1
|
van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev Vaccines 2014; 7:1-5. [DOI: 10.1586/14760584.7.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Wang E, Tomei S, Marincola FM. Reflections upon human cancer immune responsiveness to T cell-based therapy. Cancer Immunol Immunother 2012; 61:761-70. [PMID: 22576055 PMCID: PMC3362724 DOI: 10.1007/s00262-012-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/24/2012] [Indexed: 01/06/2023]
Abstract
Immune-mediated rejection of human cancer is a relatively rare but well-documented phenomenon. Its rate of occurrence progressively increases from the occasional observation of spontaneous regressions to the high rate of complete remissions observed in response to effective treatments. For two decades, our group has focused its interest in understanding this phenomenon by studying humans following an inductive approach. Sticking to a sequential logic, we dissected the phenomenon by studying to the best of our capability both peripheral and tumor samples and reached the conclusion that immune-mediated cancer rejection is a facet of autoimmunity where the target tissue is the cancer itself. As we are currently defining the strategy to effectively identify the mechanisms leading in individual patients to rejection of their own tumors, we considered useful to summarize the thought process that guided us to our own interpretation of the mechanisms of immune responsiveness.
Collapse
Affiliation(s)
- Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Sara Tomei
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bldg 10, Room 1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
3
|
Microarray analysis for a comprehensive immunological-status evaluation during cancer vaccine immune monitoring. J Biomed Biotechnol 2011; 2011:307297. [PMID: 21969803 PMCID: PMC3182572 DOI: 10.1155/2011/307297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 11/17/2022] Open
Abstract
Anticancer immune responses can be enhanced by immune intervention that promotes complex biological mechanisms involving several cellular populations. The classical immune monitoring for biological-based cancer clinical trials is often based on single-cell analysis. However, the overall effect could be lost by such a reductionist approach explaining the lack of correlation among clinical and immunological endpoints often reported. Microarray technology could give the possibility of studying in a multiparametric setting the immune therapy effects. The application of microarray is leading to an improved understanding of the immune responses to tumor immunotherapy. In fact, analysis of cancer vaccine-induced host responses using microarrays is proposed as valuable alternative to the standard cell-based methods. This paper shows successful examples of how high-throughput gene expression profiling contributed to the understanding of anticancer immune responses during biological therapy, introducing as well the integrative platforms that allow the network analysis in molecular biology studies.
Collapse
|
4
|
Fujimura T, Yamasaki K, Hidaka T, Ito Y, Aiba S. A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18) and IFN-β synergistically induce dendritic cell maturation with augmented IL-12 production and suppress melanoma growth. J Dermatol Sci 2011; 62:107-15. [PMID: 21411292 DOI: 10.1016/j.jdermsci.2011.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/05/2011] [Accepted: 02/07/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND A synthetic NOD2 agonist, muramyl dipeptide (MDP)-Lys (L18), mimics the bacterial peptidoglycan moiety and acts as a powerful adjuvant that induces cell-mediated immunity. OBJECTIVE To investigate the induction of antitumor immune response for malignant melanoma by IFN-β in combination with MDP-Lys (L18) (IFN-MDP-Lys (L18)). METHODS Human monocyte-derived DCs (MoDCs) are stimulated with IFN-MDP-Lys (L18) in vitro. We assess the expression of costimulatory molecules on MoDCs by FACS. Moreover, we investigate the induction of Th1 cytokines by real time PCR and ELISA. Further to confirm the anti tumor immune response of IFN-MDP-Lys (L18) therapy, we examine the growth of B16F10 melanoma in vivo. RESULTS The stimulation of human MoDCs with IFN-MDP-Lys (L18) significantly augmented the production of IL-12p70, TNF-α, and IL-6 compared to that with MDP or that with IFN-β alone. IFN-MDP-Lys (L18) increased the expression of IL-12p35, IL-12p40, IL-10, TNF-α, IL-6 and IL-1β mRNA by MoDC using real-time PCR. The expression of CD83 and costimulatory molecules CD40, CD80, and CD86 was also augmented in MoDC treated with IFN-MDP-Lys (L18), which resulted in their augmented allogeneic T cell stimulation. In vivo, the administration of IFN-MDP-Lys (L18) significantly suppressed the growth of B16F10 melanoma, while the monotherapy of IFN-β or MDP-Lys (L18) did not significantly affect the tumor growth. CONCLUSION These findings suggest that IFN-MDP-Lys (L18) can be a promising adjuvant therapy for malignant melanoma.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | |
Collapse
|
5
|
Roider E, Jellbauer S, Köhn B, Berchtold C, Partilla M, Busch DH, Rüssmann H, Panthel K. Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol Immunother 2011; 60:371-80. [PMID: 21132428 PMCID: PMC11028716 DOI: 10.1007/s00262-010-0950-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023]
Abstract
We have developed a new vaccination strategy by using the Salmonella type III secretion system (T3SS) to translocate heterologous antigens into the cytosol of host cells. This leads to an efficient antigen-specific CD8 T cell induction. Recently, we have demonstrated the use of Salmonella's T3SS for the immunoprophylaxis of a solid tumor. The murine fibrosarcoma WEHI 164 was transfected with the DNA sequence encoding the MHC class I-peptide p60(217-225) from Listeria monocytogenes. In the present study, we used this tumor model to investigate the potential of vaccination with recombinant Salmonella in a therapeutic setting. BALB/c mice were subcutaneously challenged with WEHI-p60 cells. Simultaneously or 4 days later, these mice received either an orogastric or intravenous immunization with Salmonella translocating p60. Interestingly, 71-80% of the intravenously and 50-52% of the orogastrically immunized mice showed a complete tumor regression after 14 days. In addition, the distribution of tetramer-positive p60(217-225)-specific CD8 T cell subpopulations in blood and tumor tissue was analyzed. Co-staining with CD62L and CD127 revealed that the frequencies of p60(217-225)-specific effector and effector memory CD8 T cells in blood and in fibrosarcoma tissue were related to the kinetics of tumor regression. In summary, our study demonstrates that therapeutic vaccination with Salmonella leads to efficient induction of tumor-invading effector CD8 T cells that may result in significant tumor regression.
Collapse
Affiliation(s)
- Elisabeth Roider
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Jellbauer
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Brigitte Köhn
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christina Berchtold
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Miriam Partilla
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
- Clinical Cooperation Group “Antigen-specific Immunotherapy”, Helmholtz Center Munich and TUM, Neuherberg, Germany
| | - Holger Rüssmann
- Institute for Microbiology, Immunology and Laboratory Medicine, HELIOS Clinic Emil von Behring, Walterhöferstrasse 11, 14165 Berlin, Germany
| | - Klaus Panthel
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Bedognetti D, Wang E, Sertoli MR, Marincola FM. Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 2010; 9:555-65. [PMID: 20518712 PMCID: PMC3411321 DOI: 10.1586/erv.10.55] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The identification of tumor antigens recognized by T cells led to the design of therapeutic strategies aimed at eliciting adaptive immune responses. The last decade of experience has shown that, although active immunization can induce enhancement of anticancer T-cell precursors (easily detectable in standard assays), most often they are unable to induce tumor regression and, consequently, have scarcely any impact on overall survival. Moreover, in the few occasions when tumor rejection occurs, the mechanisms determining this phenomenon remain poorly understood, and data derived from in vivo human observations are rare. The advent of high-throughput gene-expression analysis (microarrays) has cast new light on unrecognized mechanisms that are now deemed to be central for the development of efficient immune-mediated tumor rejection. The aim of this article is to review the data on the molecular signature associated with this process. We believe that the description of how the mechanism of immune-mediated tissue destruction occurs would contribute to our understanding of why it happens, thereby allowing us to develop more effective immune therapeutic strategies.
Collapse
Affiliation(s)
- Davide Bedognetti
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
- S.C. Oncologia Medica B, Department of Medical Oncology, National Cancer Research Institute, Genoa, Italy
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roberto Sertoli
- S.C. Oncologia Medica B, Department of Medical Oncology, National Cancer Research Institute, Genoa, Italy
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Slezak SL, Worschech A, Wang E, Stroncek DF, Marincola FM. Analysis of vaccine-induced T cells in humans with cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:178-88. [PMID: 20795549 PMCID: PMC5545805 DOI: 10.1007/978-1-4419-6451-9_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past several years, progress in the field of tumor immunology has lead to advances in active immunotherapy and vaccination as a means ofeliciting tumor-specific immune responses to mediate tumor regression and clearance. Developing vaccines targeted against cancer became an important focus as a therapy following the success of viral vaccines in preventing infection and disease. In humans with cancer, similar to viral infections, the host immune system is capable of recognizing antigens expressed on tumor cells. This similarity allows the immunological framework of the viral vaccine to be adapted to the cancer setting in hopes of enhancing human T-cell reactivity against tumor. It is generally believed that a requirement for tumor destruction to occur is the induction of sufficient levels of immune cells with high avidity for recognition of tumor antigens. Moreover, the cells must be targeted to the tumor site and be capable of infiltrating tumor stroma.2 Several tumor-associated antigens (TAA) have been identified in the melanoma model which has allowed for immunization trials to evaluate therapeutic potential of tumor-specific T-cell induction. Some clinical trials reported limited success ofT-cell mediated tumor rejection, reportingpartial or complete regression in 10 to 30% of patients. Although tumor regression was not observed following active immunization in vivo, ex vivo assays evaluating TAA-specific T cells demonstrated tumor recognition and subsequent T-cell activation suggesting that tumor-specific T-cell induction indeed occurs but alone is not adequate to induce tumor regression. Recently, the usefulness and success of active-specific immunization (ASI) against TAAs as a means ofeliciting a tumor-specific immune response leading to tumor regression and clearance has been a topic of debate and discussion.
Collapse
Affiliation(s)
- Stefanie L Slezak
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
8
|
Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 2010; 136:35-45. [PMID: 19572148 DOI: 10.1007/s00432-009-0634-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/16/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune aberrations have been demonstrated in tumorogenesis, and myeloid-derived suppressor cells (MDSC) have shown to play a pivotal role in mediating immune suppression in animal models of human tumors. In the present study, we explored the clinical relevance of CD11b+/CD14⁻/CD15+/CD33+ MDSCs and the association of MDSCs with CD8+ cytotoxic T lymphocytes in patients with non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS The population of CD11b+/CD14⁻ cells in peripheral blood mononuclear cells (PBMNC) was determined in 173 patients with NSCLC and 42 control subjects. The expression of CD15, CD33, IL-4R, INF-γR, iNOS and L-arginase were analyzed. Cocultures with CD8+ T lymphocytes and Jurkat cells were developed to determine the impact of MDSCs on the expression of CD3ζ of CD8+ T lymphocytes. RESULTS Patients with treatment-naïve, advanced-stage NSCLC (n = 87) had an increased subpopulation of CD11b+/CD14⁻/CD15+/CD33+ cells in the PBMNCs with characteristics of MDSCs (P < 0.0001). The CD11b+/CD14⁻ cells in PBMNC also express IL-4R and INF-γR and can suppress CD3ζ expression in CD8+ T lymphocytes. The subpopulation of CD11b+/CD14⁻ cells in PBMNC was decreased in the advanced-stage NSCLC patients who had responsiveness to chemotherapy (n = 41, P < 0.0001) and in the early-stage NSCLC patients after removal of tumor (n = 8, P = 0.0391). Notably, a negative association existed between the population of CD11b+/CD14⁻ cells in PBMNC and the frequency of CD8+ T lymphocytes (n = 48, r = -0.3141, P = 0.0297). CONCLUSIONS Our study provided evidence of an increased pool of CD11b+/CD14⁻/CD15+/CD33+ MDSCs in the peripheral blood of NSCLC patients. For the suppressive effect of the cells on CD8+ T lymphocytes, these findings suggest the important role of the CD11b+/CD14⁻/CD15+/CD33+ MDSCs in mediating immunosuppression in NSCLC.
Collapse
MESH Headings
- Aged
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Arginase/genetics
- Arginase/metabolism
- Blood Cell Count
- Blotting, Western
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cells, Cultured
- Coculture Techniques
- Female
- Flow Cytometry
- Humans
- Jurkat Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lewis X Antigen/immunology
- Lewis X Antigen/metabolism
- Lipopolysaccharide Receptors/immunology
- Lipopolysaccharide Receptors/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Staging
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Sialic Acid Binding Ig-like Lectin 3
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Chien-Ying Liu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, No. 199, Tun-Hwa North Road, Taipei 105, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA. The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother 2009; 58:1355-62. [PMID: 19266198 PMCID: PMC3404612 DOI: 10.1007/s00262-009-0686-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/09/2009] [Indexed: 12/20/2022]
Abstract
The concept of using replicating oncolytic viruses in cancer therapy dates to the beginning of the twentieth century. However, in the last few years, an increasing number of pre-clinical and clinical trials have been carried out with promising preliminarily results. Novel, indeed, is the suggestion that viral oncolytic therapy might not operate exclusively through an oncolysis-mediated process but additionally requires the "assistance" of the host's immune system. Originally, the host's immune response was believed to play a predominant obstructive role against viral replication, hence limiting the anti-tumor efficacy of viral vectors. Recent data, however, suggest that the immune response may also play a key role in promoting tumor destruction in association with the oncolytic process. In fact, immune effector pathways activated during oncolytic virus-induced tumor rejection seem to follow a similar pattern to those observed when the broader phenomenon of immune-mediated tissue-specific rejection occurs in other immune-related pathologies. We recently formulated the "Immunologic Constant of Rejection" hypothesis, emphasizing commonalties in transcriptional patterns observed when tissue-destruction occurs: whether with a favorable outcome, such as in tumor rejection and pathogen clearance; or a destructive one, such as in allograft rejection or autoimmunity. Here, we propose that a similar mechanism induces clearance of virally infected tumors and that such a mechanism is primarily dependent on innate immune functions.
Collapse
Affiliation(s)
- Andrea Worschech
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - D. Haddad
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| | - D. F. Stroncek
- Cell Therapy Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD 20892 USA
| | - E. Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Aladar A. Szalay
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
10
|
Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushi M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Maio M, Malyguine A, Masucci G, Matsubara H, Mayrand-Chung S, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stroncek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca MB, Marincola FM. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology. J Transl Med 2009; 7:45. [PMID: 19534815 PMCID: PMC2724494 DOI: 10.1186/1479-5876-7-45] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023] Open
Abstract
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.
Collapse
Affiliation(s)
- Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Robert W Franz Research Center, Providence Portland Medical Center, and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Jon M Wigginton
- Discovery Medicine-Oncology, Bristol-Myers Squibb Inc., Princeton, New Jersey, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oleg Eremin
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Disease Centre, University of Nottingham, NG7 2UH, UK
| | - Wolf Hervé Fridman
- Centre de la Reserche des Cordeliers, INSERM, Paris Descarte University, 75270 Paris, France
| | | | - Kohzoh Imai
- Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - James Jacobson
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Masahisa Jinushi
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kanamoto
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Kato
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - John M Kirkwood
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Thomas O Kleen
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Paul V Lehmann
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Lance Liotta
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Michael T Lotze
- Illman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University, Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shawmarie Mayrand-Chung
- The Biomarkers Consortium (BC), Public-Private Partnership Program, Office of the Director, NIH, Bethesda, Maryland, 20892, USA
| | - Kiminori Nakamura
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hiroyoshi Nishikawa
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Emanuel F Petricoin
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Zoltan Pos
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shiku
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, DCTD, NCI, NIH, Rockville, Maryland, 20892, USA
| | - David F Stroncek
- Cell Therapy Section (CTS), Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hisashi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Julia Wulfkuhle
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Yingdong Zhao
- Biometric Research Branch, NCI, NIH, Bethesda, Maryland, 20892, USA
| | | | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
11
|
Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC. New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol Med 2008; 14:333-40. [DOI: 10.1016/j.molmed.2008.06.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 01/01/2023]
|
12
|
Active Specific Immunotherapy Phase III Trials for Malignant Melanoma: Systematic Analysis and Critical Appraisal. J Am Coll Surg 2008; 207:95-105. [DOI: 10.1016/j.jamcollsurg.2008.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/30/2007] [Accepted: 01/07/2008] [Indexed: 12/29/2022]
|
13
|
Wang E, Worschech A, Marincola FM. The immunologic constant of rejection. Trends Immunol 2008; 29:256-62. [PMID: 18457994 DOI: 10.1016/j.it.2008.03.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/03/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
The complexity underlying a pathologic process does not necessarily require a complex explanation. The biology determining allograft or cancer rejection, autoimmunity or tissue damage during pathogen infections is complex; however, common patterns are emerging that lead to a common final outcome. For instance, tissue destruction occurs with resolution of the pathogenic process (cancer, infection) or tissue damage and organ failure (autoimmunity, allograft rejection). Observations in humans based on transcriptional profiling converge into what we call an 'immunologic constant of rejection' that characterizes such occurrences. This constant includes the coordinate activation of interferon-stimulated genes (ISGs) and immune effector functions (IEFs). Understanding this final effector pathway may suggest novel strategies for the induction or inhibition of tissue-specific destruction with therapeutic intent in cancer and other immune pathologies.
Collapse
Affiliation(s)
- Ena Wang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Melief CJM, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8:351-60. [PMID: 18418403 DOI: 10.1038/nrc2373] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Review deals with recent progress in the immunotherapy of established (pre)malignant disease of viral or non-viral origin by synthetic vaccines capable of inducing robust T-cell responses. The most attractive vaccine compounds are synthetic long peptides (SLP) corresponding to the sequence of tumour viral antigens or tumour-associated non-viral antigens. Crucial to induction of therapeutic T-cell immunity is the capacity of SLP to deliver specific cargo to professional antigen-presenting cells (dendritic cells (DC)). Proper DC activation then induces the therapeutic CD4+ and CD8+ T-cell responses that are associated with regression of established (pre)malignant lesions, including those induced by high-risk human papilloma virus.
Collapse
Affiliation(s)
- Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | | |
Collapse
|
15
|
Wang E, Selleri S, Sabatino M, Monaco A, Pos Z, Worschech A, Stroncek DF, Marincola FM. Spontaneous and treatment-induced cancer rejection in humans. Expert Opin Biol Ther 2008; 8:337-49. [PMID: 18294104 DOI: 10.1517/14712598.8.3.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Experimental observations suggest that human cancer cells actively interact with normal host cells and this cross-talk results, in most instances, in an increased potential of cancer cells to survive. On the other hand, it is also well documented that on rare occasions tumors can be dramatically destroyed by the host's immune response. OBJECTIVE In this review, we argue that understanding the mechanisms that bring about the immune response and lead to cancer destruction is of paramount importance for the design of future rational therapies. METHODS Here we summarize the present understanding of the phenomenology leading to cancer regression in humans and propose novel strategies for a more efficient study of human cancer under natural conditions and during therapy. CONCLUSION The understanding of tumor/host interactions within the tumor microenvironment is a key component of the study of tumor immunology in humans, much can be learned by a dynamic study of such interactions at time points related to the natural history of the disease or its response to therapy. Such understanding will eventually lead to novel and more effective therapies.
Collapse
Affiliation(s)
- Ena Wang
- National Institutes of Health, Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Substantial evidence shows that inflammation promotes oncogenesis and, occasionally, participates in cancer rejection. This paradox can be accounted for by a dynamic switch from chronic smouldering inflammation promoting cancer-cell survival to florid, tissue-disruptive inflammatory reactions that trigger cancer-cell destruction. Clinical and experimental observations suggest that the mechanism of this switch recapitulates the events associated with pathogen infection, which stimulate immune cells to recognise danger signals and activate immune effector functions. Generally, cancers do not have danger signals and, therefore, they cannot elicit strong immune reactions. Synthetic molecules have been developed that mimic pathogen invasion at the tumour site. These compounds activate dendritic cells to produce proinflammatory cytokines, which in turn trigger cytotoxic mechanisms leading to cancer death. Simultaneously, dendritic cells capture antigen shed by dying cancer cells, undergo activation, and stimulate antigen-specific T and B cells. This process results in massive amplification of the antineoplastic inflammatory process. Thus, although anti-inflammatory drugs can prevent onset of some malignant diseases, induction of T cells specific for tumour antigen by active immunisation, combined with powerful activation signals within the cancer microenvironment, might yield the best strategy for treatment of established cancers.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas and Institute of Pathology, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
17
|
Andersen MH, Sørensen RB, Schrama D, Svane IM, Becker JC, Thor Straten P. Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 2008; 57:1735-43. [PMID: 18286284 PMCID: PMC2522294 DOI: 10.1007/s00262-008-0480-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/05/2008] [Indexed: 12/22/2022]
Abstract
Harnessing of the immune system by the development of ‘therapeutic’ vaccines, for the battle against cancer has been the focus of tremendous research efforts over the past two decades. As an illustration of the impressive amounts of data gathered over the past years, numerous antigens expressed on the surface of cancer cells, have been characterized. To this end, recent years research has focussed on characterization of antigens that play an important role for the growth and survival of cancer cells. Anti-apoptotic molecules like survivin that enhance the survival of cancer cells and facilitate their escape from cytotoxic therapies represent prime vaccination candidates. The characterization of a high number of tumor antigens allow the concurrent or serial immunological targeting of different proteins associated with such cancer traits. Moreover, while vaccination in itself is a promising new approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending on the specific chemotherapeutics. Also, chemotherapy represents one of several options available for clearance of CD4+ Foxp3+ regulatory T cells. Moreover, therapies based on monoclonal antibodies may have synergistic potential in combination with vaccination, both when used for targeting of tumor cells and endothelial cells. The efficacy of therapeutic vaccination against cancer will over the next few years be studied in settings taking advantage of strategies in which vaccination is combined with other treatment modalities. These combinations should be based on current knowledge not only regarding the biology of the cancer cell per se, but also considering how treatment may influence the malignant cell population as well as the immune system.
Collapse
Affiliation(s)
- Mads Hald Andersen
- Department of Hematology, Center for Cancer Immune Therapy (CCIT), Herlev University Hospital, 54P4, Herlev Ringvej 75, 2730 Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Wang E, Selleri S, Marincola FM. The Requirements for CTL-Mediated Rejection of Cancer in Humans: NKG2D and Its Role in the Immune Responsiveness of Melanoma. Clin Cancer Res 2007; 13:7228-31. [DOI: 10.1158/1078-0432.ccr-07-2150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cranmer LD, Hersh E. The role of the CTLA4 blockade in the treatment of malignant melanoma. Cancer Invest 2007; 25:613-31. [PMID: 18027152 DOI: 10.1080/07357900701522315] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metastatic melanoma remains a disease with few effective treatments. The anti-tumor immune response has long been felt to be important in the prognosis of melanoma, and much work has focused on harnessing the immune system to fight this disease. Tumor-specific vaccines, immunomodulatory cytokines and non-specific immunostimulants (such as Bacille Calmette Guerin/BCG) have all been investigated. A new strategy has been identified involving cytotoxic T-lymphocyte antigen-4 (CTLA4). This molecule is expressed on the surface of activated T-lymphocytes and exerts a suppressive effect on the induction of immune responses after interaction between T-cell receptor (TCR) and human lymphocyte antigen (HLA) molecules on the antigen-presenting cell (APC). Work in animal models demonstrated that antibody-mediated blockade of this target could lead to anti-tumor responses. Two fully human monoclonal antibodies, ipilimumab (MDX-010) and tremelimumab (CP-675, 206; formerly known as ticilimumab), are in clinical development. Both have demonstrated hints of clinical activity in metastatic melanoma. Both also have a toxicity profile consistent with their mechanism of action, involving inactivation of a normal immunosuppressive homeostatic mechanism: development of auto-immune breakthrough events (IBE). These include inflammatory bowel disease (IBD), uveitis, dermatitis, arthritis, and others. Generally, these events have been easily managed by cessation of therapy and intravenous or topical steroid therapy and supportive care in most patients, although colectomy had been required in several severe cases and there have been several deaths. Interestingly, patients who develop IBE seem to have the greatest likelihood of clinical benefit, but it is unclear whether clinical benefit and IBE are dissociable events. Other than IBE, no other pharmacodynamic measure has been able to predict response, although certain autoimmune antibody titers may have promise in this regard. Further research will confirm the clinical benefit of these agents alone and in combination with other agents, further define the safety profile and protocols for toxicity management, and identify pharmacodynamic parameters predicting clinical benefit and toxicity.
Collapse
Affiliation(s)
- Lee D Cranmer
- Melanoma/Sarcoma Program, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.
| | | |
Collapse
|
20
|
Selleri S, Rumio C, Sabatino M, Marincola FM, Wang E. Tumor Microenvironment and the Immune Response. Surg Oncol Clin N Am 2007; 16:737-53, vii-viii. [DOI: 10.1016/j.soc.2007.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Panelli MC, Stashower ME, Slade HB, Smith K, Norwood C, Abati A, Fetsch P, Filie A, Walters SA, Astry C, Aricó E, Zhao Y, Selleri S, Wang E, Marincola FM. Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 2007; 8:R8. [PMID: 17222352 PMCID: PMC1839129 DOI: 10.1186/gb-2007-8-1-r8] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/06/2006] [Accepted: 01/12/2007] [Indexed: 01/24/2023] Open
Abstract
An analysis of basal cell carcinoma subjected to local application of imiquimod revealed that most transcripts stimulated by imiquimod involve the activation of cellular innate and adaptive immune-effector mechanisms. Background Imiquimod is a Toll-like receptor-7 agonist capable of inducing complete clearance of basal cell carcinoma (BCC) and other cutaneous malignancies. We hypothesized that the characterization of the early transcriptional events induced by imiquimod may provide insights about immunological events preceding acute tissue and/or tumor rejection. Results We report a paired analysis of adjacent punch biopsies obtained pre- and post-treatment from 36 patients with BCC subjected to local application of imiquimod (n = 22) or vehicle cream (n = 14) in a blinded, randomized protocol. Four treatments were assessed (q12 applications for 2 or 4 days, or q24 hours for 4 or 8 days). RNA was amplified and hybridized to 17.5 K cDNA arrays. All treatment schedules similarly affected the transcriptional profile of BCC; however, the q12 × 4 days regimen, associated with highest effectiveness, induced the most changes, with 637 genes unequivocally stimulated by imiquimod. A minority of transcripts (98 genes) confirmed previous reports of interferon-α involvement. The remaining 539 genes portrayed additional immunological functions predominantly involving the activation of cellular innate and adaptive immune-effector mechanisms. Importantly, these effector signatures recapitulate previous observations of tissue rejection in the context of cancer immunotherapy, acute allograft rejection and autoimmunity. Conclusion This study, based on a powerful and reproducible model of cancer eradication by innate immune mechanisms, provides the first insights in humans into the early transcriptional events associated with immune rejection. This model is likely representative of constant immunological pathways through which innate and adaptive immune responses combine to induce tissue destruction.
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kina Smith
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Norwood
- Department of Dermatology, National Naval Medical Center, Bethesda, MD 20889, USA
| | - Andrea Abati
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Armando Filie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | - Eleonora Aricó
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingdong Zhao
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
- Universita' degli Studi di Milano, Department of Human Morphology, via Mangiagalli, 20133 Milan, Italy
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Feder-Mengus C, Ghosh S, Weber WP, Wyler S, Zajac P, Terracciano L, Oertli D, Heberer M, Martin I, Spagnoli GC, Reschner A. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer 2007; 96:1072-82. [PMID: 17342088 PMCID: PMC2360115 DOI: 10.1038/sj.bjc.6603664] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
Collapse
Affiliation(s)
- C Feder-Mengus
- ICFS, Departments of Surgery and Research, Basel University Hospital, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Monsurrò V, Marincola FM. Gene profiling for the prediction of tumor response to treatment: the case of immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 593:86-94. [PMID: 17265719 DOI: 10.1007/978-0-387-39978-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Vladia Monsurrò
- Department of Tranfusion Medicine, Immunogenetics Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
24
|
Littman BH, Di Mario L, Plebani M, Marincola FM. What's next in translational medicine? Clin Sci (Lond) 2007; 112:217-27. [PMID: 17223795 DOI: 10.1042/cs20060108] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Translational medicine is the integrated application of innovative pharmacology tools, biomarkers, clinical methods, clinical technologies and study designs to improve disease understanding, confidence in human drug targets and increase confidence in drug candidates, understand the therapeutic index in humans, enhance cost-effective decision making in exploratory development and increase phase II success. Translational research is one of the most important activities of translational medicine as it supports predictions about probable drug activities across species and is especially important when compounds with unprecedented drug targets are brought to humans for the first time. Translational research has the potential to deliver many practical benefits for patients and justify the extensive investments placed by the private and public sector in biomedical research. Translational research encompasses a complexity of scientific, financial, ethical, regulatory, legislative and practical hurdles that need to be addressed at several levels to make the process efficient. Several have resisted the idea of supporting translational research because of its high costs and the fear that it may re-direct funds from other biomedical disciplines. Resistance also comes from those more familiar with traditional clinical research methods. In this review, we argue that translational research should be seen as enabled by ongoing efforts in basic and clinical research and not competing with them. Translational research provides the knowledge necessary to draw important conclusions from clinical testing regarding disease and the viability of novel drug mechanisms. Advancing translational research requires education and new sources of funding. This could be achieved through public and congressional education by a joint coalition of patients' advocacy groups, academia, drug regulatory agencies and industry.
Collapse
Affiliation(s)
- Bruce H Littman
- Global Translational Medicine, Pfizer Global Research and Development, Pfizer Inc, New London, CT 23240, USA
| | | | | | | |
Collapse
|
25
|
Kilinc MO, Aulakh KS, Nair RE, Jones SA, Alard P, Kosiewicz MM, Egilmez NK. Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. THE JOURNAL OF IMMUNOLOGY 2007; 177:6962-73. [PMID: 17082611 DOI: 10.4049/jimmunol.177.10.6962] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A single intratumoral injection of IL-12 and GM-CSF-loaded slow-release microspheres induces T cell-dependent eradication of established primary and metastatic tumors in a murine lung tumor model. To determine how the delivery of cytokines directly to the microenvironment of a tumor nodule induces local and systemic antitumor T cell activity, we characterized therapy-induced phenotypic and functional changes in tumor-infiltrating T cell populations. Analysis of pretherapy tumors demonstrated that advanced primary tumors were infiltrated by CD4+ and CD8+ T cells with an effector/memory phenotype and CD4+CD25+Foxp3+ T suppressor cells. Tumor-associated effector memory CD8+ T cells displayed impaired cytotoxic function, whereas CD4+CD25+Foxp3+ cells effectively inhibited T cell proliferation demonstrating functional integrity. IL-12/GM-CSF treatment promoted a rapid up-regulation of CD43 and CD69 on CD8+ effector/memory T cells, augmented their ability to produce IFN-gamma, and restored granzyme B expression. Importantly, treatment also induced a concomitant and progressive loss of T suppressors from the tumor. Further analysis established that activation of pre-existing effector memory T cells was short-lived and that both the effector/memory and the suppressor T cells became apoptotic within 4 days of treatment. Apoptotic death of pre-existing effector/memory and suppressor T cells was followed by infiltration of the tumor with activated, nonapoptotic CD8+ effector T lymphocytes on day 7 posttherapy. Both CD8+ T cell activation and T suppressor cell purge were mediated primarily by IL-12 and required IFN-gamma. This study provides important insight into how local IL-12 therapy alters the immunosuppressive tumor milieu to one that is immunologically active, ultimately resulting in tumor regression.
Collapse
MESH Headings
- Adenocarcinoma, Bronchiolo-Alveolar/immunology
- Adenocarcinoma, Bronchiolo-Alveolar/pathology
- Adenocarcinoma, Bronchiolo-Alveolar/therapy
- Animals
- Apoptosis/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/therapeutic use
- Cell Death/immunology
- Cell Line, Tumor
- Cell Movement/immunology
- Cells, Cultured
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use
- Immunologic Memory
- Injections, Intralesional
- Interleukin-12/administration & dosage
- Interleukin-12/therapeutic use
- Interleukin-2 Receptor alpha Subunit/biosynthesis
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Microspheres
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Mehmet O Kilinc
- J.G. Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
There is overwhelming evidence that the human immune system can keep in check the growth of autologous tumors. Yet, this phenomenon is rare and most often tumors survive striking a balance with the host's immune system. The well-documented coexistence of immune cells that can recognize cancer and their targets within the same host is reminiscent of chronic allograft rejection well-controlled by immune suppression or of a lingering tissue-specific autoimmune reaction. In this review, we argue that autologous tumor rejection represents a distinct form of tissue-specific rejection similar to acute allograft rejection or to flares of autoimmunity. Here we discuss similarities within the biology of these phenomena that may converge into a common immunological constant of rejection. The purpose is to simplify the basis of immune rejection to its bare bones critically dissecting the significance of those components proposed by experimental models as harbingers of this final outcome.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, The Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
27
|
Le Gal FA, Widmer VM, Dutoit V, Rubio-Godoy V, Schrenzel J, Walker PR, Romero PJ, Valmori D, Speiser DE, Dietrich PY. Tissue homing and persistence of defined antigen-specific CD8+ tumor-reactive T-cell clones in long-term melanoma survivors. J Invest Dermatol 2006; 127:622-9. [PMID: 17039243 DOI: 10.1038/sj.jid.5700580] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients. Studies in patients with favorable outcomes may be very informative. In this longitudinal study, we tracked, quantified, and characterized functionally defined antigen-specific T-cell clones ex vivo, in peripheral blood and at tumor sites, in two long-term melanoma survivors. MAGE-A10-specific CD8+ T-cell clones with high avidity to antigenic peptide and tumor lytic capabilities persisted in peripheral blood over more than 10 years, with quantitative variations correlating with the clinical course. These clones were also found in emerging metastases, and, in one patient, circulating clonal T cells displayed a fully differentiated effector phenotype at the time of relapse. Longevity, tumor homing, differentiation phenotype, and quantitative adaptation to the disease phases suggest the contribution of the tracked tumor-reactive clones in the tumor control of these long-term metastatic survivor patients. Focusing research on patients with favorable outcomes may help to identify parameters that are crucial for an efficient antitumor response and to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Frédérique-Anne Le Gal
- Laboratory of Tumor Immunology, Division of Oncology, Department of Internal Medicine, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van der Burg SH, Bijker MS, Welters MJP, Offringa R, Melief CJM. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev 2006; 58:916-30. [PMID: 16979788 DOI: 10.1016/j.addr.2005.11.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 07/10/2006] [Indexed: 02/01/2023]
Abstract
Soon after it was realized that T-cells recognize their target antigens as small protein fragments or peptides presented by MHC molecules at the cell surface, these peptide epitopes have been tried as vaccines. Human testing of such vaccines, although protective in mouse models, has produced mixed results. Since these initial trials, there has been an tremendous increase in our understanding of how infectious organisms can induce potent immune responses. In this article we review the key changes in the design, formulation and delivery of synthetic peptide vaccines that are applied to improve peptide vaccine strategies.
Collapse
Affiliation(s)
- Sjoerd H van der Burg
- Department of Clinical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Nair RE, Kilinc MO, Jones SA, Egilmez NK. Chronic immune therapy induces a progressive increase in intratumoral T suppressor activity and a concurrent loss of tumor-specific CD8+ T effectors in her-2/neu transgenic mice bearing advanced spontaneous tumors. THE JOURNAL OF IMMUNOLOGY 2006; 176:7325-34. [PMID: 16751376 DOI: 10.4049/jimmunol.176.12.7325] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A single intratumoral injection of IL-12 and GM-CSF-encapsulated microspheres induces the complete regression of advanced spontaneous tumors in her-2/neu transgenic mice. However, tumor regression in this model is transient and long-term cure is not achieved due to recurrence. Posttherapy molecular analysis of immune activation/suppression markers within the tumor microenvironment demonstrated a dramatic up-regulation of IFN-gamma and a concomitant down-regulation of Forkhead/winged-helix protein 3 (Foxp3), TGFbeta, and IL-10 expression. Therapy-induced reversion of immune suppression was transient since all three markers of suppression recovered rapidly and surpassed pretherapy levels by day 7 after treatment, resulting in tumor resurgence. Repeated treatment enhanced short-term tumor regression, but did not augment long-term survival. Serial long-term analysis demonstrated that although chronic stimulation enhanced the IFN-gamma response, this was countered by a parallel increase in Foxp3, TGFbeta, and IL-10 expression. Analysis of tumor-infiltrating T lymphocyte populations showed that the expression of Foxp3 and IL-10 was associated with CD4(+)CD25(+) T cells. Repeated treatment resulted in a progressive increase in tumor-infiltrating CD4(+)CD25(+)Foxp3(+) T suppressor cells establishing their role in long-term neutralization of antitumor activity. Analysis of tumor-infiltrating CD8(+) T cells demonstrated that although treatment enhanced IFN-gamma production, antitumor cytotoxicity was diminished. Monitoring of CD8(+) T cells that specifically recognized a dominant MHC class I her-2/neu peptide showed a dramatic increase in tetramer-specific CD8(+) T cells after the first treatment; however, continuous therapy resulted in the loss of this population. These results demonstrate that both enhanced suppressor activity and deletion of tumor-specific T cells are responsible for the progressive loss of efficacy that is associated with chronic immune therapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Movement/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Forkhead Transcription Factors/biosynthesis
- Genes, erbB-2
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use
- Immunotherapy, Active/methods
- Injections, Intralesional
- Interferon-gamma/biosynthesis
- Interleukin-10/biosynthesis
- Interleukin-12/administration & dosage
- Interleukin-12/therapeutic use
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/mortality
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/biosynthesis
Collapse
Affiliation(s)
- Raji E Nair
- James Graham Brown Cancer Center and Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
30
|
Jin P, Wang E, Provenzano M, Deola S, Selleri S, Ren J, Voiculescu S, Stroncek D, Panelli MC, Marincola FM. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006; 4:26. [PMID: 16805915 PMCID: PMC1557669 DOI: 10.1186/1479-5876-4-26] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/28/2006] [Indexed: 12/03/2022] Open
Abstract
Experimentally, interleukin-2 (IL-2) exerts complex immunological functions promoting the proliferation, survival and activation of T cells on one hand and inducing immune regulatory mechanisms on the other. This complexity results from a cross talk among immune cells which sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant IL-2 (rIL-2) stimulation of peripheral blood mononuclear cells (PBMC) from 47 donors of different genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T cells were less dependent upon and often dampened by the presence of other PBMC populations. In particular, cytotoxic T cell effector function was variably affected with a component strictly dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This observation may provide a roadmap for the interpretation of the discrepant biological activities of rIL-2 observed in distinct pathological conditions or treatment modalities.
Collapse
Affiliation(s)
- Ping Jin
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Maurizio Provenzano
- Immune Oncology Section, Department of Surgery, University Hospital ZLF, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Sara Deola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jiaqiang Ren
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sonia Voiculescu
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David Stroncek
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
31
|
Panelli MC, Wang E, Marincola FM. The pathway to biomarker discovery: carbonic anhydrase IX and the prediction of immune responsiveness. Clin Cancer Res 2005; 11:3601-3. [PMID: 15897553 DOI: 10.1158/1078-0432.ccr-05-0475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
32
|
Wang E, Panelli MC, Marincola FM. Gene profiling of immune responses against tumors. Curr Opin Immunol 2005; 17:423-7. [PMID: 15950448 DOI: 10.1016/j.coi.2005.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/26/2005] [Indexed: 11/30/2022]
Abstract
Clinical trials of tumor-antigen-specific immunization have clearly shown that immune-mediated tumor rejection requires more than simple T cell-target cell interactions. In vivo generation of tumor-specific T cells is one of a series of steps necessary for the induction of clinically relevant immune responses. In recent years, high-throughput functional genomics exposed the complexity of tumor immune biology, which underlies the kaleidoscopic array of variables associated with cancer instability and immunogenetic variability in humans. In the quest to understand immune rejection, hypothesis-driven approaches have failed to take into account the intricacy of human pathology by relying mostly on hypotheses derived from experimental models rather than direct clinical observation. Future investigations should reframe scientific thinking when applied to humans, utilizing descriptive tools to generate novel hypotheses relevant to human disease.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Heidi Hörig
- Department of Surgery, Division of Surgical Science, Columbia University Medical Center, 639 West 168th Street, Physicians and Surgeons Building 17-508, New York, New York 10032, USA
| | | | | |
Collapse
|
34
|
Marincola FM. A balanced review of the status T cell-based therapy against cancer. J Transl Med 2005; 3:16. [PMID: 15831096 PMCID: PMC1090619 DOI: 10.1186/1479-5876-3-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/14/2005] [Indexed: 11/10/2022] Open
Abstract
A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles.
Collapse
Affiliation(s)
- Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
35
|
Panelli MC, Wang E, Monsurrò V, Jin P, Zavaglia K, Smith K, Ngalame Y, Marincola FM. Vaccination with T cell-defined antigens. Expert Opin Biol Ther 2005; 4:697-707. [PMID: 15155161 DOI: 10.1517/14712598.4.5.697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tumour immunology encompasses a broad array of biological phenomena including interactions between neoplastic cells and the innate and adaptive immune response. Among immune cells, T cells have taken the centre stage because they can be easily demonstrated to specifically recognise autologous cancer cells. As most tumour-associated antigens are intracellular proteins, T cells appear to be the most suitable tool for cancer-specific attack, as antibodies do not cross the cell membrane and the innate immune response lacks the same level of specificity. Finally, the relative ease in which T cells can be educated through antigen-specific immunisation to recognise cancer cells has elevated them to an even higher stature. In this review, it will be argued that T cells represent a unique anticancer agent, characterised by absolute specificity. Although other therapeutic modalities (antibody-based) have been effectively implemented, a comparison of T cell-based approaches with other modalities goes beyond the purposes of this review and will not be included in the discussion. However, it is obvious that the role of the T cell is limited and other components of the immune response (effector mononuclear phagocytes, natural killer cells, cytokines, chemokines, soluble factors), genetic background and tumour heterogeneity are likely to be necessary for the completion of cancer rejection.
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang E, Panelli MC, Marincola FM. Understanding the response to immunotherapy in humans. ACTA ACUST UNITED AC 2005; 27:105-17. [PMID: 15666150 DOI: 10.1007/s00281-004-0198-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 12/15/2004] [Indexed: 01/08/2023]
Abstract
Whether the efforts of the last decade aimed at the development of vaccines against tumor-specific antigens encountered success or failure is a matter of expectations. On the bright side, we could optimistically observe that anti-cancer-vaccines stand as an outstanding example of the successful implementation of modern biotechnology tools for the development of biologically sound therapeutics. In particular, vaccines against melanoma (the prototype model of tumor immunology in humans) can reproducibly induce cytotoxic T cell (CTL) responses exquisitely specific for cancer cells. This achievement trespasses the specificity of any other anti-cancer therapy. The skeptics, on the other end, might point out that immunization only rarely leads to cancer regression, labeling, therefore, this approach is ineffective. In our opinion this judgment stems from the naïve expectation that CTL induction is sufficient for an effective immune response. Here we propose that more needs to be understood about the mechanisms required for the induction of a therapeutically relevant immune response in humans. In particular, we will discuss the variables related to cancer heterogeneity, the weight of individual patients' polymorphism(s), the role of the T cell activation and differentiation and, finally, the complex relationship between immune and cancer cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1184, USA
| | | | | |
Collapse
|
37
|
Wang E, Panelli MC, Zavaglia K, Mandruzzato S, Hu N, Taylor PR, Seliger B, Zanovello P, Freedman RS, Marincola FM. Melanoma-restricted genes. J Transl Med 2004; 2:34. [PMID: 15488140 PMCID: PMC527872 DOI: 10.1186/1479-5876-2-34] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/15/2004] [Indexed: 11/10/2022] Open
Abstract
Human metastatic cutaneous melanoma has gained a well deserved reputation for its immune responsiveness. The reason(s) remain(s) unknown. We attempted previously to characterize several variables that may affect the relationship between tumor and host immune cells but, taken one at the time, none yielded a convincing explanation. With explorative purposes, high-throughput technology was applied here to portray transcriptional characteristics unique to metastatic cutaneous melanoma that may or may not be relevant to its immunogenic potential. Several functional signatures could be identified descriptive of immune or other biological functions. In addition, the transcriptional profile of metastatic melanoma was compared with that of primary renal cell cancers (RCC) identifying several genes co-coordinately expressed by the two tumor types. Since RCC is another immune responsive tumor, commonalities between RCC and melanoma may help untangle the enigma of their potential immune responsiveness. This purely descriptive study provides, therefore, a map for the investigation of metastatic melanoma in future clinical trials and at the same time may invite consideration of novel therapeutic targets.
Collapse
Affiliation(s)
- Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Katia Zavaglia
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Susanna Mandruzzato
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
| | - Nan Hu
- Cancer Prevention Studies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phil R Taylor
- Cancer Prevention Studies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| | - Paola Zanovello
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
| | - Ralph S Freedman
- Department of Gynecologic Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
38
|
Panelli MC, Wang E, Monsurrò V, Jin P, Zavaglia K, Smith K, Ngalame Y, Marincola FM. Overview of melanoma vaccines and promising approaches. Curr Oncol Rep 2004; 6:414-20. [PMID: 15291987 DOI: 10.1007/s11912-004-0069-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is difficult to envision anything better than melanoma vaccines to exemplify the effectiveness of modern biotechnology in developing biologically rational therapeutics. Melanoma vaccines can reproducibly induce cytotoxic T lymphocyte (CTL) responses better than any other anticancer therapy. Anticancer vaccines have been labeled by some as ineffective for the simple reason that they only rarely lead to cancer regression. This oxymoron stems from the naïve expectation that CTLs are all that is needed to reject cancer. Little is known about requirements for CTL localization and effector function within the tumor microenvironment. In the future, more attention should be given to events downstream of immunization (afferent arm of immune response) to identify combination therapies likely to facilitate localization and activation of CTL at the receiving end (efferent arm).
Collapse
Affiliation(s)
- Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bldg 10, R-1C711, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Marincola FM, Ferrone S. Immunotherapy of melanoma: the good news, the bad ones and what to do next. Semin Cancer Biol 2004; 13:387-9. [PMID: 15001156 DOI: 10.1016/j.semcancer.2003.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Wang E, Falus A. Changing paradigm through a genome-based approach to clinical and basic immunology. J Transl Med 2004; 2:2. [PMID: 14728728 PMCID: PMC331423 DOI: 10.1186/1479-5876-2-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 01/17/2004] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ena Wang
- Division of Immunogenetics, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - András Falus
- Department of Genetics, Cell and Immunobiology; Sammelweis Medical University, 4 Nagyvarad ter; H-1089 Budapest Hungary
| |
Collapse
|