1
|
Stark FG, Torii-Karch M, Yuvaraj S, Bonometti L, Gladieux P, Glass NL, Krasileva K. Molecular Insights into Fungal Innate Immunity Using the Neurospora crassa - Pseudomonas syringae Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633611. [PMID: 39896647 PMCID: PMC11785063 DOI: 10.1101/2025.01.22.633611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent comparative genomics and mechanistic analyses support the existence of a fungal immune system. Fungi encode genes with features similar to non-self recognition systems in plants, animals, and bacteria. However, limited functional or mechanistic evidence exists for the surveillance-system recognition of heterologous microbes in fungi. We found that Neurospora species coexist with Pseudomonas in their natural environment. We leveraged two model organisms, Neurospora crassa and Pseudomonas syringae DC3000 (PSTDC3000) to observe immediate fungal responses to bacteria. PSTDC3000 preferentially surrounds N. crassa cells on a solid surface, causing environmental dependent growth responses, bacterial proliferation and varying fungal fitness. Specifically, the Type III secretion system (T3SS) ΔhrcC mutant of PSTDC3000 colonized N. crassa hyphae less well. To dissect initial cellular signaling events within the population of germinated asexual spores (germlings), we performed transcriptomics on N. crassa after PSTDC3000 inoculation. Upon contact with live bacteria, a subpopulation of fungal germlings initiate a response as early as ten minutes post-contact revealing transcriptional differentiation of Reactive Oxygen Species (ROS) mechanisms, trace metal warfare, cell wall remodeling dynamics, multidrug-efflux transporters, secondary metabolite synthesis, and excretion. We dissected mutants of plausible receptors, signaling pathways, and responses that N. crassa uses to detect and mount a defense against PSTDC3000 and found seven genes that influence resistant and susceptibility phenotypes of N. crassa to bacterial colonization. Mutants in genes encoding a ctr copper transporter ( tcu-1 ), ferric reductase ( fer-1 ), superoxide reductase ( sod-2 ), multidrug resistance transporter ( mdr-6 ), a secreted lysozyme-Glycoside hydrolase ( lyz ) and the Woronin body tether leashin (NCU02793, lah-1 and lah-2 ) showed a significant reduction of growth in the presence of bacteria, allowing the bacteria to fully take over the fungal mycelium faster than wildtype. In this study we provide a bacterial-fungal model system within Dikarya that allows us to begin to dissect signaling pathways of the putative fungal immune system.
Collapse
|
2
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
3
|
Ament-Velásquez SL, Vogan AA, Wallerman O, Hartmann FE, Gautier V, Silar P, Giraud T, Johannesson H. High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex. Genome Biol Evol 2024; 16:evae034. [PMID: 38386982 PMCID: PMC10936905 DOI: 10.1093/gbe/evae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics, Uppsala University, 752 37 Uppsala, Sweden
| | - Fanny E Hartmann
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Clavé C, Dheur S, Ament-Velásquez SL, Granger-Farbos A, Saupe SJ. het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein. PLoS Genet 2024; 20:e1011114. [PMID: 38346076 PMCID: PMC10890737 DOI: 10.1371/journal.pgen.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.
Collapse
Affiliation(s)
- Corinne Clavé
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | - Sonia Dheur
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | | | | | - Sven J. Saupe
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
6
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Martinossi-Allibert I, Ament-Velásquez SL, Saupe SJ, Johannesson H. To self or not to self? Absence of mate choice despite costly outcrossing in the fungus Podospora anserina. J Evol Biol 2023; 36:238-250. [PMID: 36263943 PMCID: PMC10092876 DOI: 10.1111/jeb.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.
Collapse
Affiliation(s)
- Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France.,Department of Biology, Realfagbygget, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Ament-Velásquez SL, Vogan AA. Podospora anserina. Trends Microbiol 2022; 30:1243-1244. [PMID: 36182622 DOI: 10.1016/j.tim.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Affiliation(s)
| | - Aaron A Vogan
- Independent researcher, Uppsala Universitet, Institute of Organismal Biology, Norbyvagen 18D, Uppsala, 75644, Sweden.
| |
Collapse
|
9
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Vogan AA, Martinossi-Allibert I, Ament-Velásquez SL, Svedberg J, Johannesson H. The spore killers, fungal meiotic driver elements. Mycologia 2022; 114:1-23. [PMID: 35138994 DOI: 10.1080/00275514.2021.1994815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During meiosis, both alleles of any given gene should have equal chances of being inherited by the progeny. There are a number of reasons why, however, this is not the case, with one of the most intriguing instances presenting itself as the phenomenon of meiotic drive. Genes that are capable of driving can manipulate the ratio of alleles among viable meiotic products so that they are inherited in more than half of them. In many cases, this effect is achieved by direct antagonistic interactions, where the driving allele inhibits or otherwise eliminates the alternative allele. In ascomycete fungi, meiotic products are packaged directly into ascospores; thus, the effect of meiotic drive has been given the nefarious moniker, "spore killing." In recent years, many of the known spore killers have been elevated from mysterious phenotypes to well-described systems at genetic, genomic, and molecular levels. In this review, we describe the known diversity of spore killers and synthesize the varied pieces of data from each system into broader trends regarding genome architecture, mechanisms of resistance, the role of transposable elements, their effect on population dynamics, speciation and gene flow, and finally how they may be developed as synthetic drivers. We propose that spore killing is common, but that it is under-observed because of a lack of studies on natural populations. We encourage researchers to seek new spore killers to build on the knowledge that these remarkable genetic elements can teach us about meiotic drive, genomic conflict, and evolution more broadly.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077, Bordeaux CEDEX, France
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Jesper Svedberg
- Department of Biomolecular Engineering, University of California, -Santa Cruz, Santa Cruz, California 95064
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
13
|
Abstract
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
Collapse
Affiliation(s)
- Daniel Otzen
- iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Kulkarni M, Stolp ZD, Hardwick JM. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 2019; 162:71-78. [PMID: 30660496 DOI: 10.1016/j.bcp.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Fungal pathogens pose an increasing threat to public health. Limited clinical drug regimens and emerging drug-resistant isolates challenge infection control. The global burden of human fungal pathogens is estimated at 1 billion infections and 1.5 million deaths annually. In addition, plant fungal pathogens increasingly threaten global food resources. Novel strategies are needed to combat emerging fungal diseases and pan-resistant fungi. An untapped mechanistically novel approach is to pharmacologically activate the intrinsic cell death pathways encoded by pathogenic fungi. This strategy is analogous to new anti-cancer therapeutics now entering the clinic. Here we summarize the best understood examples of cell death mechanisms encoded by pathogenic fungi, contrast these to mammalian cell death pathways, and highlight the gaps in knowledge towards identifying potential death effectors as druggable targets.
Collapse
Affiliation(s)
- Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - Zachary D Stolp
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
15
|
Zhong Z, Li L, Chang P, Xie H, Zhang H, Igarashi Y, Li N, Luo F. Differential gene expression profiling analysis in Pleurotus ostreatus during interspecific antagonistic interactions with Dichomitus squalens and Trametes versicolor. Fungal Biol 2017; 121:1025-1036. [PMID: 29122174 DOI: 10.1016/j.funbio.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023]
Abstract
This study provided analysis of differentially expressed genes (DEGs) in Pleurotus ostreatus under the interaction with Dichomitus squalens and Trametes versicolor, which is valuable for exploration on the fungal defence system against stressful condition caused by interspecific antagonistic interaction. Our result showed significant upregulation of abundant defence-related genes encoding laccase, manganese peroxidase, aldo-keto reductase, and glutathione S-transferase, which all play important roles in oxidative stress-resistant response. Importantly, Lacc2 and Lacc10 were found to be dominantly induced laccase genes in P. ostreatus under interspecific interaction. Meanwhile, a large number of carbohydrate metabolism-related and energy production-related genes involved in nutrient and territory competition were also enhanced. These genes were annotated as glycoside hydrolase, citrate synthase, malate dehydrogenase, succinate dehydrogenase, succinyl-CoA synthetase, NADH dehydrogenase, cytochrome c reductase/oxidase, and ATP synthase. Also, 12 DEGs were selected for validation by quantitative real-time PCR (qRT-PCR), all these genes showed consistent expression between the result of qRT-PCR and RNA-seq.
Collapse
Affiliation(s)
- Zixuan Zhong
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liu Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Peng Chang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Haiying Xie
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Huiting Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
16
|
Loquet A, Saupe SJ. Diversity of Amyloid Motifs in NLR Signaling in Fungi. Biomolecules 2017; 7:biom7020038. [PMID: 28406433 PMCID: PMC5485727 DOI: 10.3390/biom7020038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/11/2023] Open
Abstract
Amyloid folds not only represent the underlying cause of a large class of human diseases but also display a variety of functional roles both in prokaryote and eukaryote organisms. Among these roles is a recently-described activity in signal transduction cascades functioning in host defense and programmed cell death and involving Nod-like receptors (NLRs). In different fungal species, prion amyloid folds convey activation signals from a receptor protein to an effector domain by an amyloid templating and propagation mechanism. The discovery of these amyloid signaling motifs derives from the study of [Het-s], a fungal prion of the species Podospora anserina. These signaling pathways are typically composed of two basic components encoded by adjacent genes, the NLR receptor bearing an amyloid motif at the N-terminal end and a cell death execution protein with a HeLo pore-forming domain bearing a C-terminal amyloid motif. Activation of the NLR receptor allows for amyloid folding of the N-terminal amyloid motifs which then template trans-conformation of the homologous motif in the cell death execution protein. A variety of such motifs, which differ by their sequence signature, have been described in fungi. Among them, the PP-motif bears resemblance with the RHIM amyloid motif involved in the necroptosis pathway in mammals suggesting an evolutionary conservation of amyloid signaling from fungi to mammals.
Collapse
Affiliation(s)
- Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR 5248 CBMN-CNRS Université de Bordeaux, Allée Geoffroy Saint-Hillaire, 33600 Pessac, France.
| | - Sven J Saupe
- Non-Self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France.
| |
Collapse
|
17
|
Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0015-2016. [PMID: 28256191 PMCID: PMC11687462 DOI: 10.1128/microbiolspec.funk-0015-2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/13/2022] Open
Abstract
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
Affiliation(s)
- Asen Daskalov
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Jens Heller
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| |
Collapse
|
18
|
Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Abstract
The [Het-s] prion of the fungus Podospora anserina is a well-studied model system to elucidate the action of prions and beyond. The [Het-s] prion works as an activation trigger of a cell death execution protein termed HET-S. Amyloid transconformation of the prion-forming region of HET-S induces activation of its pore-forming cell death execution HeLo domain. The prion motif functions in a signal transduction process by which a nucleotide-binding oligomerization domain (NOD)-like receptor termed NWD2 controls the HET-S cell death effector. This prion motif thus corresponds to a functional amyloid motif, allowing a conformational crosstalk between homologous motif domains in signal transduction processes that appears to be widespread from the fungal to the mammalian animal kingdoms. This review aims to establish a structure-activity relationship of the HET-S/s prion system and sets it in the context of its wider biological significance.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire UMR 5095, CNRS - Université de Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
20
|
Strom NB, Bushley KE. Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fungal Biol Biotechnol 2016; 3:4. [PMID: 28955463 PMCID: PMC5611628 DOI: 10.1186/s40694-016-0022-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Heterokaryosis is an integral part of the parasexual cycle used by predominantly asexual fungi to introduce and maintain genetic variation in populations. Research into fungal heterokaryons began in 1912 and continues to the present day. Heterokaryosis may play a role in the ability of fungi to respond to their environment, including the adaptation of arbuscular mycorrhizal fungi to different plant hosts. The parasexual cycle has enabled advances in fungal genetics, including gene mapping and tests of complementation, dominance, and vegetative compatibility in predominantly asexual fungi. Knowledge of vegetative compatibility groups has facilitated population genetic studies and enabled the design of innovative methods of biocontrol. The vegetative incompatibility response has the potential to be used as a model system to study biological aspects of some human diseases, including neurodegenerative diseases and cancer. By combining distinct traits through the formation of artificial heterokaryons, fungal strains with superior properties for antibiotic and enzyme production, fermentation, biocontrol, and bioremediation have been produced. Future biotechnological applications may include site-specific biocontrol or bioremediation and the production of novel pharmaceuticals.
Collapse
Affiliation(s)
- Noah B Strom
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, 826 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN 55108 USA
| |
Collapse
|
21
|
Lamacchia M, Dyrka W, Breton A, Saupe SJ, Paoletti M. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response. Front Microbiol 2016; 7:471. [PMID: 27148175 PMCID: PMC4835503 DOI: 10.3389/fmicb.2016.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most functions up regulated during VI would lead to cell death. These differences are discussed in the frame of a multilayered response to non self in fungi.
Collapse
Affiliation(s)
- Marina Lamacchia
- Institut de Biologie et Génétique Cellulaire, UMR 5095, Centre National de la Recherche Scientifique et Université de Bordeaux Bordeaux, France
| | - Witold Dyrka
- Equipe MAGNOME, INRIA, Université de Bordeaux, Centre National de la Recherche ScientifiqueTalence, France; Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of TechnologyWroclaw, Poland
| | - Annick Breton
- Institut de Biologie et Génétique Cellulaire, UMR 5095, Centre National de la Recherche Scientifique et Université de Bordeaux Bordeaux, France
| | - Sven J Saupe
- Institut de Biologie et Génétique Cellulaire, UMR 5095, Centre National de la Recherche Scientifique et Université de Bordeaux Bordeaux, France
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095, Centre National de la Recherche Scientifique et Université de Bordeaux Bordeaux, France
| |
Collapse
|
22
|
Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc Natl Acad Sci U S A 2016; 113:2720-5. [PMID: 26903619 DOI: 10.1073/pnas.1522361113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a β-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis.
Collapse
|
23
|
He P, Cai Y, Liu S, Han L, Huang L, Liu W. Morphological and ultrastructural examination of senescence in Morchella elata. Micron 2015; 78:79-84. [DOI: 10.1016/j.micron.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
|
24
|
Kim A, Cunningham KW. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 2015; 26:4631-45. [PMID: 26510498 PMCID: PMC4678020 DOI: 10.1091/mbc.e15-08-0581] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
The controlled permeabilization of lysosomes and vacuoles may represent an ancient manner of programmed cell death. It is shown that TORC1 is required for lysosomal membrane permeabilization and death of yeast cells that have been exposed to antifungals, and that a novel FYVE-domain protein regulates TORC1 signaling in these conditions. Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts.
Collapse
Affiliation(s)
- Adam Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
25
|
Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabaté R, Loquet A, Saupe SJ. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 2015; 13:e1002059. [PMID: 25671553 PMCID: PMC4344463 DOI: 10.1371/journal.pbio.1002059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023] Open
Abstract
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. The fungus Podospora anserina uses a prion amyloid fold as a signal transduction device between a Nod-like receptor and a downstream cell death execution protein. Although amyloids are best known as protein aggregates that are responsible for fatal neurodegenerative diseases, amyloid structures can also fulfill functional roles in cells. In particular, the controlled formation of amyloid structures appears to be involved in different signaling processes in the context of programmed cell death and host defense. The [Het-s] prion of the filamentous fungus Podospora anserina is a model system in which the 3-D structure of the prion form has been solved. The [Het-s] prion works as an activation switch for a second protein termed HET-S. HET-S is a pore-forming protein that is activated when the [Het-s] prion causes its C-terminal domain to adopt an amyloid-like fold. The protein encoded by the gene adjacent to het-S is a Nod-like receptor (NLR) called NWD2. NLRs are immune receptors that control host defense and cell death processes in plants, animals, and fungi. We show that NWD2 can template the formation of the [Het-s] prion fold in a ligand-controlled manner. NWD2 has an N-terminal motif homologous to the HET-S/s prion-forming region; we find that this region is both necessary and sufficient for its prion-inducing activity, and our functional and structural approaches reveal that the N-terminal region of NWD2 adopts a fold closely related to that of the HET-S/s prion. This study illustrates how the controlled formation of a prion amyloid fold can be used in a signaling process whereby a Nod-like receptor protein activates a downstream cell death execution domain.
Collapse
Affiliation(s)
- Asen Daskalov
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Raimon Sabaté
- Institut de Nanociència i nanotecnologia, Departament Fisicoquímica, Universitat de Barcelona, Joan XXIII s/n, Barcelona, Spain
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, CNRS, CBMN, UMR 5248, Pessac, France
| | - Sven J. Saupe
- Non-self recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS—Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
26
|
Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, Sherman DJ, Saupe SJ. Diversity and variability of NOD-like receptors in fungi. Genome Biol Evol 2014; 6:3137-58. [PMID: 25398782 PMCID: PMC4986451 DOI: 10.1093/gbe/evu251] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular receptors that control innate immunity and other biotic interactions in animals and plants. NLRs have been characterized in plant and animal lineages, but in fungi, this gene family has not been systematically described. There is however previous indications of the involvement of NLR-like genes in nonself recognition and programmed cell death in fungi. We have analyzed 198 fungal genomes for the presence of NLRs and have annotated a total of 5,616 NLR candidates. We describe their phylogenetic distribution, domain organization, and evolution. Fungal NLRs are characterized by a great diversity of domain organizations, suggesting frequently occurring combinatorial assortments of different effector, NOD and repeat domains. The repeat domains are of the WD, ANK, and TPR type; no LRR motifs were found. As previously documented for WD-repeat domains of fungal NLRs, TPR, and ANK repeats evolve under positive selection and show highly conserved repeats and repeat length polymorphism, suggesting the possibility of concerted evolution of these repeats. We identify novel effector domains not previously found associated with NLRs, whereas others are related to effector domains of plant or animals NLRs. In particular, we show that the HET domain found in fungal NLRs may be related to Toll/interleukin-1 receptor domains found in animal and plant immune receptors. This description of fungal NLR repertoires reveals both similarities and differences with plant and animals NLR collections, highlights the importance of domain reassortment and repeat evolution and provides a novel entry point to explore the evolution of NLRs in eukaryotes.
Collapse
Affiliation(s)
- Witold Dyrka
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Marina Lamacchia
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Pascal Durrens
- INRIA-Université Bordeaux-CNRS, MAGNOME, Talence, France
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Centre for Infectious Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - Asen Daskalov
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | - Matthieu Paoletti
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux, France
| |
Collapse
|
27
|
Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34. [PMID: 24584154 PMCID: PMC5119060 DOI: 10.4161/auto.28148] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022] Open
Abstract
The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of EGFP to the fungal LC3 homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-dependent degradation of a PaSOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. In contrast, this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for this fungus. Collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another surveillance pathway in the complex network of pathways affecting aging and development. These findings provide perspectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Francesco Pampaloni
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Ernst Stelzer
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| |
Collapse
|
28
|
Van der Nest MA, Olson A, Lind M, Vélëz H, Dalman K, Brandström Durling M, Karlsson M, Stenlid J. Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet Biol 2013; 64:45-57. [PMID: 24380733 DOI: 10.1016/j.fgb.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 12/24/2022]
Abstract
In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi.
Collapse
Affiliation(s)
- M A Van der Nest
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden.
| | - A Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - H Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - K Dalman
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - J Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| |
Collapse
|
29
|
Abstract
In fungi, heterokaryon incompatibility is a nonself recognition process occurring when filaments of different isolates of the same species fuse. Compatibility is controlled by so-called het loci and fusion of strains of unlike het genotype triggers a complex incompatibility reaction that leads to the death of the fusion cell. Herein, we analyze the transcriptional changes during the incompatibility reaction in Podospora anserina. The incompatibility response was found to be associated with a massive transcriptional reprogramming: 2231 genes were up-regulated by a factor 2 or more during incompatibility. In turn, 2441 genes were down-regulated. HET, NACHT, and HeLo domains previously found to be involved in the control of heterokaryon incompatibility were enriched in the up-regulated gene set. In addition, incompatibility was characterized by an up-regulation of proteolytic and other hydrolytic activities, of secondary metabolism clusters and toxins and effector-like proteins. The up-regulated set was found to be enriched for proteins lacking orthologs in other species and chromosomal distribution of the up-regulated genes was uneven with up-regulated genes residing preferentially in genomic islands and on chromosomes IV and V. There was a significant overlap between regulated genes during incompatibility in P. anserina and Neurospora crassa, indicating similarities in the incompatibility responses in these two species. Globally, this study illustrates that the expression changes occurring during cell fusion incompatibility in P. anserina are in several aspects reminiscent of those described in host-pathogen or symbiotic interactions in other fungal species.
Collapse
|
30
|
Smith RP, Wellman K, Smith ML. Trans-species activity of a nonself recognition domain. BMC Microbiol 2013; 13:63. [PMID: 23517247 PMCID: PMC3618301 DOI: 10.1186/1471-2180-13-63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Background The ability to distinguish nonself from self is a fundamental characteristic of biological systems. In the filamentous fungus Neurospora crassa, multiple incompatibility genes mediate nonself recognition during vegetative growth. One of these genes, un-24, encodes both nonself recognition function and the large subunit of a type I ribonucleotide reductase, an evolutionarily conserved enzyme that is essential for the conversion of NDP precursors into dNDPs for use in DNA synthesis. Previous studies have shown that co-expression of the two allelic forms of un-24, Oakridge (OR) and Panama (PA), in the same cell results in cell death. Results We identify a 135 amino acid nonself recognition domain in the C-terminus region of UN-24 that confers an incompatibility-like phenotype when expressed in the yeast, Saccharomyces cerevisiae. Low-level expression of this domain results in several cytological and phenotypic characteristics consistent with an incompatibility reaction in filamentous fungi. These incompatibility phenotypes are correlated with the presence of a non-reducible complex consisting of the PA incompatibility domain and Rnr1p, a large subunit of ribonucleotide reductase in yeast. When the PA incompatibility domain is switched to high-level expression, the incompatibility phenotype transitions to wild-type concomitant with the appearance of a complex containing the PA incompatibility domain and Ssa1p, an Hsp70 homolog. Conclusions Results from this study provide insights into the mechanism and control of vegetative nonself recognition mediated by ribonucleotide reductase in N. crassa, thus establishing the yeast system as a powerful tool to study fungal nonself recognition. Our work shows that heat shock proteins may function to deactivate vegetative incompatibility systems, as required for entry into the sexual cycle. Finally, our results suggest that variations on the PA incompatibility domain may serve as novel and specific antimicrobial peptides.
Collapse
|
31
|
|
32
|
Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 2012; 10:e1001451. [PMID: 23300377 PMCID: PMC3531502 DOI: 10.1371/journal.pbio.1001451] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the β-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Wasmer
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roger Wepf
- Electron Microscopy ETH Zurich (EMEZ), Zürich, Switzerland
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et Génétique Cellulaires, UMR-5095 CNRS/Université de Bordeaux 2, Bordeaux, France
| | - Beat H. Meier
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Sikhakolli UR, López-Giráldez F, Li N, Common R, Townsend JP, Trail F. Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genet Biol 2012; 49:663-73. [PMID: 22705880 DOI: 10.1016/j.fgb.2012.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 01/23/2023]
Abstract
Fusarium graminearum and F. verticillioides are devastating cereal pathogens with very different life history and ecological characteristics. F. graminearum is homothallic, and sexual spores are an important component of its life cycle, responsible for disease initiation. F. verticilloides is heterothallic, and produces only modest numbers of fruiting bodies, which are not a significant source of inoculum. To identify corresponding differences in the transcriptional program underlying fruiting body development in the two species, comparative expression was performed, analyzing six developmental stages. To accompany the transcriptional analysis, detailed morphological characterization of F. verticillioides development was performed and compared to a previous morphological analysis of F. graminearum. Morphological development was similar between the two species, except for the observation of possible trichogynes in F. verticillioides ascogonia, which have not been previously reported for any Fusarium species. Expression of over 9000 orthologous genes were measured for the two species. Functional assignments of highly expressed orthologous genes at each time-point revealed the majority of highly expressed genes fell into the "unclassified proteins" category, reflecting the lack of characterization of genes for sexual development in both species. Simultaneous examination of morphological development and stage-specific gene expression suggests that degeneration of the paraphyses during sexual development is an apoptotic process. Expression of mating type genes in the two species differed, possibly reflecting the divergent roles they play in sexual development. Overall, the differences in gene expression reflect the greater role of fruiting bodies in the life cycle and ecology of F. graminearum versus F. verticillioides.
Collapse
Affiliation(s)
- Usha Rani Sikhakolli
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
34
|
Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS One 2012; 7:e34854. [PMID: 22493719 PMCID: PMC3321046 DOI: 10.1371/journal.pone.0034854] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/08/2012] [Indexed: 12/23/2022] Open
Abstract
Background Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity. Methodology/Principal Findings Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs. Conclusions/Significance We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.
Collapse
|
35
|
Scheckhuber CQ, Hamann A, Brust D, Osiewacz HD. Cellular homeostasis in fungi: impact on the aging process. Subcell Biochem 2012; 57:233-250. [PMID: 22094425 DOI: 10.1007/978-94-007-2561-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty of Biosciences, Institute of Molecular Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, 60438, Frankfurt/Main, Germany,
| | | | | | | |
Collapse
|
36
|
Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A. Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 2011; 116:261-75. [PMID: 22289772 DOI: 10.1016/j.funbio.2011.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/26/2022]
Abstract
Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion.
Collapse
Affiliation(s)
- Mirco Iotti
- Dipartimento di Protezione e Valorizzazione Agroalimentare, University of Bologna, Via Fanin 46, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics 2011; 190:113-27. [PMID: 22021387 PMCID: PMC3249360 DOI: 10.1534/genetics.111.133983] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic nonself recognition systems such as vegetative incompatibility operate in many filamentous fungi to regulate hyphal fusion between genetically dissimilar individuals and to restrict the spread of virulence-attenuating mycoviruses that have potential for biological control of pathogenic fungi. We report here the use of a comparative genomics approach to identify seven candidate polymorphic genes associated with four vegetative incompatibility (vic) loci of the chestnut blight fungus Cryphonectria parasitica. Disruption of candidate alleles in one of two strains that were heteroallelic at vic2, vic6, or vic7 resulted in enhanced virus transmission, but did not prevent barrage formation associated with mycelial incompatibility. Detailed characterization of the vic6 locus revealed the involvement of nonallelic interactions between two tightly linked genes in barrage formation, heterokaryon formation, and asymmetric, gene-specific influences on virus transmission. The combined results establish molecular identities of genes associated with four C. parasitica vic loci and provide insights into how these recognition factors interact to trigger incompatibility and restrict virus transmission.
Collapse
|
38
|
van der Nest MA, Steenkamp ET, Slippers B, Mongae A, van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Gene expression associated with vegetative incompatibility in Amylostereum areolatum. Fungal Genet Biol 2011; 48:1034-43. [PMID: 21889597 DOI: 10.1016/j.fgb.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bartoszewska M, Kiel JAKW. The role of macroautophagy in development of filamentous fungi. Antioxid Redox Signal 2011; 14:2271-87. [PMID: 20712412 DOI: 10.1089/ars.2010.3528] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy (macroautophagy) is a bulk degradative pathway by which cytoplasmic components are delivered to the vacuole for recycling. This process is conserved from yeast to human, where it is implicated in cancer and neurodegenerative diseases. During the last decade, many ATG genes involved in autophagy have been identified, initially in Saccharomyces cerevisiae. This review summarizes the knowledge on the molecular mechanisms of autophagy using yeast as model system. Although many of the core components involved in autophagy are conserved from yeast to human, there are, nevertheless, significant differences between these organisms, for example, during autophagy initiation. Autophagy also plays an essential role in filamentous fungi especially during differentiation. Remarkably, in these species autophagy may reflect features of both yeast and mammals. This is exemplified by the finding that filamentous fungi lack the S. cerevisiae clade-specific Atg31 protein, but contain Atg101, which is absent in this clade. A reappraisal of genome data further suggests that, similar to yeast and mammals, filamentous fungi probably also contain two distinct phosphatidylinositol 3-kinase complexes. This review also summarizes the state of knowledge on the role of autophagy in filamentous fungi during differentiation, such as pathogenic development, programmed cell death during heteroincompatibility, and spore formation.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
40
|
Denisov Y, Freeman S, Yarden O. Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2011; 12:449-61. [PMID: 21535351 PMCID: PMC6640382 DOI: 10.1111/j.1364-3703.2010.00683.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The soil-borne, asexual fungus Fusarium oxysporum f.sp. melonis (FOM) is a causal agent of muskmelon wilt disease. The current study focused on the most virulent race of FOM-race 1,2. The tagged mutant D122, generated by Agrobacterium tumefaciens-mediated transformation, caused the delayed appearance of initial wilt disease symptoms, as well as a 75% reduction in pathogenicity. D122 was impaired in the gene product homologous to the Snt2-like transcription factor of Schizosaccharomyces pombe. Involvement of snt2 in the early stage of FOM pathogenesis and its requirement for host colonization were confirmed by targeted disruption followed by quantitative reverse transcription-polymerase chain reaction analysis of snt2 expression in planta. Δsnt2 mutants of FOM and Neurospora crassa exhibited similar morphological abnormalities, including a reduction in conidia production and biomass accumulation, slower vegetative growth and frequent hyphal septation. In N. crassa, snt-2 is required for sexual development, as Δsnt-2 mutants were unable to produce mature perithecia. Suppressive subtraction hybridization analysis of the D122 mutant versus wild-type isolate detected four genes (idi4, pdc, msf1, eEF1G) that were found previously in association with the target of rapamycin (TOR) kinase pathway. Expression of the autophagy-related idi4 and pdc genes was found to be up-regulated in the Δsnt2 FOM mutant. In N. crassa, disruption of snt-2 also conferred a significant over-expression of idi4.
Collapse
Affiliation(s)
- Youlia Denisov
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | |
Collapse
|
41
|
Saupe SJ. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 2011; 22:460-8. [PMID: 21334447 DOI: 10.1016/j.semcdb.2011.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered β-solenoid fold with a triangular hydrophobic core. The ability to form this β-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the β-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.
Collapse
Affiliation(s)
- Sven J Saupe
- Non-self recognition in fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux 2, 1 rue Camille St Saens, Bordeaux cedex, France.
| |
Collapse
|
42
|
Chevanne D, Saupe SJ, Clavé C, Paoletti M. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family. BMC Evol Biol 2010; 10:134. [PMID: 20459612 PMCID: PMC2873952 DOI: 10.1186/1471-2148-10-134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 05/06/2010] [Indexed: 01/07/2023] Open
Abstract
Background Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members. Results Herein, we directly analyzed the genetic instability and diversification of this allorecognition gene family. We have constituted a collection of 143 spontaneous mutants of the het-R (HNWD2) and het-E (hnwd5) genes with altered recognition specificities. The vast majority of the mutants present rearrangements in the repeat arrays with deletions, duplications and other modifications as well as creation of novel repeat unit variants. Conclusions We investigate the extreme genetic instability of these genes and provide a direct illustration of the diversification strategy of this eukaryotic allorecognition gene family.
Collapse
Affiliation(s)
- Damien Chevanne
- Laboratoire de Génétique Moléculaire des Champignons, IBGC, UMR 5095 Université Victor Segalen Bordeaux 2, 1 rue Camille Saint-Saëns, Bordeaux Cedex, France
| | | | | | | |
Collapse
|
43
|
Abstract
In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N-terminal cell death effector domain, a central NACHT domain and a C-terminal WD-repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD-repeat domain responsible for recognition of non-self. Remarkably, the architecture of these proteins is related to pathogen-recognition receptors ensuring innate immunity in plants and animals. Here, we hypothesize that these P. anserina incompatibility genes could be components of a yet-unidentified innate immune system of fungi. As already proposed in the case of plant hybrid necrosis or graft rejection in mammals, incompatibility could be a by-product of pathogen-driven divergence in host defense genes.
Collapse
Affiliation(s)
- Mathieu Paoletti
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS-Université de Bordeaux 2, 1 rue Camille St Saëns, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
44
|
Abstract
Autophagy has been monitored in the filamentous fungus Podospora anserina using electron, light, and fluorescence microscopy. In this organism autophagy can be induced either by starvation or rapamycin treatment or by het gene incompatibility. Incompatible HET products signal a cell death reaction referred to as cell death by incompatibility. In het-R het-V strain bearing the two incompatible het-R and het-V genes, cell death is induced by a simple shift in growth temperature, as incompatibility is thermosensitive. In this strain large autophagosomes are formed as revealed by electron microscopy or using the GFP-PaATG8 marker. This strain constitutes an alternative model to study autophagy. Analysis of the three autophagy mutants, DeltaPaATG1, DeltaPaATG8, and DeltapspA, reveals that autophagy is essential for aerial hyphae and female organ differentiation and involved in spore germination. During the incompatibility reaction, autophagy might protect cells from cell death as suggested by accelerated cell death observed in autophagy mutants.
Collapse
|
45
|
Aoki N, Moriyama H, Kodama M, Arie T, Teraoka T, Fukuhara T. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res 2009; 140:179-87. [PMID: 19118588 DOI: 10.1016/j.virusres.2008.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 01/01/2023]
Abstract
Four double-stranded RNAs (dsRNAs), referred to as dsRNA 1 (3617 bp), dsRNA 2 (2794 bp), dsRNA 3 (2576 bp) and dsRNA 4 (1420 bp), were detected in the EGS 35-193 strain of Alternaria alternata at high concentration ( approximately 3 microg/g dried mycelium). This strain had an impaired growth phenotype. By exposing the strain to cycloheximide during hyphal tip isolation, we isolated strains which had normal mycelial growth and pigmentation, in which decreased levels of the dsRNAs were observed ( approximately 0.3 microg/g dried mycelium). These results indicate that this dsRNA mycovirus might be involved in modulating traits of its fungal host, A. alternata. The buoyant density of isometric virus particles (about 33 nm in diameter) containing these dsRNAs in CsCl was 1.35-1.40 g/cm(3) depending on the size of the packaged dsRNAs. The dsRNA 1 encodes a single open reading frame (3447 nt) containing the conserved motifs of viral RNA-dependent RNA polymerase (RdRp), which is related to the ORF encoded by dsRNA 1 of Aspergillus mycovirus 341. It is noteworthy that all of the coding strands of the four dsRNA genomes have 3'-poly (A) tails ranging from 33 to 50 nt in length. We named this novel dsRNA mycovirus in the EGS 35-193 strain A. alternata virus-1 (AaV-1).
Collapse
Affiliation(s)
- Nanako Aoki
- Laboratories of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Chevanne D, Bastiaans E, Debets A, Saupe SJ, Clavé C, Paoletti M. Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family. Curr Genet 2009; 55:93-102. [PMID: 19137300 DOI: 10.1007/s00294-008-0227-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/18/2008] [Accepted: 12/18/2008] [Indexed: 01/08/2023]
Abstract
In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class. HET-D and HET-E proteins comprise an N-terminal HET effector domain, a central GTP binding site and a C-terminal WD repeat domain constituted of tandem repeats of highly conserved WD40 repeat units that define the specificity of alleles during incompatibility. The WD40 repeat units of the members of this HNWD family are undergoing concerted evolution. By combining genetic analysis and gain of function experiments, we demonstrate that an additional member of this family, HNWD2, corresponds to the het-r non-allelic incompatibility gene. As for het-d and het-e, allele specificity at the het-r locus is determined by the WD repeat domain. Natural isolates show allelic variation for het-r.
Collapse
Affiliation(s)
- Damien Chevanne
- Laboratoire de Génétique Moléculaire des Champignons, IBGC, UMR5095, Université Victor Segalen Bordeaux2 et CNRS, 1 rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Aanen DK, Debets AJM, de Visser JAGM, Hoekstra RF. The social evolution of somatic fusion. Bioessays 2008; 30:1193-203. [PMID: 18937373 DOI: 10.1002/bies.20840] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The widespread potential for somatic fusion among different conspecific multicellular individuals suggests that such fusion is adaptive. However, because recognition of non-kin (allorecognition) usually leads to a rejection response, successful somatic fusion is limited to close kin. This is consistent with kin-selection theory, which predicts that the potential cost of fusion and the potential for somatic parasitism decrease with increasing relatedness. Paradoxically, however, Crozier found that, in the short term, positive-frequency-dependent selection eliminates the required genetic polymorphism at allorecognition loci. The 'Crozier paradox' may be solved if allorecognition is based on extrinsically balanced polymorphisms, for example at immune loci. Alternatively, the assumption of most models that self fusion is mutually beneficial is wrong. If fusion is on average harmful, selection will promote unconditional rejection. However, we propose that fusion within individuals is beneficial, selecting for the ability to fuse, but fusion between individuals on average costly, selecting for non-self recognition (rather than non-kin recognition). We discuss experimental data on fungi that are consistent with this hypothesis.
Collapse
Affiliation(s)
- Duur K Aanen
- Plant Sciences, Laboratory of genetics, Wageningen University, Netherlands.
| | | | | | | |
Collapse
|
48
|
Petersen NHT, McKinney LV, Pike H, Hofius D, Zakaria A, Brodersen P, Petersen M, Brown RE, Mundy J. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant. FEBS J 2008; 275:4378-88. [PMID: 18657186 PMCID: PMC2585820 DOI: 10.1111/j.1742-4658.2008.06584.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 null mutant, resulting in delayed programmed cell death development and plant survival. Surprisingly, a GLTP mutant form impaired in glycolipid transfer activity also complemented the acd11 mutants. To understand the relationship between functional complementarity and transfer activity, we generated site-specific mutants in ACD11 based on homologous GLTP residues required for glycolipid transfer. We show that these ACD11 mutant forms are impaired in their in vitro transfer activity of sphingolipids. However, transgenic expression of these mutant forms fully complemented acd11 mutant cell death, and transgenic plants showed normal induction of hypersensitive cell death upon infection with avirulent strains of Pseudomonas syringae. The significance of these findings with respect to the function(s) of ACD11 in sphingolipid transport and cell death regulation is discussed.
Collapse
Affiliation(s)
- Nikolaj H. T. Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Lea Vig McKinney
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Helen Pike
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Daniel Hofius
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Asif Zakaria
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Peter Brodersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
- Present address: Institut de Biologie Moléculaire des Plantes CNRS UPR 2357, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Morten Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Rhoderick E. Brown
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - John Mundy
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
49
|
Savoldi M, Malavazi I, Soriani FM, Capellaro JL, Kitamoto K, da Silva Ferreira ME, Goldman MHS, Goldman GH. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. Mol Microbiol 2008; 70:44-59. [DOI: 10.1111/j.1365-2958.2008.06385.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Hamann A, Brust D, Osiewacz HD. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 2008; 16:276-83. [PMID: 18440231 DOI: 10.1016/j.tim.2008.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/22/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Apoptosis is one type of programmed cell death with great importance for development and homeostasis of multicellular organisms. Unexpectedly, during the past decade, evidence has been obtained for the existence of a basal apoptosis machinery in yeast, as unicellular fungus, and in some filamentous fungi, a group of microorganisms that are neither true unicellular nor true multicellular biological systems but something in between. Here, we review evidence for a role of apoptotic processes in fungal pathogenicity, competitiveness, propagation, ageing and lifespan control.
Collapse
Affiliation(s)
- Andrea Hamann
- Institute for Molecular Biosciences, Department of Biosciences and Cluster of Excellence Macromolecular Complexes, J.W. Goethe-University, Max-von-Laue-Strasse 9, Frankfurt, Germany
| | | | | |
Collapse
|