1
|
Morales J, Quintero Plancarte G, Hua L. Higher frequency of homologous chromosome pairing in human adult aortic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643486. [PMID: 40166155 PMCID: PMC11956967 DOI: 10.1101/2025.03.15.643486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
During mitosis, pairing of homologous chromosomes can be detrimental and has been correlated with gene misregulation, chromosomal aberrations, and various pathological diseases. We previously demonstrated that homologous chromosomes are spatially segregated, or antipaired, in neonatal human endothelial cells at metaphase/anaphase, which may help prevent abnormal recombination. However, it is unclear if this antipairing persists in adult endothelial cells. To test whether the antipairing, or one homolog per nuclear hemisphere motif, is conserved in adult endothelial cells, we examined human aortic endothelial cells at metaphase. Using ImmunoFISH and high-resolution confocal microscopy to visualize the chromosomes and centrosomes, we found that small homologous chromosomes 13, 15, 17, 19, 21, 22, and the sex chromosomes, XY, exhibit a loss of spatial segregation in human adult aortic endothelial cells. In contrast, fewer adult endothelial cells showed a loss of segregation for the larger chromosomes 1, 4, and XX, suggesting a gradual decline in the fidelity of spatial segregation of homologous chromosomes. Notably, we observed a higher frequency of abnormal pairing in both small and large chromosomes in adult aortic endothelial cells as compared to neonatal umbilical vein endothelial cells. These findings suggest that mechanisms governing chromosome antipairing may decline with aortic endothelial cell age, leading to increased susceptibility to abnormal pairing and cardiovascular disease.
Collapse
Affiliation(s)
- Jemery Morales
- Biology Department, Sonoma State University, Rohnert Park, CA 94928
| | | | - Lisa Hua
- Biology Department, Sonoma State University, Rohnert Park, CA 94928
| |
Collapse
|
2
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Hikmat WM, Sievers A, Hausmann M, Hildenbrand G. Peculiar k-mer Spectra Are Correlated with 3D Contact Frequencies and Breakpoint Regions in the Human Genome. Genes (Basel) 2024; 15:1247. [PMID: 39457371 PMCID: PMC11506876 DOI: 10.3390/genes15101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the entirety of all molecules available in the cell nucleus, a general question remains open as to what extent chromatin organization might additionally be predetermined by the DNA sequence and, if so, if there are characteristic differences that distinguish typical regions involved in dysfunction-related aberrations from normal ones, since typical DNA breakpoint regions involved in disease-related chromosome aberrations are not randomly distributed along the DNA sequence. METHODS Highly conserved k-mer patterns in intronic and intergenic regions have been reported in eukaryotic genomes. In this article, we search and analyze regions deviating from average spectra (ReDFAS) of k-mer word frequencies in the human genome. This includes all assembled regions, e.g., telomeric, centromeric, genic as well as intergenic regions. RESULTS A positive correlation between k-mer spectra and 3D contact frequencies, obtained exemplarily from given Hi-C datasets, has been found indicating a relation of ReDFAS to chromatin organization and interactions. We also searched and found correlations of known functional annotations, e.g., genes correlating with ReDFAS. Selected regions known to contain typical breakpoints on chromosomes 9 and 5 that are involved in cancer-related chromosomal aberrations appear to be enriched in ReDFAS. Since transposable elements like ALUs are often assigned as major players in 3D genome organization, we also studied their impact on our examples but could not find a correlation between ALU regions and breakpoints comparable to ReDFAS. CONCLUSIONS Our findings might show that ReDFAS are associated with instable regions of the genome and regions with many chromatin contacts which is in line with current research indicating that chromatin loop anchor points lead to genomic instability.
Collapse
Affiliation(s)
- Wisam Mohammed Hikmat
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Faculty of Engineering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
4
|
Hou Z, Yu T, Yi Q, Du Y, Zhou L, Zhao Y, Wu Y, Wu L, Wang T, Bian P. High-complexity of DNA double-strand breaks is key for alternative end-joining choice. Commun Biol 2024; 7:936. [PMID: 39095441 PMCID: PMC11297215 DOI: 10.1038/s42003-024-06640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The repair of DNA double-strand breaks (DSBs) through alternative non-homologous end-joining (alt-NHEJ) pathway significantly contributes to genetic instability. However, the mechanism governing alt-NHEJ pathway choice, particularly its association with DSB complexity, remains elusive due to the absence of a suitable reporter system. In this study, we established a unique Escherichia coli reporter system for detecting complex DSB-initiated alternative end-joining (A-EJ), an alt-NHEJ-like pathway. By utilizing various types of ionizing radiation to generate DSBs with varying degrees of complexity, we discovered that high complexity of DSBs might be a determinant for A-EJ choice. To facilitate efficient repair of high-complexity DSBs, A-EJ employs distinct molecular patterns such as longer micro-homologous junctions and non-templated nucleotide addition. Furthermore, the A-EJ choice is modulated by the degree of homology near DSB loci, competing with homologous recombination machinery. These findings further enhance the understanding of A-EJ/alt-NHEJ pathway choice.
Collapse
Affiliation(s)
- Zhiyang Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Tianxiang Yu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Po Bian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Amoiridis M, Verigos J, Meaburn K, Gittens WH, Ye T, Neale MJ, Soutoglou E. Inhibition of topoisomerase 2 catalytic activity impacts the integrity of heterochromatin and repetitive DNA and leads to interlinks between clustered repeats. Nat Commun 2024; 15:5727. [PMID: 38977669 PMCID: PMC11231352 DOI: 10.1038/s41467-024-49816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.
Collapse
Affiliation(s)
- Michalis Amoiridis
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - John Verigos
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Karen Meaburn
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - William H Gittens
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK.
| |
Collapse
|
6
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
7
|
Zhang L, Xu M, Zhang W, Zhu C, Cui Z, Fu H, Ma Y, Huang S, Cui J, Liang S, Huang L, Wang H. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type. Cell Mol Biol Lett 2023; 28:1. [PMID: 36609218 PMCID: PMC9825046 DOI: 10.1186/s11658-022-00409-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spatial chromatin structure is intricately linked with somatic aberrations, and somatic mutations of various cancer-related genes, termed co-mutations (CoMuts), occur in certain patterns during cancer initiation and progression. The functional mechanisms underlying these genetic events remain largely unclear in thyroid cancer (TC). With discrepant differentiation, papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) differ greatly in characteristics and prognosis. We aimed to reveal the spatial gene alterations and regulations between the two TC subtypes. METHODS We systematically investigated and compared the spatial co-mutations between ATC (8305C), PTC (BCPAP and TPC-1), and normal thyroid cells (Nthy-ori-3-1). We constructed a framework integrating whole-genome sequencing (WGS), high-throughput chromosome conformation capture (Hi-C), and transcriptome sequencing, to systematically detect the associations between the somatic co-mutations of cancer-related genes, structural variations (SVs), copy number variations (CNVs), and high-order chromatin conformation. RESULTS Spatial co-mutation hotspots were enriched around topologically associating domains (TADs) in TC. A common set of 227 boundaries were identified in both ATC and PTC, with significant overlaps between them. The spatial proximities of the co-mutated gene pairs in the two TC types were significantly greater than in the gene-level and overall backgrounds, and ATC cells had higher TAD contact frequency with CoMuts > 10 compared with PTC cells. Compared with normal thyroid cells, in ATC the number of the created novel three-dimensional chromatin structural domains increased by 10%, and the number of shifted TADs decreased by 7%. We found five TAD blocks with CoMut genes/events specific to ATC with certain mutations in genes including MAST-NSUN4, AM129B/TRUB2, COL5A1/PPP1R26, PPP1R26/GPSM1/CCDC183, and PRAC2/DLX4. For the majority of ATC and PTC cells, the HOXA10 and HIF2α signals close to the transcription start sites of CoMut genes within TADs were significantly stronger than those at the background. CNV breakpoints significantly overlapped with TAD boundaries in both TC subtypes. ATCs had more CNV losses overlapping with TAD boundaries, and noncoding SVs involved in intrachromosomal SVs, amplified inversions, and tandem duplication differed between ATC and PTC. TADs with short range were more abundant in ATC than PTC. More switches of A/B compartment types existed in ATC cells compared with PTC. Gene expression was significantly synchronized, and orchestrated by complex epigenetics and regulatory elements. CONCLUSION Chromatin interactions and gene alterations and regulations are largely heterogeneous in TC. CNVs and complex SVs may function in the TC genome by interplaying with TADs, and are largely different between ATC and PTC. Complexity of TC genomes, which are highly organized by 3D genome-wide interactions mediating mutational and structural variations and gene activation, may have been largely underappreciated. Our comprehensive analysis may provide key evidence and targets for more customized diagnosis and treatment of TC.
Collapse
Affiliation(s)
- Linlin Zhang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Miaomiao Xu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Wanchun Zhang
- grid.470966.aDepartment of Nuclear Medicine, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences), Taiyuan, 03003 China
| | - Chuanying Zhu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092 China
| | - Zhilei Cui
- grid.412987.10000 0004 0630 1330Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Hongliang Fu
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Yufei Ma
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Shuo Huang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Jian Cui
- BioGenius Bioinformatics Institute, Shanghai, 200050 People’s Republic of China
| | - Sheng Liang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Lei Huang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hui Wang
- grid.412987.10000 0004 0630 1330Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| |
Collapse
|
8
|
Neguembor MV, Arcon JP, Buitrago D, Lema R, Walther J, Garate X, Martin L, Romero P, AlHaj Abed J, Gut M, Blanc J, Lakadamyali M, Wu CT, Brun Heath I, Orozco M, Dans PD, Cosma MP. MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution. Nat Struct Mol Biol 2022; 29:1011-1023. [PMID: 36220894 PMCID: PMC9627188 DOI: 10.1038/s41594-022-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
The linear sequence of DNA provides invaluable information about genes and their regulatory elements along chromosomes. However, to fully understand gene function and regulation, we need to dissect how genes physically fold in the three-dimensional nuclear space. Here we describe immuno-OligoSTORM, an imaging strategy that reveals the distribution of nucleosomes within specific genes in super-resolution, through the simultaneous visualization of DNA and histones. We combine immuno-OligoSTORM with restraint-based and coarse-grained modeling approaches to integrate super-resolution imaging data with Hi-C contact frequencies and deconvoluted micrococcal nuclease-sequencing information. The resulting method, called Modeling immuno-OligoSTORM, allows quantitative modeling of genes with nucleosome resolution and provides information about chromatin accessibility for regulatory factors, such as RNA polymerase II. With Modeling immuno-OligoSTORM, we explore intercellular variability, transcriptional-dependent gene conformation, and folding of housekeeping and pluripotency-related genes in human pluripotent and differentiated cells, thereby obtaining the highest degree of data integration achieved so far to our knowledge.
Collapse
Affiliation(s)
- Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Juan Pablo Arcon
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Departamento de Física y Matemáticas, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Rafael Lema
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jürgen Walther
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ximena Garate
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura Martin
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo Romero
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Isabelle Brun Heath
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Faculty of Biology, University of Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Pablo D Dans
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay.
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Xing Z, Mai H, Liu X, Fu X, Zhang X, Xie L, Chen Y, Shlien A, Wen F. Single-cell diploid Hi-C reveals the role of spatial aggregations in complex rearrangements and KMT2A fusions in leukemia. Genome Biol 2022; 23:173. [PMID: 35945623 PMCID: PMC9361544 DOI: 10.1186/s13059-022-02740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simple translocations and complex rearrangements are formed through illegitimate ligations of double-strand breaks of fusion partners and lead to generation of oncogenic fusion genes that affect cellular function. The contact first hypothesis states that fusion partners tend to colocalize prior to fusion in normal cells. Here we test this hypothesis at the single-cell level and explore the underlying mechanism. RESULTS By analyzing published single-cell diploid Hi-C datasets, we find partner genes fused in leukemia exhibit smaller spatial distances than those fused in solid tumor and control gene pairs. Intriguingly, multiple partners tend to colocalize with KMT2A in the same cell. 3D genome architecture has little association with lineage decision of KMT2A fusion types in leukemia. Besides simple translocations, complex rearrangement-related KMT2A fusion genes (CRGs) also show closer proximity and belong to a genome-wide mutual proximity network. We find CRGs are co-expressed, co-localized, and enriched in the targets of the transcriptional factor RUNX1, suggesting they may be involved in RUNX1-mediated transcription factories. Knockdown of RUNX1 leads to significantly fewer contacts among CRGs. We also find CRGs are enriched in active transcriptional regions and loop anchors, and exhibit high levels of TOP2-mediated DNA breakages. Inhibition of transcription leads to reduced DNA breakages of CRGs. CONCLUSIONS Our results demonstrate KMT2A partners and CRGs may form dynamic and multipartite spatial clusters in individual cells that may be involved in RUNX1-mediated transcription factories, wherein massive DNA damages and illegitimate ligations of genes may occur, leading to complex rearrangements and KMT2A fusions in leukemia.
Collapse
Affiliation(s)
- Zhihao Xing
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Huirong Mai
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaorong Liu
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoying Fu
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xingliang Zhang
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Lichun Xie
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yunsheng Chen
- Clinical Laboratory & Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
11
|
Fabian-Morales E, Vallejo-Escamilla D, Gudiño A, Rodríguez A, González-Barrios R, Rodríguez Torres YL, Castro Hernández C, de la Torre-Luján AH, Oliva-Rico DA, Ornelas Guzmán EC, López Saavedra A, Frias S, Herrera LA. Large-scale topological disruption of chromosome territories 9 and 22 is associated with nonresponse to treatment in CML. Int J Cancer 2021; 150:1455-1470. [PMID: 34913480 PMCID: PMC9303775 DOI: 10.1002/ijc.33903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/07/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm defined by the presence of t(9;22) translocation whose origin has been associated with the tridimensional genome organization. This rearrangement leads to the fusion of BCR and ABL1 genes giving rise to a chimeric protein with constitutive kinase activity. Imatinib, a tyrosine kinase inhibitor (TKI), is used as a first‐line treatment for CML, though ~40% of CML patients do not respond. Here, using structured illumination microscopy (SIM) and 3D reconstruction, we studied the 3D organization patterns of the ABL1 and BCR genes, and their chromosome territories (CTs) CT9 and CT22, in CD34+ cells from CML patients that responded or not to TKI. We found that TKI resistance in CML is associated with high levels of structural disruption of CT9 and CT22 in CD34+ cells, increased CT volumes (especially for CT22), intermingling between CT9 and CT22, and an open‐chromatin epigenetic mark in CT22. Altogether our results suggest that large‐scale disruption of CT9 and CT22 correlates with the clinical response of CML patients, which could be translated into a potential prognostic marker of response to treatment in this disease and provide novel insights into the mechanisms underlying resistance to TKI in CML.
Collapse
Affiliation(s)
- Eunice Fabian-Morales
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | - David Vallejo-Escamilla
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | - Adriana Gudiño
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico.,Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | - Yameli L Rodríguez Torres
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Clementina Castro Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | | | - Diego A Oliva-Rico
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | - Erandhi C Ornelas Guzmán
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alejandro López Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología (INCan), Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico
| | - Sara Frias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico.,Laboratorio de Citogenética, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
12
|
Chromosomal Translocations in NK-Cell Lymphomas Originate from Inter-Chromosomal Contacts of Active rDNA Clusters Possessing Hot Spots of DSBs. Cancers (Basel) 2021; 13:cancers13153889. [PMID: 34359791 PMCID: PMC8345467 DOI: 10.3390/cancers13153889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There are nine DSB hot spots located in the non-transcribed spacer of human rDNA units. Circular chromosome conformation capture data indicate that the rDNA clusters often shape contact with a specific set of chromosomal regions containing genes controlling differentiation and cancer, and often possessing the DSB hot spots. The data suggest a mechanism for rDNA-mediated translocation, and some of them could lead to tumorigenesis. Here, we searched for translocations in which rDNA clusters are involved. WGS data of normal T cells and NK-cell lymphomas from the same individuals were used. We revealed numerous translocations in which rDNA units are involved. The sites of these translocations in normal T cells and in the lymphomas were mostly different, but occurred at about the same frequency in both cell types. We conclude that oncogenic translocations lead to dysregulation of a specific set of genes controlling development. Abstract Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer. There are nine hot spots of DSBs (denoted Pleiades) in human rDNA units that are located exclusively inside the intergenic spacer (IGS). Profiles of Pleiades coincide with the profiles of γ-H2AX, suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. Circular chromosome conformation capture (4C) data indicate that the rDNA units often make contact with a specific set of chromosomal regions containing genes that are involved in differentiation and cancer. Interestingly, these regions also often possess hot spots of DSBs that provide the potential for Robertsonian and oncogenic translocations. In this study, we searched for translocations in which rDNA clusters are involved. The whole genome sequence (WGS) data of normal T cells and NK-cell lymphomas from the same individuals revealed numerous translocations in which Pleiades were involved. The sites of these translocations in normal T cells and in the lymphomas were mostly different, although there were also some common sites. The genes at translocations in normal cells and in lymphomas are associated with predominantly non-overlapping lists of genes that are depleted with silenced genes. Our data indicate that rDNA-mediated translocations occur at about the same frequency in the normal T cells and NK-lymphoma cells but differ at particular sites that correspond to open chromatin. We conclude that oncogenic translocations lead to dysregulation of a specific set of genes controlling development. In normal T cells and in NK cells, there are hot spots of translocations at sites possessing strong H3K27ac marks. The data indicate that Pleiades are involved in rDNA-mediated translocation.
Collapse
|
13
|
Reid P, Staudacher AH, Marcu LG, Olver I, Moghaddasi L, Brown MP, Bezak E. Characteristic differences in radiation-induced DNA damage response in human papillomavirus-negative and human papillomavirus-positive head and neck cancers with accumulation of fractional radiation dose. Head Neck 2021; 43:3086-3096. [PMID: 34235809 DOI: 10.1002/hed.26802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Superior treatment responses by patients with human papillomavirus (HPV) positive head and neck squamous cell carcinoma (HNSCC), compared to patients with HNSCC from other causes, drive biomarker research to optimize treatment. Most HNSCC patients receive radiation therapy delivered as a fractionated course. Changing HPV status in HNSCC from a positive prognostic marker to a predictive one requires biomarkers that capture cellular radiation response to cumulative dose. METHODS Nuclear enlargement, γH2AX expression and micronuclei count, were studied in six HNSCC cell lines after 4 Gy fractionated X-irradiation. RESULTS All HNSCC cell lines displayed altered cellular responses, indicating increasing inability to repair radiation damage with subsequent radiation fractions. Increases in nuclear area were significantly greater among HPV positive cell lines (207% and 67% for the HPV positive and HPV negative groups, respectively). CONCLUSIONS A different character of DNA repair dysfunction in the HPV positive group suggests greater chromosomal translocation with accumulated radiation dose.
Collapse
Affiliation(s)
- Paul Reid
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Loredana G Marcu
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Faculty of Science, University of Oradea, Oradea, Romania
| | - Ian Olver
- School of Psychology, University of Adelaide, Adelaide, South Australia, Australia
| | - Leyla Moghaddasi
- Genesis Care, Adelaide Radiotherapy Centre, Adelaide, South Australia, Australia.,Department of Physics, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia.,Department of Physics, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
15
|
Shi Y, Guo Z, Su X, Meng L, Zhang M, Sun J, Wu C, Zheng M, Shang X, Zou X, Cheng W, Yu Y, Cai Y, Zhang C, Cai W, Da LT, He G, Han ZG. DeepAntigen: a novel method for neoantigen prioritization via 3D genome and deep sparse learning. Bioinformatics 2020; 36:4894-4901. [PMID: 32592462 DOI: 10.1093/bioinformatics/btaa596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The mutations of cancers can encode the seeds of their own destruction, in the form of T-cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging, however, to accurately prioritize the potential neoantigen candidates according to their ability of activating the T-cell immunoresponse, especially when the somatic mutations are abundant. Although a few neoantigen prioritization methods have been proposed to address this issue, advanced machine learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome which may provide key information for inferring neoantigens' immunogenicity. RESULTS In this study, we discovered that DNA loci of the immunopositive and immunonegative MHC-I neoantigens have distinct spatial distribution patterns across the genome. We therefore used the 3D genome information along with an ensemble pMHC-I coding strategy, and developed a group feature selection-based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing sequence-based approaches. We also developed a webserver named deepAntigen (http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning methods. We believe that this work provides a new perspective toward more accurate neoantigen prediction which eventually contribute to personalized cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zehua Guo
- Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luming Meng
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mingxuan Zhang
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093-0112, USA
| | - Jing Sun
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chao Wu
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minhua Zheng
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xueyin Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wangqiu Cheng
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaoliang Yu
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyi Zhang
- School of Computer Science, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Weidong Cai
- School of Computer Science, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang He
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'Brien CE, Butler G, Sanyal A, Sanyal K. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 2020; 9:e58556. [PMID: 32469306 PMCID: PMC7292649 DOI: 10.7554/elife.58556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radha Mishra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Caoimhe E O'Brien
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Geraldine Butler
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
17
|
Meiotic Chromosome Contacts as a Plausible Prelude for Robertsonian Translocations. Genes (Basel) 2020; 11:genes11040386. [PMID: 32252399 PMCID: PMC7230836 DOI: 10.3390/genes11040386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.
Collapse
|
18
|
Che L, Alavattam KG, Stambrook PJ, Namekawa SH, Du C. BRUCE preserves genomic stability in the male germline of mice. Cell Death Differ 2020; 27:2402-2416. [PMID: 32139899 DOI: 10.1038/s41418-020-0513-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
BRUCE is a DNA damage response protein that promotes the activation of ATM and ATR for homologous recombination (HR) repair in somatic cells, making BRUCE a key protector of genomic stability. Preservation of genomic stability in the germline is essential for the maintenance of species. Here, we show that BRUCE is required for the preservation of genomic stability in the male germline of mice, specifically in spermatogonia and spermatocytes. Conditional knockout of Bruce in the male germline leads to profound defects in spermatogenesis, including impaired maintenance of spermatogonia and increased chromosomal anomalies during meiosis. Bruce-deficient pachytene spermatocytes frequently displayed persistent DNA breaks. Homologous synapsis was impaired, and nonhomologous associations and rearrangements were apparent in up to 10% of Bruce-deficient spermatocytes. Genomic instability was apparent in the form of chromosomal fragmentation, translocations, and synapsed quadrivalents and hexavalents. In addition, unsynapsed regions of rearranged autosomes were devoid of ATM and ATR signaling, suggesting an impairment in the ATM- and ATR-dependent DNA damage response of meiotic HR. Taken together, our study unveils crucial functions for BRUCE in the maintenance of spermatogonia and in the regulation of meiotic HR-functions that preserve the genomic stability of the male germline.
Collapse
Affiliation(s)
- Lixiao Che
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kris G Alavattam
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Satoshi H Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chunying Du
- Department of Cell and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
19
|
Sember A, de Oliveira EA, Ráb P, Bertollo LAC, de Freitas NL, Viana PF, Yano CF, Hatanaka T, Marinho MMF, de Moraes RLR, Feldberg E, Cioffi MDB. Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective. Genes (Basel) 2020; 11:genes11010091. [PMID: 31941136 PMCID: PMC7017317 DOI: 10.3390/genes11010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Lebiasinidae is a Neotropical freshwater family widely distributed throughout South and Central America. Due to their often very small body size, Lebiasinidae species are cytogenetically challenging and hence largely underexplored. However, the available but limited karyotype data already suggested a high interspecific variability in the diploid chromosome number (2n), which is pronounced in the speciose genus Nannostomus, a popular taxon in ornamental fish trade due to its remarkable body coloration. Aiming to more deeply examine the karyotype diversification in Nannostomus, we combined conventional cytogenetics (Giemsa-staining and C-banding) with the chromosomal mapping of tandemly repeated 5S and 18S rDNA clusters and with interspecific comparative genomic hybridization (CGH) to investigate genomes of four representative Nannostomus species: N. beckfordi, N. eques, N. marginatus, and N. unifasciatus. Our data showed a remarkable variability in 2n, ranging from 2n = 22 in N. unifasciatus (karyotype composed exclusively of metacentrics/submetacentrics) to 2n = 44 in N. beckfordi (karyotype composed entirely of acrocentrics). On the other hand, patterns of 18S and 5S rDNA distribution in the analyzed karyotypes remained rather conservative, with only two 18S and two to four 5S rDNA sites. In view of the mostly unchanged number of chromosome arms (FN = 44) in all but one species (N. eques; FN = 36), and with respect to the current phylogenetic hypothesis, we propose Robertsonian translocations to be a significant contributor to the karyotype differentiation in (at least herein studied) Nannostomus species. Interspecific comparative genome hybridization (CGH) using whole genomic DNAs mapped against the chromosome background of N. beckfordi found a moderate divergence in the repetitive DNA content among the species’ genomes. Collectively, our data suggest that the karyotype differentiation in Nannostomus has been largely driven by major structural rearrangements, accompanied by only low to moderate dynamics of repetitive DNA at the sub-chromosomal level. Possible mechanisms and factors behind the elevated tolerance to such a rate of karyotype change in Nannostomus are discussed.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Secretaria de Estado de Educação de Mato Grosso–SEDUC-MT, Cuiabá 78049-909, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Natália Lourenço de Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Manoela Maria Ferreira Marinho
- Universidade Federal da Paraíba (UFPB), Departamento de Sistemática e Ecologia (DSE), Laboratório de Sistemática e Morfologia de Peixes, João Pessoa 58051-090, Brazil;
| | - Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Correspondence: ; Tel.: +55-16-3351-8431; Fax: +55-16-3351-8377
| |
Collapse
|
20
|
Rosin LF, Crocker O, Isenhart RL, Nguyen SC, Xu Z, Joyce EF. Chromosome territory formation attenuates the translocation potential of cells. eLife 2019; 8:49553. [PMID: 31682226 PMCID: PMC6855801 DOI: 10.7554/elife.49553] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
The formation and spatial arrangement of chromosome territories (CTs) in interphase has been posited to influence the outcome and frequency of genomic translocations. This is supported by correlations between the frequency of inter-chromosomal contacts and translocation events in myriad systems. However, it remains unclear if CT formation itself influences the translocation potential of cells. We address this question in Drosophila cells by modulating the level of Condensin II, which regulates CT organization. Using whole-chromosome Oligopaints to identify genomic rearrangements, we find that increased contact frequencies between chromosomes due to Condensin II knockdown leads to an increased propensity to form translocations following DNA damage. Moreover, Condensin II over-expression is sufficient to drive spatial separation of CTs and attenuate the translocation potential of cells. Together, these results provide the first causal evidence that proper CT formation can protect the genome from potentially deleterious translocations in the presence of DNA damage.
Collapse
Affiliation(s)
- Leah F Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Olivia Crocker
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Randi L Isenhart
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Zhuxuan Xu
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
21
|
Swenson KM, Blanchette M. Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics 2019; 35:i117-i126. [PMID: 31510664 PMCID: PMC6612848 DOI: 10.1093/bioinformatics/btz343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Motivation Genome rearrangements drastically change gene order along great stretches of a chromosome. There has been initial evidence that these apparently non-local events in the 1D sense may have breakpoints that are close in the 3D sense. We harness the power of the Double Cut and Join model of genome rearrangement, along with Hi-C chromosome conformation capture data to test this hypothesis between human and mouse. Results We devise novel statistical tests that show that indeed, rearrangement scenarios that transform the human into the mouse gene order are enriched for pairs of breakpoints that have frequent chromosome interactions. This is observed for both intra-chromosomal breakpoint pairs, as well as for inter-chromosomal pairs. For intra-chromosomal rearrangements, the enrichment exists from close (<20 Mb) to very distant (100 Mb) pairs. Further, the pattern exists across multiple cell lines in Hi-C data produced by different laboratories and at different stages of the cell cycle. We show that similarities in the contact frequencies between these many experiments contribute to the enrichment. We conclude that either (i) rearrangements usually involve breakpoints that are spatially close or (ii) there is selection against rearrangements that act on spatially distant breakpoints. Availability and implementation Our pipeline is freely available at https://bitbucket.org/thekswenson/locality. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krister M Swenson
- Laboratoire d'Informatique, de Robotique, et de Microelectronique de Montpellier (LIRMM), Université Montpellier, Montpellier, France.,Centre Nationale de la Recherche Scientifique (CNRS), France
| | | |
Collapse
|
22
|
Clements CS, Bikkul MU, Ofosu W, Eskiw C, Tree D, Makarov E, Kill IR, Bridger JM. Presence and distribution of progerin in HGPS cells is ameliorated by drugs that impact on the mevalonate and mTOR pathways. Biogerontology 2019; 20:337-358. [PMID: 31041622 PMCID: PMC6535420 DOI: 10.1007/s10522-019-09807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.
Collapse
Affiliation(s)
- Craig S Clements
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Mehmet U Bikkul
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Wendy Ofosu
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.,Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Christopher Eskiw
- Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7B 5A8, Canada
| | - David Tree
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Evgeny Makarov
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Ian R Kill
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Ageing Studies Theme, Institute for Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK. .,Genome Engineering and Maintenance Network, Ageing Studies Theme, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
23
|
Du Q, Bert SA, Armstrong NJ, Caldon CE, Song JZ, Nair SS, Gould CM, Luu PL, Peters T, Khoury A, Qu W, Zotenko E, Stirzaker C, Clark SJ. Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nat Commun 2019; 10:416. [PMID: 30679435 PMCID: PMC6345877 DOI: 10.1038/s41467-019-08302-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/27/2018] [Indexed: 11/08/2022] Open
Abstract
DNA replication timing is known to facilitate the establishment of the epigenome, however, the intimate connection between replication timing and changes to the genome and epigenome in cancer remain largely uncharacterised. Here, we perform Repli-Seq and integrated epigenome analyses and demonstrate that genomic regions that undergo long-range epigenetic deregulation in prostate cancer also show concordant differences in replication timing. A subset of altered replication timing domains are conserved across cancers from different tissue origins. Notably, late-replicating regions in cancer cells display a loss of DNA methylation, and a switch in heterochromatin features from H3K9me3-marked constitutive to H3K27me3-marked facultative heterochromatin. Finally, analysis of 214 prostate and 35 breast cancer genomes reveal that late-replicating regions are prone to cis and early-replication to trans chromosomal rearrangements. Together, our data suggests that the nature of chromosomal rearrangement in cancer is related to the spatial and temporal positioning and altered epigenetic states of early-replicating compared to late-replicating loci.
Collapse
Affiliation(s)
- Qian Du
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Saul A Bert
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, School of Engineering and Information Technology, Murdoch University, Perth, 6150, WA, Australia
| | - C Elizabeth Caldon
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
- Replication and Genome Stability, Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Jenny Z Song
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Shalima S Nair
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Timothy Peters
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Amanda Khoury
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Wenjia Qu
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Elena Zotenko
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Clare Stirzaker
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, 2010, NSW, Australia.
| |
Collapse
|
24
|
Balajee AS, Sanders JT, Golloshi R, Shuryak I, McCord RP, Dainiak N. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure. HEALTH PHYSICS 2018; 115:77-89. [PMID: 29787433 DOI: 10.1097/hp.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Higher-order organization of the human genome is well established with chromosomes occupying distinct domains or territories in the interphase nucleus. Spatial organization of chromosome territories in the interphase nucleus occurs in a cell-type-specific manner. Since both stable and unstable aberrations induced by ionizing radiation involve the exchange of material between two or more chromosomes, this study investigated the role of spatial organization of chromosome domains in ionizing-radiation-induced chromosome translocation events. Using multicolor fluorescence in situ hybridization, the study characterized the positioning of each human chromosome relative to its neighborhood territories in the interphase nucleus of lymphocytes and B-lymphoblastoid cells before ionizing radiation and compared this interphase positioning with the spectrum of exchanges observed after ionizing radiation in the metaphase chromosomes. In addition to multicolor fluorescence in situ hybridization, the genome-wide chromosome conformation capture technique (Hi-C) was also performed in mock and x-ray-irradiated human B-lymphoblastoid and fibroblast cells to characterize the interactions among chromosomes and to assess the genome reorganization changes, if any, after ionizing radiation exposure. On average, 35-50% of the total translocations induced by x rays and neutrons correlated with proximity of chromosome territories detected by multicolor fluorescence in situ hybridization in both lymphocytes and lymphoblastoid cells. The translocation rate observed in proximally positioned chromosome territories was consistently higher than distally located territories and was found to be statistically significant (p = 0.01) in human lymphoblastoid cells after x rays. The interchromosome interaction frequencies detected by Hi-C correlate fairly well with ionizing-radiation-induced translocations detected by multicolor fluorescence in situ hybridization, suggesting the importance of chromosome proximity effects in ionizing-radiation-induced chromosomal translocation events.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Dainiak
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| |
Collapse
|
25
|
Steininger A, Ebert G, Becker BV, Assaf C, Möbs M, Schmidt CA, Grabarczyk P, Jensen LR, Przybylski GK, Port M, Kuss AW, Ullmann R. Genome-Wide Analysis of Interchromosomal Interaction Probabilities Reveals Chained Translocations and Overrepresentation of Translocation Breakpoints in Genes in a Cutaneous T-Cell Lymphoma Cell Line. Front Oncol 2018; 8:183. [PMID: 29900125 PMCID: PMC5988852 DOI: 10.3389/fonc.2018.00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
In classical models of tumorigenesis, the accumulation of tumor promoting chromosomal aberrations is described as a gradual process. Next-generation sequencing-based methods have recently revealed complex patterns of chromosomal aberrations, which are beyond explanation by these classical models of karyotypic evolution of tumor genomes. Thus, the term chromothripsis has been introduced to describe a phenomenon, where temporarily and spatially confined genomic instability results in dramatic chromosomal rearrangements limited to segments of one or a few chromosomes. Simultaneously arising and misrepaired DNA double-strand breaks are also the cause of another phenomenon called chromoplexy, which is characterized by the presence of chained translocations and interlinking deletion bridges involving several chromosomes. In this study, we demonstrate the genome-wide identification of chromosomal translocations based on the analysis of translocation-associated changes in spatial proximities of chromosome territories on the example of the cutaneous T-cell lymphoma cell line Se-Ax. We have used alterations of intra- and interchromosomal interaction probabilities as detected by genome-wide chromosome conformation capture (Hi-C) to infer the presence of translocations and to fine-map their breakpoints. The outcome of this analysis was subsequently compared to datasets on DNA copy number alterations and gene expression. The presence of chained translocations within the Se-Ax genome, partly connected by intervening deletion bridges, indicates a role of chromoplexy in the etiology of this cutaneous T-cell lymphoma. Notably, translocation breakpoints were significantly overrepresented in genes, which highlight gene-associated biological processes like transcription or other gene characteristics as a possible cause of the observed complex rearrangements. Given the relevance of chromosomal aberrations for basic and translational research, genome-wide high-resolution analysis of structural chromosomal aberrations will gain increasing importance.
Collapse
Affiliation(s)
- Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Grit Ebert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Benjamin V Becker
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Chalid Assaf
- Department of Dermatology and Venerology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Markus Möbs
- Berlin Institute of Health, Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian A Schmidt
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Clinic for Internal Medicine C, University Medicine Greifswald, Greifswald, Germany
| | - Lars R Jensen
- Human Molecular Genetics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Andreas W Kuss
- Human Molecular Genetics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
26
|
Abstract
CRISPR is becoming an indispensable tool in biological research. Once known as the bacterial immune system against invading viruses, the programmable capacity of the Cas9 enzyme is now revolutionizing diverse fields of medical research, biotechnology, and agriculture. CRISPR-Cas9 is no longer just a gene-editing tool; the application areas of catalytically impaired inactive Cas9, including gene regulation, epigenetic editing, chromatin engineering, and imaging, now exceed the gene-editing functionality of WT Cas9. Here, we will present a brief history of gene-editing tools and describe the wide range of CRISPR-based genome-targeting tools. We will conclude with future directions and the broader impact of CRISPR technologies.
Collapse
Affiliation(s)
- Mazhar Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, 1340 Jefferson Park Ave, Pinn Hall, Rm: 640, Charlottesville, VA, 22902, USA.
| |
Collapse
|
27
|
Sall FB, Germini D, Kovina AP, Ribrag V, Wiels J, Toure AO, Iarovaia OV, Lipinski M, Vassetzky Y. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. BIOCHEMISTRY (MOSCOW) 2018; 83:402-410. [DOI: 10.1134/s0006297918040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Diament A, Tuller T. Tracking the evolution of 3D gene organization demonstrates its connection to phenotypic divergence. Nucleic Acids Res 2017; 45:4330-4343. [PMID: 28369658 PMCID: PMC5416853 DOI: 10.1093/nar/gkx205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that the organization of genes in eukaryotic genomes, and specifically in 3D, is strongly related to gene expression and function and partially conserved between organisms. However, previous studies of 3D genomic organization analyzed each organism independently from others. Here, we propose an approach for unified inter-organismal analysis of gene organization based on a network representation of Hi-C data. We define and detect four classes of spatially co-evolving orthologous modules (SCOMs), i.e. gene families that co-evolve in their 3D organization, based on patterns of divergence and conservation of distances. We demonstrate our methodology on Hi-C data from Saccharomyces cerevisiae and Schizosaccharomyces pombe, and identify, among others, modules relating to RNA splicing machinery and chromatin silencing by small RNA which are central to S. pombe's lifestyle. Our results emphasize the importance of 3D genomic organization in eukaryotes and suggest that the evolutionary mechanisms that shape gene organization affect the organism fitness and phenotypes. The proposed algorithms can be utilized in future studies of genome evolution and comparative analysis of spatial genomic organization in different tissues, conditions and single cells.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Biomedical Engineering Dept., Tel Aviv University, Tel Aviv 6997801, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
30
|
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, Mckinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A. Genome Organization Drives Chromosome Fragility. Cell 2017; 170:507-521.e18. [PMID: 28735753 PMCID: PMC6133249 DOI: 10.1016/j.cell.2017.06.034] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seolkyoung Jung
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Aleksandra Pekowska
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Chen Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Aplan
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Vicente-García C, Villarejo-Balcells B, Irastorza-Azcárate I, Naranjo S, Acemel RD, Tena JJ, Rigby PWJ, Devos DP, Gómez-Skarmeta JL, Carvajal JJ. Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements. Genome Biol 2017; 18:106. [PMID: 28615069 PMCID: PMC5470208 DOI: 10.1186/s13059-017-1225-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. Results We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. Conclusions The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1225-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Barbara Villarejo-Balcells
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Ibai Irastorza-Azcárate
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jose L Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain.
| |
Collapse
|
32
|
Charó NL, Rodríguez Ceschan MI, Galigniana NM, Toneatto J, Piwien-Pilipuk G. Organization of nuclear architecture during adipocyte differentiation. Nucleus 2017; 7:249-69. [PMID: 27416359 DOI: 10.1080/19491034.2016.1197442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered.
Collapse
Affiliation(s)
- Nancy L Charó
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - María I Rodríguez Ceschan
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Natalia M Galigniana
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Judith Toneatto
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Graciela Piwien-Pilipuk
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| |
Collapse
|
33
|
Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 2017; 8:14725. [PMID: 28290446 PMCID: PMC5424063 DOI: 10.1038/ncomms14725] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Imaging chromatin dynamics is crucial to understand genome organization and its role in transcriptional regulation. Recently, the RNA-guidable feature of CRISPR-Cas9 has been utilized for imaging of chromatin within live cells. However, these methods are mostly applicable to highly repetitive regions, whereas imaging regions with low or no repeats remains as a challenge. To address this challenge, we design single-guide RNAs (sgRNAs) integrated with up to 16 MS2 binding motifs to enable robust fluorescent signal amplification. These engineered sgRNAs enable multicolour labelling of low-repeat-containing regions using a single sgRNA and of non-repetitive regions with as few as four unique sgRNAs. We achieve tracking of native chromatin loci throughout the cell cycle and determine differential positioning of transcriptionally active and inactive regions in the nucleus. These results demonstrate the feasibility of our approach to monitor the position and dynamics of both repetitive and non-repetitive genomic regions in live cells.
Collapse
Affiliation(s)
- Peiwu Qin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mahmut Parlak
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Cem Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jigar Bandaria
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ritambhara Singh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Mazhar Adli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
34
|
Seaman L, Chen H, Brown M, Wangsa D, Patterson G, Camps J, Omenn GS, Ried T, Rajapakse I. Nucleome Analysis Reveals Structure-Function Relationships for Colon Cancer. Mol Cancer Res 2017; 15:821-830. [PMID: 28258094 DOI: 10.1158/1541-7786.mcr-16-0374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 10/25/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Chromosomal translocations and aneuploidy are hallmarks of cancer genomes; however, the impact of these aberrations on the nucleome (i.e., nuclear structure and gene expression) is not yet understood. Here, the nucleome of the colorectal cancer cell line HT-29 was analyzed using chromosome conformation capture (Hi-C) to study genome structure, complemented by RNA sequencing (RNA-seq) to determine the consequent changes in genome function. Importantly, translocations and copy number changes were identified at high resolution from Hi-C data and the structure-function relationships present in normal cells were maintained in cancer. In addition, a new copy number-based normalization method for Hi-C data was developed to analyze the effect of chromosomal aberrations on local chromatin structure. The data demonstrate that at the site of translocations, the correlation between chromatin organization and gene expression increases; thus, chromatin accessibility more directly reflects transcription. In addition, the homogeneously staining region of chromosome band 8q24 of HT-29, which includes the MYC oncogene, interacts with various loci throughout the genome and is composed of open chromatin. The methods, described herein, can be applied to the assessment of the nucleome in other cell types with chromosomal aberrations.Implications: Findings show that chromosome conformation capture identifies chromosomal abnormalities at high resolution in cancer cells and that these abnormalities alter the relationship between structure and function. Mol Cancer Res; 15(7); 821-30. ©2017 AACR.
Collapse
Affiliation(s)
- Laura Seaman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Haiming Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Markus Brown
- Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Darawalee Wangsa
- Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoff Patterson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Catalonia, Spain.,Unitat de Biologia Cellular i Genètica Mèdica, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Departments of Internal Medicine and Human Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Thomas Ried
- Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan. .,Department of Mathematics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Xin Y, Zhou J, Ding Q, Chen C, Wu X, Wang X, Wang H, Jiang X. A pericentric inversion of chromosome X disruptingF8and resulting in haemophilia A. J Clin Pathol 2017; 70:656-661. [DOI: 10.1136/jclinpath-2016-204050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/04/2022]
|
36
|
Shi Y, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep 2016; 6:35270. [PMID: 27762310 PMCID: PMC5071887 DOI: 10.1038/srep35270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations of many cancer genes tend to co-occur (termed co-mutations) in certain patterns during tumor initiation and progression. However, the genetic and epigenetic mechanisms that contribute to the co-mutations of these cancer genes have yet to be explored. Here, we systematically investigated the association between the somatic co-mutations of cancer genes and high-order chromatin conformation. Significantly, somatic point co-mutations in protein-coding genes were closely associated with high-order spatial chromatin folding. We propose that these regions be termed Spatial Co-mutation Hotspots (SCHs) and report their occurrence in different cancer types. The conserved mutational signatures and DNA sequences flanking these point co-mutations, as well as CTCF-binding sites, are also enriched within the SCH regions. The genetic alterations that are harboured in the same SCHs tend to disrupt cancer driver genes involved in multiple signalling pathways. The present work demonstrates that high-order spatial chromatin organisation may contribute to the somatic co-mutations of certain cancer genes during tumor development.
Collapse
Affiliation(s)
- Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing-Hao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Bo-Yu Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
37
|
Lahbib-Mansais Y, Barasc H, Marti-Marimon M, Mompart F, Iannuccelli E, Robelin D, Riquet J, Yerle-Bouissou M. Expressed alleles of imprinted IGF2, DLK1 and MEG3 colocalize in 3D-preserved nuclei of porcine fetal cells. BMC Cell Biol 2016; 17:35. [PMID: 27716032 PMCID: PMC5045652 DOI: 10.1186/s12860-016-0113-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
Background To explore the relationship between spatial genome organization and gene expression in the interphase nucleus, we used a genomic imprinting model, which offers parental-specific gene expression. Using 3D FISH in porcine fetal liver cells, we compared the nuclear organization of the two parental alleles (expressed or not) of insulin-like growth factor 2 (IGF2), a paternally imprinted gene located on chromosome 2. We investigated whether its nuclear positioning favors specific locus associations. We also tested whether IGF2 is implicated in long-range chromatin trans-associations as previously shown in the mouse model species for its reciprocal imprinted gene H19. Results We focused on the 3D position of IGF2 alleles, with respect to their individual chromosome 2 territories. The paternally expressed allele was tagged with nascent RNA. There were no significant differences in the position of the two alleles (p = 0.06). To determine long-range chromatin trans-interactions, we chose 12 genes, some of which are known to be imprinted in mammalian model species and belong to a network of imprinted genes (i.e. SLC38A4, DLK1, MEG3, and ZAC1). We screened them and ABCG2, OSBP2, OSBPL1, RPL32, NF1, ZAR1, SEP15, GPC3 for associations with IGF2 in liver cells. All imprinted genes tested showed an association with IGF2. The DLK1/MEG3 locus showed the highest rate of colocalization. This gene association was confirmed by 3D FISH (in 20 % of the nuclei analyzed), revealing also the close proximity of chromosomes 2 and 7 (in 60 % of nuclei). Furthermore, our observations showed that the expressed paternal IGF2 allele is involved in this association. This IGF2-(DLK1/MEG3) association also occurred in a high percentage of fetal muscle cells (36 % of nuclei). Finally, we showed that nascent IGF2, DLK1 and MEG3 RNAs can associate in pairs or in a three-way combination. Conclusion Our results show that trans-associations occur between three imprinted genes IGF2, DLK1 and MEG3 both in fetal liver and muscle cells. All three expressed alleles associated in muscle cells. Our findings suggest that the 3D nuclear organization is linked to the transcriptional state of these genes. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0113-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Harmonie Barasc
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Maria Marti-Marimon
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Eddie Iannuccelli
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | |
Collapse
|
38
|
Abstract
Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.
Collapse
|
39
|
Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell 2016; 162:911-23. [PMID: 26276637 DOI: 10.1016/j.cell.2015.07.035] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
Abstract
Genomes are arranged non-randomly in the 3D space of the cell nucleus. Here, we have developed HIPMap, a high-precision, high-throughput, automated fluorescent in situ hybridization imaging pipeline, for mapping of the spatial location of genome regions at large scale. High-throughput imaging position mapping (HIPMap) enabled an unbiased siRNA screen for factors involved in genome organization in human cells. We identify 50 cellular factors required for proper positioning of a set of functionally diverse genomic loci. Positioning factors include chromatin remodelers, histone modifiers, and nuclear envelope and pore proteins. Components of the replication and post-replication chromatin re-assembly machinery are prominently represented among positioning factors, and timely progression of cells through replication, but not mitosis, is required for correct gene positioning. Our results establish a method for the large-scale mapping of genome locations and have led to the identification of a compendium of cellular factors involved in spatial genome organization.
Collapse
Affiliation(s)
- Sigal Shachar
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ty C Voss
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Zhang CZ, Pellman D. From Mutational Mechanisms in Single Cells to Mutational Patterns in Cancer Genomes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:117-37. [PMID: 26968629 DOI: 10.1101/sqb.2015.80.027623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analysis of mutations in thousands of cancer genomes has revealed many characteristic patterns of mutagenesis. The search for the molecular mechanisms underlying these mutational patterns has not only generated novel biological insight but also led to the development of new experimental strategies to study cell-to-cell variation and genome evolution. In this essay, we discuss recent progress in the study of mutational mechanisms with a particular emphasis on the analysis of mutagenesis at the single-cell level.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142 Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Maharana S, Iyer KV, Jain N, Nagarajan M, Wang Y, Shivashankar GV. Chromosome intermingling-the physical basis of chromosome organization in differentiated cells. Nucleic Acids Res 2016; 44:5148-60. [PMID: 26939888 PMCID: PMC5603959 DOI: 10.1093/nar/gkw131] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/19/2016] [Indexed: 12/16/2022] Open
Abstract
Chromosome territories (CTs) in higher eukaryotes occupy tissue-specific non-random three-dimensional positions in the interphase nucleus. To understand the mechanisms underlying CT organization, we mapped CT position and transcriptional changes in undifferentiated embryonic stem (ES) cells, during early onset of mouse ES cell differentiation and in terminally differentiated NIH3T3 cells. We found chromosome intermingling volume to be a reliable CT surface property, which can be used to define CT organization. Our results show a correlation between the transcriptional activity of chromosomes and heterologous chromosome intermingling volumes during differentiation. Furthermore, these regions were enriched in active RNA polymerase and other histone modifications in the differentiated states. These findings suggest a correlation between the evolution of transcription program in modifying CT architecture in undifferentiated stem cells. This leads to the formation of functional CT surfaces, which then interact to define the three-dimensional CT organization during differentiation.
Collapse
Affiliation(s)
| | - K Venkatesan Iyer
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Nikhil Jain
- Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore
| | - Mallika Nagarajan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yejun Wang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
42
|
Friedman DA, Tait L, Vaughan ATM. Influence of nuclear structure on the formation of radiation-induced lethal lesions. Int J Radiat Biol 2016; 92:229-40. [DOI: 10.3109/09553002.2016.1144941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
44
|
Three-dimensional Genomic Organization of Genes’ Function in Eukaryotes. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, Kies M, Lozano G, Futreal PA, Caulin C, El-Naggar AK. Novel MYBL1 Gene Rearrangements with Recurrent MYBL1-NFIB Fusions in Salivary Adenoid Cystic Carcinomas Lacking t(6;9) Translocations. Clin Cancer Res 2015; 22:725-33. [PMID: 26631609 DOI: 10.1158/1078-0432.ccr-15-2867-t] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is an indolent salivary gland malignancy, characterized by t(6;9) translocations and MYB-NFIB gene fusions in approximately 50% of the tumors. The genetic alterations underlying t(6;9)-negative and t(6;9)-positive/MYB-NFIB fusion-negative ACC remain unknown. To uncover the genetic alterations in ACC lacking the canonical translocation and fusion transcript and identify new abnormalities in translocation positive tumors. EXPERIMENTAL DESIGN We performed whole-genome sequencing in 21 salivary ACCs and conducted targeted molecular analyses in a validation set (81 patients). Microarray gene-expression data were also analyzed to explore the biologic differences between fusion positive and negative tumors. RESULTS We identified a novel MYBL1-NFIB gene fusion as a result of t(8;9) translocation and multiple rearrangements in the MYBL1 gene in 35% of the t(6;9)-negative ACCs. All MYBL1 alterations involved deletion of the C-terminal negative regulatory domain and were associated with high MYBL1 expression. Reciprocal MYB and MYBL1 expression was consistently found in ACCs. In addition, 5'-NFIB fusions that did not involve MYB/MYBL1 genes were identified in a subset of t(6;9)-positive/fusion-negative tumors. We also delineated distinct gene-expression profiles in ACCs associated with the length of the MYB or MYBL1 fusions, suggesting a biologic importance of the C-terminal part of these fusions. CONCLUSIONS Our study defines new molecular subclasses of ACC characterized by MYBL1 rearrangements and 5'-NFIB gene fusions.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pulivarthi H Rao
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merrill Kies
- Department of Thoracic/Head and Neck Medicine Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev Genet 2015; 49:183-211. [DOI: 10.1146/annurev-genet-120213-092228] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitchell L. Leibowitz
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | - Cheng-Zhong Zhang
- Department of Pediatric Oncology,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
| | - David Pellman
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
47
|
The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer. Cell Rep 2015; 13:1855-67. [PMID: 26655901 DOI: 10.1016/j.celrep.2015.10.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/27/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022] Open
Abstract
Mating-type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, whereas MATα cells use HMR. The recombination enhancer (RE) located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating-type-specific and possibly RE-dependent chromosome folding. Here, we use Hi-C, 5C, and live-cell imaging to characterize the conformation of chromosome III in both mating types. We discovered a mating-type-specific conformational difference in the left arm. Deletion of a 1-kb subregion within the RE, which is not necessary during switching, abolished mating-type-dependent chromosome folding. The RE is therefore a composite element with one subregion essential for donor selection during switching and a separate region involved in modulating chromosome conformation.
Collapse
|
48
|
Berthelot C, Muffato M, Abecassis J, Roest Crollius H. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep 2015; 10:1913-24. [PMID: 25801028 DOI: 10.1016/j.celrep.2015.02.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022] Open
Abstract
Genomic rearrangements are a major source of evolutionary divergence in eukaryotic genomes, a cause of genetic diseases and a hallmark of tumor cell progression, yet the mechanisms underlying their occurrence and evolutionary fixation are poorly understood. Statistical associations between breakpoints and specific genomic features suggest that genomes may contain elusive “fragile regions” with a higher propensity for breakage. Here, we use ancestral genome reconstructions to demonstrate a near-perfect correlation between gene density and evolutionary rearrangement breakpoints. Simulations based on functional features in the human genome show that this pattern is best explained as the outcome of DNA breaks that occur in open chromatin regions coming into 3D contact in the nucleus. Our model explains how rearrangements reorganize the order of genes in an evolutionary neutral fashion and provides a basis for understanding the susceptibility of “fragile regions” to breakage.
Collapse
|
49
|
The Structural Characterization of Tumor Fusion Genes and Proteins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:912742. [PMID: 26347798 PMCID: PMC4546970 DOI: 10.1155/2015/912742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/08/2023]
Abstract
Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins.
Collapse
|
50
|
Drbalova J, Musilova P, Kubickova S, Sebestova H, Vahala J, Rubes J. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae. Cytogenet Genome Res 2015; 144:306-14. [PMID: 25765057 DOI: 10.1159/000377712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Collapse
Affiliation(s)
- Jitka Drbalova
- Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|