9% at 1 year with 4 patients being seizure-free, 63.2% at 3 years with 5 patients being seizure-free, and 68.4% at 4 years with 5 patients being seizure-free. Earlier onset age (P < 0.001) and shorter duration (P = 0.042) were associated with favorable prognosis. Compared with generalized tonic-clonic seizures, tonic seizures had a favorable outcome (P = 0.026). Twenty-three patients underwent neurosurgical operations before VNS implantation, and the responder rate was 60.9% at the last follow-up.
Conclusions
VNS is an adjunctive and effective treatment for patients with refractory epilepsy who are not good candidates for surgical resection or have failed to respond to surgical treatment. The stimulation efficacy increases over time after implantation, and earlier exposure to VNS improves the prognosis.
Collapse
|
24
|
Xie H, Ma J, Ji T, Liu Q, Cai L, Wu Y. Vagus nerve stimulation in children with drug-resistant epilepsy of monogenic etiology. Front Neurol 2022; 13:951850. [PMID: 36119689 PMCID: PMC9475310 DOI: 10.3389/fneur.2022.951850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an effective treatment for drug-resistant epilepsy (DRE). The present study evaluated the efficacy of VNS in pediatric patients with DRE of monogenic etiology. A total of 20 patients who received VNS treatment at our center were followed up every 3 months through outpatient visits or a remote programming platform. The median follow-up time was 1.4 years (range: 1.0–2.9). The rate of response to VNS at 12 months of follow-up was 55.0% (11/20) and the seizure-free rate was 10.0% (2/20). We found that 75.0% (3/4) of patients with an SCN1A variant had a >50% reduction in seizure frequency. Patients with pathogenic mutations in the SLC35A2, CIC, DNM1, MBD5, TUBGCP6, EEF1A2, and CHD2 genes or duplication of X q28 (MECP2 gene) had a >50% reduction in seizure frequency. Compared with the preoperative electroencephalography (EEG), at 6, 12, 18, and 24 months after stimulator implantation, the percentage of the patients whose background frequency increased >1.5 Hz was respectively, 15.0% (3/20), 50.0% (10/20), 58.3% (7/12) and 62.5% (5/8); the percentage of the patients whose interictal EEG showed a >50% decrease in spike number was respectively 10% (2/20), 40.0% (8/20), 41.6% (5/12) and 50.0% (4/8). In the 9 patients with no response to VNS treatment, there was no difference in terms of spike number and background frequency between preoperative and postoperative EEG. Five of the 20 children (25.0%) reached new developmental milestones or acquired new skills after VNS compared to the preoperative evaluation. The efficacy of VNS in pediatric patients with DRE of monogenic etiology is consistent with that in the overall population of pediatric DRE patients. Patients with Dravet syndrome (DS), tuberous sclerosis complex (TSC), or Rett syndrome/MECP2 duplication syndrome may have a satisfactory response to VNS, but it is unclear whether patients with rare variants of epilepsy-related genes can benefit from the treatment.
Collapse
Affiliation(s)
- Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jiayi Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- *Correspondence: Ye Wu
| |
Collapse
|
25
|
Ma J, Wang Z, Cheng T, Hu Y, Qin X, Wang W, Yu G, Liu Q, Ji T, Xie H, Zha D, Wang S, Yang Z, Liu X, Cai L, Jiang Y, Hao H, Wang J, Li L, Wu Y. A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy. CNS Neurosci Ther 2022; 28:1838-1848. [PMID: 35894770 PMCID: PMC9532924 DOI: 10.1111/cns.13923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022] Open
Abstract
Aims Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug‐resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. Methods We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase‐locking value (PLV), were compared between responders and non‐responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). Results In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non‐responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10‐fold cross‐validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. Conclusion This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation.
Collapse
Affiliation(s)
- Jiayi Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhiyan Wang
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Tungyang Cheng
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yingbing Hu
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xiaoya Qin
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Wen Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Guojing Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Han Xie
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Daqi Zha
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Shuang Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hongwei Hao
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory of Epilepsy Research, Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Luming Li
- National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.,Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
26
|
Riestenberg RA, Sherman AE, Clark AJS, Shahlaie K, Zwienenberg M, Alden T, Bandt SK. Patient-Specific Characteristics Associated with Favorable Response to Vagus Nerve Stimulation. World Neurosurg 2022; 161:e608-e624. [PMID: 35202878 DOI: 10.1016/j.wneu.2022.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The expansion in treatments for medically refractory epilepsy heightens the importance of identifying patients who are likely to benefit from vagus nerve stimulation (VNS). Here, we identify predictors with a positive VNS response. METHODS We present a retrospective analysis of 158 patients with medically refractory epilepsy. Patients were categorized as VNS responders or nonresponders. Baseline characteristics and time to VNS response were recorded. Univariate and multivariate Cox regression were used to identify predictors of response. Recursive partitioning analysis was used to identify likely VNS responders. RESULTS Eighty-nine (56.3%) patients achieved ≥50% seizure frequency reduction. Left-hand dominance (hazard ratio [HR] 1.703, P = 0.038), age at epilepsy onset ≥15 years (HR 2.029, P = 0.005), duration of epilepsy ≥8 years (HR 1.968, P = 0.007) and age at implantation ≥35 years (HR 1.809, P = 0.020), and baseline seizure frequency <5/month (HR 1.569, P = 0.044) were significant univariate predictors of VNS response. Following multivariate Cox regression, left-hand dominance, age at epilepsy onset ≥15 years, and duration of epilepsy ≥8 years remained significant. With recursive partitioning analysis, patients with either age at epilepsy onset ≥15 years, left-hand dominance, or baseline seizure frequency <5/month were stratified into Group A and had a 73.9% responder rate; the remaining patients stratified into Group B had a 43.8% responder rate. CONCLUSIONS Patients with age at epilepsy onset ≥15 years, left-hand dominance, or baseline seizure frequency <5/month are ideal candidates for VNS.
Collapse
Affiliation(s)
- Robert A Riestenberg
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA.
| | - Alain E Sherman
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Austin J S Clark
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Marike Zwienenberg
- Department of Neurological Surgery, University of California, Davis, Sacramento, California, USA
| | - Tord Alden
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - S Kathleen Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Yates CF, Riney K, Malone S, Shah U, Coulthard LG, Campbell R, Wallace G, Wood M. Vagus nerve stimulation: a 20-year Australian experience. Acta Neurochir (Wien) 2022; 164:219-227. [PMID: 34755209 DOI: 10.1007/s00701-021-05046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) therapy was first approved in the mid-1990s in the USA, Europe and Australia, with demonstrable efficacy in paediatric populations. Benefit in seizure frequency reduction can be observed up to 2 years post-intervention; however, few studies assess outcomes beyond this period. Furthermore, paediatric cohort sizes are small, limiting generalisability of outcome assessments. We evaluate VNS insertion outcomes and complications or side-effects in a large paediatric cohort, over a 20-year period from Queensland's first VNS insertion. METHODS A retrospective review was conducted of all paediatric VNS insertions at the Queensland Children's Hospital (QCH) and the Mater Children's Hospital/Mater Children's Private Hospital (MCH/MCPH) Brisbane. A minimum of 1-year follow-up from 1999 to 2020 was required for inclusion. Patients were assessed on demographics, epilepsy details, seizure outcomes and complications or side-effects. RESULTS In this extended follow-up cohort (76 patients, 7.2 ± 5.3 years), 51.3% of patients had ≥ 50% seizure frequency reduction, while 73.7% experienced an Engel III outcome (worthwhile benefit) or better. Eleven patients (14.9%) were seizure-free at follow-up, and 81.6% retained long-term therapy. Stimulation-related side-effects are common (17.1%) but rarely result in stimulation cessation (3.9%). Cessation occurred in 14 patients (18.4%) and most commonly related to minimal benefit (13.2%). Demographics, aetiology, seizure nature and surgical factors did not influence outcomes. CONCLUSION Over extended treatment periods, a large proportion of patients will benefit significantly from VNS therapy. Approximately 4 of 5 patients will retain VNS therapy, and in cases of cessation, this is most commonly related to minimal benefit. Underlying demographics, aetiology or seizure nature do not influence outcomes. This 20-year Queensland assessment of VNS therapy outcomes informs long-term expectation of VNS therapy.
Collapse
|
28
|
Polkey CE, Nashef L, Queally C, Selway R, Valentin A. Long-term outcome of vagus nerve stimulation for drug-resistant epilepsy using continuous assessment, with a note on mortality. Seizure 2022; 96:74-78. [DOI: 10.1016/j.seizure.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022] Open
|
29
|
Wu ML, Hu DM, Wang JJ, Liu XL, Liu L, Li Y, Jing W. Pre- and postoperative heart rate variability and vagus nerve stimulation in patients with drug-resistant epilepsy - A meta-analysis. Epilepsy Behav 2021; 123:108247. [PMID: 34418640 DOI: 10.1016/j.yebeh.2021.108247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The effect of vagus nerve stimulation (VNS), an important auxiliary therapy for treating drug-resistant epilepsy (DRE), on autonomic nerve function is still controversial. Heart rate variability is a widely used indicator of autonomic nerve function. To clarify the relationship between VNS and heart rate variability (HRV), we performed a meta-analysis to systematically evaluate the effect of VNS on HRV in patients with epilepsy. METHODS We performed a systematic review by searching the following online databases: PubMed, Web of Science, EMBASE and the Cochrane Library. The key search terms were "vagal nerve stimulation," "epilepsy" and "heart rate variability". Other features of VNS in patients with epilepsy include postoperative changes in low-frequency (LF), high-frequency (HF) and low-frequency/high-frequency (LF/HF) heart rate variability, which were used as evaluation indices, and the Newcastle-Ottawa Quality Assessment Scale and Stata 14.0 statistical software were used for literature quality evaluation and meta-analysis. RESULTS Twelve studies published in English were obtained, and 229 patients with epilepsy who underwent VNS were ultimately included after elimination of duplicate articles and those that did not meet the inclusion criteria. Regarding LF heart rate variability, in the response subgroup, patients with DRE with VNS presented a lower value (-0.58) before surgery than after surgery, with a 95% confidence interval (CI) ranging from -1.00 to -0.15. For HF heart rate variability, patients with DRE with VNS had a lower value (-0.45) before surgery than after surgery in the response subgroup, with a 95% CI ranging from -0.74 to -0.17. No differences were found for LF/HF values or the LF and HF values of other subgroups. CONCLUSION VNS has little effect on the balance of sympathetic and parasympathetic nerve activity and would not be expected to cause cardiovascular autonomic dysfunction in patients with DRE. For patients with DRE, VNS can control seizures and has little effect on autonomic nervous function.
Collapse
Affiliation(s)
- Mao-Lin Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Dan-Mei Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | | | - Xiao-Lei Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Lei Liu
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
30
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. Altered topological properties of brain functional networks in drug-resistant epilepsy patients with vagus nerve stimulators. Seizure 2021; 92:149-154. [PMID: 34521062 DOI: 10.1016/j.seizure.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To explore abnormalities of topological properties in drug-resistant epilepsy (DRE) patients after vagus nerve stimulation (VNS) by analyzing brain functional networks using graph theory. METHODS Fifteen patients and eight healthy controls (HC) were scanned separately with resting-state functional magnetic resonance imaging (rs-fMRI). Graph theoretical analyses were chosen to compare the global (small-world parameters [γ, λ, σ, Cp, and Lp], and network efficiency [Eg and Eloc]), and nodal (BC, DC, and NE) properties in preoperative patients (EPpre), postoperative patients (EPpost) and HC. RESULTS HC, EPpre and EPpost all satisfied the criteria for small-world properties (σ > 1) within the sparsity range of 0.05-0.5. Compared with EPpre, EPpost performed higher in λ and Eloc but lower in γ, σ, and Cp. Compared with HC, EPpre exhibited decreased BC, DC or NE in the right inferior frontal gyrus, right superior temporal gyrus, bilateral cingulate gyri, right supplementary motor area, right superior occipital gyrus, right Heschl gyrus, and left calcarine fissure; increased BC in the left postcentral/precentral gyrus, right paracentral lobule, left rolandic operculum, and left supramarginal gyrus, and increased NE in the right caudate nucleus. Compared with EPpre, EPpost showed increased BC, DC or NE in the bilateral inferior frontal gyrus, right middle frontal gyrus, bilateral cingulate gyri, right superior temporal gyrus, and right Heschl gyrus and decreased BC in the left fusiform gyrus. CONCLUSION VNS downregulated small-world properties in DRE, and caused changes in some key nodes to reorganize the transmission ability of the large-scale network.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China.
| |
Collapse
|
31
|
Kulju T, Haapasalo J, Verner R, Dibué-Adjei M, Lehtimäki K, Rainesalo S, Peltola J. Frequency of Automatic Stimulations in Responsive Vagal Nerve Stimulation in Patients With Refractory Epilepsy. Neuromodulation 2021; 23:852-858. [PMID: 32840019 DOI: 10.1111/ner.13238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND In vagal nerve stimulation (VNS) therapy, the release of VNS model 106 (AspireSR) allowed for responsive VNS (rVNS). rVNS utilizes a cardiac-based seizure detection algorithm to detect seizure-induced tachycardia to trigger additional stimulation. There are some studies suggesting clinical benefits of rVNS over traditional VNS, but the performance and significance of autostimulation mode in clinical practice are poorly understood. OBJECTIVES To assess the effect of initiation of rVNS therapy and altered stimulation settings on the number of daily stimulations and energy consumption in VNS therapy and to compare autostimulation performance in different epilepsy types. MATERIALS AND METHODS Retrospective follow-up of 30 patients with drug-resistant epilepsy treated with rVNS including 17 new implantations and 13 battery replaces at a single center in Finland. Our data consist of 208 different stimulation periods, that is, episodes with defined stimulation settings and both autostimulation and total stimulation performance-related data along with clinical follow-up. RESULTS The variation in autostimulation frequency was highly dependent on the duration of the OFF-time and autostimulation threshold (p < 0.05). There was a large additional effect of autostimulation mode on therapy time and energy consumption with longer OFF-times, but a minor effect with shorter OFF-times. Significantly more autostimulations were triggered in the temporal lobe and multifocal epilepsies than in extratemporal lobe epilepsies. CONCLUSIONS The initiation of autostimulation mode in VNS therapy increased the total number of stimulations. Shortening the OFF-time leads to a decreased number and share of automatic activations. Epilepsy type may affect autostimulation activity.
Collapse
Affiliation(s)
- Toni Kulju
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joonas Haapasalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan Verner
- LivaNova USA, Neuromodulation Unit, Houston, TX, USA
| | - Maxine Dibué-Adjei
- Neuromodulation Medical Affairs, LivaNova PLC, London, UK.,Department of Neurosurgery, Heinrich Heine University Düsseldorf, Germany
| | - Kai Lehtimäki
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Sirpa Rainesalo
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
32
|
Opie NL, O'Brien TJ. The potential of closed-loop endovascular neurostimulation as a viable therapeutic approach for drug-resistant epilepsy: A critical review. Artif Organs 2021; 46:337-348. [PMID: 34101849 DOI: 10.1111/aor.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.
Collapse
Affiliation(s)
- Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Synchron Inc., San Francisco, CA, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Russo A, Hyslop A, Gentile V, Chiarello D, Messana T, Miller I, Zucchelli M, Lima M, Ragheb J, Pini A, Cordelli DM, Resnick T, Jayakar P, Duchowny M. Early Implantation as a Main Predictor of Response to Vagus Nerve Stimulation in Childhood-Onset Refractory Epilepsy. J Child Neurol 2021; 36:365-370. [PMID: 33236677 DOI: 10.1177/0883073820974855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We describe a multicenter experience with vagus nerve stimulator implantation in pediatric patients with drug-resistant epilepsy. Our goal was to assess vagus nerve stimulation efficacy and identify potential predictors of favorable outcome. METHODS This is a retrospective study. Inclusion criteria: ≤18 years at time of vagus nerve stimulator implantation, at least 1 year of follow-up. All patients were previously found to be unsuitable for an excisional procedure. Favorable clinical outcome and effective vagus nerve stimulation therapy were defined as seizure reduction >50%. Outcome data were reviewed at 1, 2, 3, and 5 years after vagus nerve stimulator implantation. Fisher exact test and multiple logistic regression analysis were employed. RESULTS Eighty-nine patients met inclusion criteria. Responder rate (seizure frequency reduction >50%) at 1-year follow-up was 25.8% (4.5% seizure-free). At last follow-up, 31.5% had a favorable outcome and 5.2% were seizure free. The only factor significantly predicting favorable outcome was time to vagus nerve stimulator implantation, with the best outcome achieved when vagus nerve stimulator implantation was performed within 3 years of seizure onset. Implantation between 3 and 5 years after epilepsy onset correlated with better long-term seizure freedom (13.3% at T5). Overall, 65.2% of patients evidenced improved quality of life at last follow-up. However, 12.4% had adverse events, but most were mild and disappeared after 3-4 months. CONCLUSIONS Early vagus nerve stimulator implantation within 5 years of seizure onset was the only predictor of favorable clinical outcome in pediatric patients. Improved quality of life and a low incidence of significant adverse events were observed.
Collapse
Affiliation(s)
- Angelo Russo
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Ann Hyslop
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Valentina Gentile
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Daniela Chiarello
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Tullio Messana
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Mino Zucchelli
- 9296IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neurochirurgia, Bologna, Italy
| | - Mario Lima
- Pediatric Surgery, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, University of Bologna, Italy
| | - John Ragheb
- Department of Neurological Surgery, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Antonella Pini
- 419170IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria Infantile, Bologna, Italy
| | - Duccio Maria Cordelli
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Trevor Resnick
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Prasanna Jayakar
- Child Neurology and Psychiatric Unit, Department of Medical and Surgical Science (DIMEC), S. Orsola Hospital, 9296University of Bologna, Bologna, Italy
| | - Michael Duchowny
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, 5447Nicklaus Children's Hospital, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Lam J, Williams M, Ashla M, Lee DJ. Cognitive outcomes following vagus nerve stimulation, responsive neurostimulation and deep brain stimulation for epilepsy: A systematic review. Epilepsy Res 2021; 172:106591. [PMID: 33711711 DOI: 10.1016/j.eplepsyres.2021.106591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cognitive impacts of resective surgery for epilepsy have been well-studied. While seizure outcomes for less invasive, neuromodulatory treatments are promising, there is a paucity of data for cognitive outcomes. METHODS Medline, EMBASE, and the Cochrane Library were searched on November 2019. Inclusion criteria were studies reporting cognitive outcomes following chronic (>6 months) vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS) for epilepsy in at least five patients. Studies reporting acute on-off effects of stimulation were also included. Studies were screened, extracted of data, and assessed for bias using the Joanna Briggs Institute Critical Appraisal Tools by two independent reviewers. Prospero ID: CRD42020184432. RESULTS Of 8443 studies screened, 29 studies were included. Nineteen investigated the effects of chronic stimulation (11 VNS, 6 DBS, 2 RNS): 10 (53 %) reported no change compared to preoperative baseline; 8 (42 %) reported some improvement in one or more cognitive domain; 1 (5%) reported decline. Ten investigated the effects of acute stimulation (5 VNS, 5 DBS): 3 (30 %) reported no change; 4 reported improvement (40 %); 3 (30 %) reported decline. Eight (28 %) did not report statistical analysis. CONCLUSIONS Long-term cognitive outcomes are at least stable following VNS, DBS and RNS. Acute effects of stimulation are less clear. However, data are limited by number, size, and quality. More robust evidence is needed to properly assess the cognitive effects of each of these treatments.
Collapse
Affiliation(s)
- Jordan Lam
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, United States
| | - Marcus Williams
- King's College London Medical School, London, United Kingdom
| | - Mark Ashla
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, United States.
| |
Collapse
|
35
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. Epilepsy duration as an independent predictor of response to vagus nerve stimulation. Epilepsy Res 2020; 167:106432. [PMID: 32717714 DOI: 10.1016/j.eplepsyres.2020.106432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
|
36
|
Workewych AM, Arski ON, Mithani K, Ibrahim GM. Biomarkers of seizure response to vagus nerve stimulation: A scoping review. Epilepsia 2020; 61:2069-2085. [PMID: 32862454 DOI: 10.1111/epi.16661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
Although vagus nerve stimulation (VNS) is a common procedure, seizure outcomes are heterogeneous, with few available means to preoperatively identify the ideal surgical candidate. Here, we perform a scoping review of the literature to identify biomarkers of VNS response in patients with drug-resistant epilepsy. Several databases (Ovid MEDLINE, Ovid Embase, BIOSIS Previews, and Web of Science) were searched for all relevant articles that reported at least one biomarker of VNS response following implantation for intractable epilepsy. Patient demographics, seizure data, and details related to biomarkers were abstracted from all studies. From the 288 records screened, 28 articles reporting on 16 putative biomarkers were identified. These were grouped into four categories: network/connectomic-based biomarkers, electrophysiological signatures, structural findings on neuroimaging, and systemic assays. Differences in brain network organization, connectivity, and electrophysiological synchronicity demonstrated the most robust ability to identify VNS responders. Structural findings on neuroimaging yielded inconsistent associations with VNS responsiveness. With regard to systemic biomarkers, heart rate variability was shown to be an independent marker of VNS response, whereas inflammatory markers were not useful. There is an unmet need to preoperatively identify candidates who are likely to benefit from VNS. Several biomarkers demonstrate promise in predicting seizure responsiveness to VNS, particularly measures of brain network connectivity. Further efforts are required to validate existing biomarkers to inform clinical decision-making.
Collapse
Affiliation(s)
- Adriana M Workewych
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mithani
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - George M Ibrahim
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Yalnizoglu D, Ardicli D, Bilginer B, Konuskan B, Karli Oguz K, Akalan N, Turanli G, Saygi S, Topcu M. Long-term effects of vagus nerve stimulation in refractory pediatric epilepsy: A single-center experience. Epilepsy Behav 2020; 110:107147. [PMID: 32604021 DOI: 10.1016/j.yebeh.2020.107147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vagus nerve stimulation (VNS) has been used as an adjunctive therapy for both children and adults with refractory epilepsy, over the last two decades. In this study, we aimed to evaluate the long-term effects and tolerability of VNS in the pediatric drug-resistant epilepsy (DRE) and to identify the predictive factors for responsiveness to VNS. METHODS We retrospectively reviewed the medical records of pediatric patients who underwent VNS implantation between 1997 and 2018. Patients with ≥50% reduction of seizure frequency compared with the baseline were defined as "responders". The clinical characteristics of responders and nonresponders were compared. RESULTS A total of 58 children (male/female: 40/18) with a mean follow-up duration of 5.7 years (3 months to 20 years) were included. The mean age at implantation was 12.4 years (4.5 to 18.5 years). Approximately half (45%) of our patients were responders, including 3 patients (5.8%) who achieved seizure freedom during follow-up. The age of seizure-onset, duration of epilepsy, age at implantation, and etiologies of epilepsy showed no significant difference between responders and nonresponders. Responders were more likely to have focal or multifocal epileptiform discharges (63%) on interictal electroencephalogram (EEG), when compared to nonresponders (36%) (p = .07). Vocal disturbances and paresthesias were the most common side effects, and in two patients, VNS was removed because of local reaction. CONCLUSION Our series had a diverse etiological profile and patients with transition to adult care. Long-term follow-up showed that VNS is an effective and well-tolerated treatment modality for refractory childhood onset epilepsy. Age at implantation, duration of epilepsy and underlying etiology are not found to be predictors of responsiveness to VNS. Higher response rates were observed for a subset of patients with focal epileptiform discharges.
Collapse
Affiliation(s)
- Dilek Yalnizoglu
- Hacettepe University Faculty of Medicine, Department of Pediatric Neurology.
| | - Didem Ardicli
- Hacettepe University Faculty of Medicine, Department of Pediatric Neurology; currently at Health Sciences University Ankara Kecioren Research and Training Hospital
| | - Burcak Bilginer
- Hacettepe University Faculty of Medicine, Department of Neurosurgery
| | - Bahadir Konuskan
- Hacettepe University Faculty of Medicine, Department of Pediatric Neurology; currently at Mardin State Hospital
| | - Kader Karli Oguz
- Hacettepe University Faculty of Medicine, Department of Neuroradiology
| | - Nejat Akalan
- Hacettepe University Faculty of Medicine, Department of Neurosurgery; currently at Medipol University Department of Neurosurgery
| | - Güzide Turanli
- Hacettepe University Faculty of Medicine, Department of Pediatric Neurology; currently retired from Hacettepe University, Department of Pediatric Neurology
| | - Serap Saygi
- Hacettepe University Faculty of Medicine, Department of Neurology
| | - Meral Topcu
- Hacettepe University Faculty of Medicine, Department of Pediatric Neurology; currently retired from Hacettepe University, Department of Pediatric Neurology
| |
Collapse
|
38
|
Marras CE, Colicchio G, De Palma L, De Benedictis A, Di Gennaro G, Cavaliere M, Cesaroni E, Consales A, Asioli S, Caulo M, Villani F, Zamponi N. Health Technology Assessment Report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6150. [PMID: 32847092 PMCID: PMC7504285 DOI: 10.3390/ijerph17176150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023]
Abstract
Background: Vagus nerve stimulation (VNS) is a palliative treatment for medical intractable epileptic syndromes not eligible for resective surgery. Health technology assessment (HTA) represents a modern approach to the analysis of technologies used for healthcare. The purpose of this study is to assess the clinical, organizational, financial, and economic impact of VNS therapy in drug-resistant epilepsies and to establish the congruity between costs incurred and health service reimbursement. Methods: The present study used an HTA approach. It is based on an extensive detailed bibliographic search on databases (Medline, Pubmed, Embase and Cochrane, sites of scientific societies and institutional sites). The HTA study includes the following issues: (a) social impact and costs of the disease; (b) VNS eligibility and clinical results; (c) quality of life (QoL) after VNS therapy; (d) economic impact and productivity regained after VNS; and (e) costs of VNS. Results: Literature data indicate VNS as an effective treatment with a potential positive impact on social aspects and on quality of life. The diagnosis-related group (DRG) financing, both on national and regional levels, does not cover the cost of the medical device. There was an evident insufficient coverage of the DRG compared to the full cost of implanting the device. Conclusions: VNS is a palliative treatment for reducing seizure frequency and intensity. Despite its economic cost, VNS should improve patients' quality of life and reduce care needs.
Collapse
Affiliation(s)
- Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | - Gabriella Colicchio
- Department of Neurosurgery, UCSC Gemelli University Hospital, 00167 Rome, Italy;
| | - Luca De Palma
- Pediatric Neurology Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | | | - Marilou Cavaliere
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
- Institute of Neurosurgery, University of Milan Bicocca, 20900 Milan, Italy
| | - Elisabetta Cesaroni
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, Bellaria Hospital, University of Bologna, 40139 Bologna, Italy;
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Flavio Villani
- Division of Clinical Neurophysiology and Epilepsy Center, IRCCS, San Martino Hospital, 16132 Genoa, Italy;
| | - Nelia Zamponi
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| |
Collapse
|
39
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. A resting-state functional MRI study on the effect of vagal nerve stimulation on spontaneous regional brain activity in drug-resistant epilepsy patients. Behav Brain Res 2020; 392:112709. [DOI: 10.1016/j.bbr.2020.112709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
|
40
|
Chen P, Hao MM, Zhu J, Yang ZY. Effect of vagus nerve stimulation for the treatment of drug-resistant epilepsy: A protocol of systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20315. [PMID: 32501977 PMCID: PMC7306386 DOI: 10.1097/md.0000000000020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is a very tricky disorder, which greatly affects quality of life in such patients. Relevant studies suggested that vagus nerve stimulation (VNS) has potential benefits for DRE. However, there are inconsistent conclusions. The purpose of this study is to investigate whether VNS is effective and safety for DRE. METHODS To collect comprehensive randomized controlled trials (RCTs), the following electronic databases will be retrieved: MEDLINE, EMBASE, Cochrane Library, Web of Science, PsycINFO, CINAHL, AMED, and China National Knowledge Infrastructure from the commencement of each electronic database up to the present with no language restrictions. Two authors will independently carry out all procedures of literature selection, information collection, and risk of bias assessment. Any objections will be worked out by a third author through consultation. The risk of bias for each included trial will be identified using Cochrane risk of bias tool, and statistical analysis will be performed utilizing RevMan 5.3 software. RESULTS This study will synthesize the data from the present eligible high quality RCTs to assess whether VNS is effective and safety for DRE. CONCLUSION This study will provide systematic evidence of VNS for the treatment of patients with DRE. SYSTEMATIC REVIEW REGISTRATION INPLASY202040086.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurology, The First Hospital of Yulin, Yulin
| | - Mei-mei Hao
- Department of Neurology, Yan’an People's Hospital, Yan’an, China
| | - Jiang Zhu
- Department of Neurology, The First Hospital of Yulin, Yulin
| | - Zeng-ye Yang
- Department of Neurology, Yan’an People's Hospital, Yan’an, China
| |
Collapse
|
41
|
Pylaeva OA, Chadaev VA, Bobylova MY, Mukhin KY. Efficienc y of vag us nerve stim ulation in epilepsy (literat ure review and case report ). RUSSIAN JOURNAL OF CHILD NEUROLOGY 2019; 14:7-17. [DOI: 10.17650/2073-8803-2019-14-2-7-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Despite significant advances in epileptology, approximately one-third of patients suffer from drug-resistant epilepsy. Numerous approaches are currently available to treat epilepsy; however, there are still many patients with treatment-resistant epilepsy, in whom antiepileptic drugs are ineffective and surgical treatment is impossible. Thus, searching for new effective antiepileptic drugs and alternative treatments (such as vagus nerve stimulation) for these patients remains highly relevant. This literature review covers the indications for and the efficacy and tolerability of vagus nerve stimulation in patients with epilepsy. We also report a case of successful treatment of a patient with drug-resistant epilepsy using this method.
Collapse
Affiliation(s)
- O. A. Pylaeva
- Svt. Luka’s Institute of Child Neurology and Epilepsy; Svt. Luka’s Institute of Child and Adult Neurology and Epilepsy
| | - V. A. Chadaev
- Svt. Luka’s Institute of Child and Adult Neurology and Epilepsy
| | - M. Yu. Bobylova
- Svt. Luka’s Institute of Child Neurology and Epilepsy; Svt. Luka’s Institute of Child and Adult Neurology and Epilepsy
| | - K. Yu. Mukhin
- Svt. Luka’s Institute of Child Neurology and Epilepsy; Svt. Luka’s Institute of Child and Adult Neurology and Epilepsy
| |
Collapse
|