1
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
2
|
Chen X, Wang YJ, Mu TW. Proteostasis regulation of GABA A receptors in neuronal function and disease. Biomed Pharmacother 2025; 186:117992. [PMID: 40112516 PMCID: PMC12068001 DOI: 10.1016/j.biopha.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAARs) are ligand-gated anion channels that mediate fast inhibitory neurotransmission in the mammalian central nervous system. GABAARs form heteropentameric assemblies comprising two α1, two β2, and one γ2 subunits as the most common subtype in mammalian brains. Proteostasis regulation of GABAARs involves subunit folding within the endoplasmic reticulum, assembling into heteropentamers, receptor trafficking to the cell surface, and degradation of terminally misfolded subunits. As GABAARs are surface proteins, their trafficking to the plasma membrane is critical for proper receptor function. Thus, variants in the genes encoding GABAARs that disrupt proteostasis result in various neurodevelopmental disorders, ranging from intellectual disability to idiopathic generalized epilepsy. This review summarizes recent progress about how the proteostasis network regulates protein folding, assembly, degradation, trafficking, and synaptic clustering of GABAARs. Additionally, emerging pharmacological approaches that restore proteostasis of pathogenic GABAAR variants are presented, providing a promising strategy to treat related neurological diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Moe JS, Bramness JG, Bolstad I, Mørland JG, Gorwood P, Ramoz N. Association Between GABRG2 and Self-Rating of the Effects of Alcohol in a French Young Adult Sample. Risk Manag Healthc Policy 2025; 18:291-304. [PMID: 39882063 PMCID: PMC11775821 DOI: 10.2147/rmhp.s483830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose Alcohol use is a leading risk factor for preventable death, injury, and disease globally. Low sensitivity to the effects of alcohol is influenced by genes and predicts risk for harmful alcohol use and alcohol use disorder (AUD). Alcohol induces effects partly by modulation of gamma-aminobutyric acid receptors type A (GABAARs). This study investigates the relationship between genetic variation in GABAAR subunit genes and individual alcohol sensitivity among French university students. Patients and Methods The study involved 1,409 French university students (34.5% women; mean age 20.3 years). Alcohol sensitivity was measured by the Self-Rating of the Effects of Alcohol Scale (SRE). SRE-scores from initial drinking, regular drinking, and heavy drinking were investigated for correlations with alcohol consumption and for associations with single nucleotide polymorphisms (SNPs) in GABAAR subunit genes (GABRA2, GABRG2, GABRA6). Results We replicated correlations between low alcohol sensitivity and high alcohol consumption. We further found an association between the minor allele in rs211014 (GABRG2) and higher SRE-scores, linked to dizziness and motor incoordination. Genetic variation in GABRG2 has previously been associated with processes involving motor coordination (alcohol withdrawal, febrile- and epileptic seizures). Conclusion The results from our study suggest that genetic variation in GABRG2 may influence alcohol sensitivity, which could inform strategies for assessing risk for harmful alcohol use and AUD.
Collapse
Affiliation(s)
- Jenny Skumsnes Moe
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Jørgen G Bramness
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Section for Clinical Addiction Research, Oslo University Hospital, Oslo, Norway
| | - Ingeborg Bolstad
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Jørg Gustav Mørland
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Philip Gorwood
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| |
Collapse
|
4
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
5
|
Varlamova EG, Kuldaeva VP, Mitina NN, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures. Cells 2024; 13:1747. [PMID: 39513854 PMCID: PMC11545774 DOI: 10.3390/cells13211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational-exploratory activities. On the other hand, the strains with an epileptic phenotype-G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Natalia N. Mitina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
6
|
Paramonova AI, Lysova KD, Timechko EE, Senchenko GV, Sapronova MR, Dmitrenko DV. Cognitive impairment in childhood-onset epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:54-68. [DOI: 10.17749/2077-8333/epi.par.con.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In pediatric practice, epilepsy holds one of the leading places among neurological pathologies. Along with seizures, a child's intellectual impairment lowering quality of life plays a crucial role in social disintegration. Cognitive impairments occuring in idiopathic generalized epilepsies (IGE) and self-limited epilepsy with centrotemporal spikes (SeLECTS) considered benign have been widely investigated. However, available data suggest that such disorders result in multiple persistent alterations in the cognitive sphere. In this case, features of the epilepsy etiopathogenesis account for disease early onset and profoundly remodeled structures involved in the implementation of cognitive functions. Current review is aimed to summarizing data regarding developmental mechanisms and range of cognitive impairment in IGE and SeLECTS.
Collapse
Affiliation(s)
| | - K. D. Lysova
- Voino-Yasenetsky Krasnoyarsk State Medical University
| | | | | | | | | |
Collapse
|
7
|
Gauer L, Baer S, Valenti-Hirsch MP, De Saint-Martin A, Hirsch E. Drug-resistant generalized epilepsies: Revisiting the frontiers of idiopathic generalized epilepsies. Rev Neurol (Paris) 2024; 180:290-297. [PMID: 38508955 DOI: 10.1016/j.neurol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The 2017 International League Against Epilepsy (ILAE) classification suggested that the term "genetic generalized epilepsies" (GGEs) should be used for the broad group of epilepsies with so-called "generalized" seizure types and "generalized" spike-wave activity on EEG, based on a presumed genetic etiology. Within this framework, idiopathic generalized epilepsies (IGEs) are described as a subset of GGEs and include only four epileptic syndromes: childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone. The recent 2022 ILAE definition of IGEs is based on the current state of knowledge and reflects a community consensus and is designed to evolve as knowledge advances. The term "frontiers of IGEs" refers to the actual limits of our understanding of these four syndromes. Indeed, among patients presenting with a syndrome compatible with the 2022 definition of IGEs, we still observe a significant proportion of patients presenting with specific clinical features, refractory seizures, or drug-resistant epilepsies. This leads to the discussion of the boundaries of IGEs and GGEs, or what is accepted within a clinical spectrum of a definite IGE. Here, we discuss several entities that have been described in the literature for many years and that may either constitute rare features of IGEs or a distinct differential diagnosis. Their recognition by clinicians may allow a more individualized approach and improve the management of patients presenting with such entities.
Collapse
Affiliation(s)
- L Gauer
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France.
| | - S Baer
- Hôpitaux Universitaires de Strasbourg, Pediatric Neurology Department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - M-P Valenti-Hirsch
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - A De Saint-Martin
- Hôpitaux Universitaires de Strasbourg, Pediatric Neurology Department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - E Hirsch
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| |
Collapse
|
8
|
Wang S, Xie Z, Jun T, Ma X, Zhang M, Rao F, Xu H, Lu J, Ding X, Li Z. Identification of potential crucial genes and therapeutic targets for epilepsy. Eur J Med Res 2024; 29:43. [PMID: 38212777 PMCID: PMC10782668 DOI: 10.1186/s40001-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Epilepsy, a central neurological disorder, has a complex genetic architecture. There is some evidence suggesting that genetic factors play a role in both the occurrence of epilepsy and its treatment. However, the genetic determinants of epilepsy are largely unknown. This study aimed to identify potential therapeutic targets for epilepsy. METHODS Differentially expressed genes (DEGs) were extracted from the expression profiles of GSE44031 and GSE1834. Gene co-expression analysis was used to confirm the regulatory relationship between newly discovered epilepsy candidate genes and known epilepsy genes. Expression quantitative trait loci analysis was conducted to determine if epilepsy risk single-nucleotide polymorphisms regulate DEGs' expression in human brain tissue. Finally, protein-protein interaction analysis and drug-gene interaction analysis were performed to assess the role of DEGs in epilepsy treatment. RESULTS The study found that the protein tyrosine phosphatase receptor-type O gene (PTPRO) and the growth arrest and DNA damage inducible alpha gene (GADD45A) were significantly upregulated in epileptic rats compared to controls in both datasets. Gene co-expression analysis revealed that PTPRO was co-expressed with RBP4, NDN, PAK3, FOXG1, IDS, and IDS, and GADD45A was co-expressed with LRRK2 in human brain tissue. Expression quantitative trait loci analysis suggested that epilepsy risk single-nucleotide polymorphisms could be responsible for the altered PTPRO and GADD45A expression in human brain tissue. Moreover, the protein encoded by GADD45A had a direct interaction with approved antiepileptic drug targets, and GADD45A interacts with genistein and cisplatin. CONCLUSIONS The results of this study highlight PTPRO and GADD45A as potential genes for the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| | - Zhenrong Xie
- The Medical Biobank, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Tian Jun
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xuelu Ma
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Feng Rao
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| |
Collapse
|
9
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
10
|
Perucca E, Bialer M, White HS. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023; 37:755-779. [PMID: 37603262 PMCID: PMC10501955 DOI: 10.1007/s40263-023-01027-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, 3084, Australia.
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Huang TH, Lin YS, Hsiao CW, Wang LY, Ajibola MI, Abdulmajeed WI, Lin YL, Li YJ, Chen CY, Lien CC, Chiu CD, Cheng IHJ. Differential expression of GABA A receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front Cell Neurosci 2023; 17:1146278. [PMID: 37545878 PMCID: PMC10397515 DOI: 10.3389/fncel.2023.1146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Inhibitory γ-aminobutyric acid (GABA)-ergic interneurons mediate inhibition in neuronal circuitry and support normal brain function. Consequently, dysregulation of inhibition is implicated in various brain disorders. Parvalbumin (PV) and somatostatin (SST) interneurons, the two major types of GABAergic inhibitory interneurons in the hippocampus, exhibit distinct morpho-physiological properties and coordinate information processing and memory formation. However, the molecular mechanisms underlying the specialized properties of PV and SST interneurons remain unclear. This study aimed to compare the transcriptomic differences between these two classes of interneurons in the hippocampus using the ribosome tagging approach. The results revealed distinct expressions of genes such as voltage-gated ion channels and GABAA receptor subunits between PV and SST interneurons. Gabrd and Gabra6 were identified as contributors to the contrasting tonic GABAergic inhibition observed in PV and SST interneurons. Moreover, some of the differentially expressed genes were associated with schizophrenia and epilepsy. In conclusion, our results provide molecular insights into the distinct roles of PV and SST interneurons in health and disease.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Sian Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, United States
| | - Chiao-Wan Hsiao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wahab Imam Abdulmajeed
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Yu-Ling Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jui Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis 2022; 13:1063. [PMID: 36543780 PMCID: PMC9772344 DOI: 10.1038/s41419-022-05457-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a common neurological disorder and glutamate excitotoxicity plays a key role in epileptic pathogenesis. Astrocytic glutamate transporter GLT-1 is responsible for preventing excitotoxicity via clearing extracellular accumulated glutamate. Previously, three variants (G82R, L85P, and P289R) in SLC1A2 (encoding GLT-1) have been clinically reported to be associated with epilepsy. However, the functional validation and underlying mechanism of these GLT-1 variants in epilepsy remain undetermined. In this study, we reported that these disease-linked mutants significantly decrease glutamate uptake, cell membrane expression of the glutamate transporter, and glutamate-elicited current. Additionally, we found that these variants may disturbed stromal-interacting molecule 1 (STIM1)/Orai1-mediated store-operated Ca2+ entry (SOCE) machinery in the endoplasmic reticulum (ER), in which GLT-1 may be a new partner of SOCE. Furthermore, knock-in mice with disease-associated variants showed a hyperactive phenotype accompanied by reduced glutamate transporter expression. Therefore, GLT-1 is a promising and reliable therapeutic target for epilepsy interventions.
Collapse
|
13
|
Zhang T, Yang Y, Sima X. No association of GABRA1 rs2279020 and GABRA6 rs3219151 polymorphisms with risk of epilepsy and antiepileptic drug responsiveness in Asian and Arabic populations: Evidence from a meta-analysis with trial sequential analysis. Front Neurol 2022; 13:996631. [PMID: 36188399 PMCID: PMC9518753 DOI: 10.3389/fneur.2022.996631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAAR) have been reported to contribute to the pathogenesis of epilepsy and the recurrence of chronic seizures. Genetic polymorphisms in GABRA1 and GABRA6 may confer a high risk of epilepsy and multiple drug resistance, but with conflicting results. We aimed to assess the association of GABRA1 rs2279020 and GABRA6 rs3219151 with epilepsy risk using a meta-analysis. The databases of Pubmed, Ovid, Web of Science, and China National Knowledge Infrastructure were searched. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were computed to evaluate the association between the polymorphisms and epilepsy risk using a fixed- or random-effect model. Trial sequential analysis (TSA) was performed to assess the results of the meta-analysis. No significant association between the GABRA1 rs2279020 and GABRA6 rs3219151 and the risk of epilepsy was found in the Asian and Arabic populations. The negative results were also observed when comparing the GABRA1 rs2279020 and GABRA6 rs3219151 polymorphism to antiepileptic drug responsiveness. The trial sequential analysis confirmed the results of the meta-analysis. This meta-analysis suggests that GABRA1 rs2279020 and GABRA6 rs3219151 are not risk factors for the etiology of epilepsy and antiepileptic drug responsiveness in the Asian and Arabic populations.
Collapse
Affiliation(s)
- Tiejun Zhang
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiutian Sima
- Department of Neurosurgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiutian Sima
| |
Collapse
|
14
|
Smit DJA, Bakker M, Abdellaoui A, Hoetink AE, Vulink N, Denys D. A genome-wide association study of a rage-related misophonia symptom and the genetic link with audiological traits, psychiatric disorders, and personality. Front Neurosci 2022; 16:971752. [PMID: 36760791 PMCID: PMC9902885 DOI: 10.3389/fnins.2022.971752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction People with misophonia experience strong negative emotional responses to sounds and associated stimuli-mostly human produced-to an extent that it may cause impairment in social functioning. The exact nature of the disorder remains a matter of ongoing research and debate. Here, we investigated the genetic etiology of misophonia to understand contributing genetic factors and shed light on individual differences in characteristics that are related to the disorder. Methods For misophonia, we used an unpublished genome-wide association study (GWAS) from genetic service provider 23andMe, Inc., on a self-report item probing a single common misophonic symptom: the occurrence of rage when others produce eating sounds. First, we used gene-based and functional annotation analyses to explore neurobiological determinants of the rage-related misophonia symptom. Next, we calculated genetic correlations (r G) of this rage-related misophonia symptom GWAS with a wide range of traits and disorders from audiology (tinnitus, hearing performance, and hearing trauma), psychiatry, neurology, and personality traits. Results The rage-related misophonia symptom was significantly correlated with tinnitus, major depression disorder (MDD), post-traumatic stress disorder (PTSD), and generalized anxiety disorder (GAD; 0.12 < r G < 0.22). Stronger genetic correlations (0.21 < r G < 0.42) were observed for two clusters of personality traits: a guilt/neuroticism and an irritability/sensitivity cluster. Our results showed no genetic correlation with attention deficit and hyperactivity disorder, obsessive-compulsive disorder, and psychotic disorders. A negative correlation with autism spectrum disorder (ASD) was found, which may be surprising given the previously reported comorbidities and the sensory sensitivity reported in ASD. Clustering algorithms showed that rage-related misophonia consistently clustered with MDD, generalized anxiety, PTSD, and related personality traits. Discussion We conclude that-based on the genetics of a common misophonia symptom-misophonia most strongly clusters with psychiatric disorders and a personality profile consistent with anxiety and PTSD.
Collapse
Affiliation(s)
- Dirk J A Smit
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Melissa Bakker
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander E Hoetink
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|