1
|
Mendoza-Muñoz N, Leyva-Gómez G, Piñón-Segundo E, Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Prado Audelo ML, Urbán-Morlán Z. Trends in biopolymer science applied to cosmetics. Int J Cosmet Sci 2023; 45:699-724. [PMID: 37402111 DOI: 10.1111/ics.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.
Collapse
Affiliation(s)
- Néstor Mendoza-Muñoz
- Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad de Colima, Colima, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Piñón-Segundo
- Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, L13, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - María L Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli, Mexico
| | | | - Zaida Urbán-Morlán
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Yusupov M, Privat-Maldonado A, Cordeiro RM, Verswyvel H, Shaw P, Razzokov J, Smits E, Bogaerts A. Oxidative damage to hyaluronan-CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox Biol 2021; 43:101968. [PMID: 33895486 PMCID: PMC8099558 DOI: 10.1016/j.redox.2021.101968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple cancer therapies nowadays rely on oxidative stress to damage cancer cells. Here we investigated the biological and molecular effect of oxidative stress on the interaction between CD44 and hyaluronan (HA), as interrupting their binding can hinder cancer progression. Our experiments demonstrated that the oxidation of HA decreased its recognition by CD44, which was further enhanced when both CD44 and HA were oxidized. The reduction of CD44-HA binding negatively affected the proliferative state of cancer cells. Our multi-level atomistic simulations revealed that the binding free energy of HA to CD44 decreased upon oxidation. The effect of HA and CD44 oxidation on CD44-HA binding was similar, but when both HA and CD44 were oxidized, the effect was much larger, in agreement with our experiments. Hence, our experiments and computations support our hypothesis on the role of oxidation in the disturbance of CD44-HA interaction, which can lead to the inhibition of proliferative signaling pathways inside the tumor cell to induce cell death.
Collapse
Affiliation(s)
- Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Solid Tumor Immunology Group, Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC, Avenida Dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Hanne Verswyvel
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Solid Tumor Immunology Group, Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Solid Tumor Immunology Group, Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kori Niyoziy 39, 100000, Tashkent, Uzbekistan; Institute of Material Sciences, Uzbek Academy of Sciences, Chingiz Aytmatov 2b, 100084, Tashkent, Uzbekistan
| | - Evelien Smits
- Solid Tumor Immunology Group, Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
3
|
Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy. CANCER MICROENVIRONMENT 2019; 12:47-56. [PMID: 31079324 DOI: 10.1007/s12307-019-00224-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Even with rigorous treatments, glioblastoma multiforme (GBM) has an abysmal median survival rate, greatly due to the drug-resistant glioblastoma stem cell (GSC) population. GSCs are known to remodel their microenvironment, but the precise role of extracellular matrix components hyaluronic acid (HA) and hyaluronidases (HAases) on the GSC population is still largely unknown. Our objective was to determine how HAase can sensitize GSCs to chemotherapy drugs by disrupting the HA-CD44 signaling. GBM cell line U87-MG and patient-derived D456 cells were grown in GSC-enriching media and treated with HA or HAase. Expressions of GSC markers, HA-related genes, and drug resistance genes were measured via flow cytometry, confocal microscopy, and qRT-PCR. Proliferation after combined HAase and temozolomide (TMZ) treatment was measured via WST-8. HA supplementation promoted the expression of GSC markers and CD44 in GBM cells cultured in serum-free media. Conversely, HAase addition inhibited GSC gene expression while promoting CD44 expression. Finally, HAase sensitized GBM cells to TMZ. We propose a combined treatment of HAase and chemotherapy drugs by disrupting the stemness-promoting HA to target GSCs. This combination therapy shows promise even when temozolomide treatment alone causes resistance.
Collapse
|
4
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
5
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
6
|
Agarwal NR, Maurya N, Pawar JS, Ghosh I. A combined approach against tumorigenesis using glucose deprivation and mitochondrial complex 1 inhibition by rotenone. Cell Biol Int 2016; 40:821-31. [DOI: 10.1002/cbin.10619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/21/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Nupur Rani Agarwal
- Biochemistry and Environmental Toxicology, ; Laboratory # 103, School of Environmental Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Nancy Maurya
- Biochemistry and Environmental Toxicology, ; Laboratory # 103, School of Environmental Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Jogendra Singh Pawar
- Biochemistry and Environmental Toxicology, ; Laboratory # 103, School of Environmental Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology, ; Laboratory # 103, School of Environmental Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
7
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
8
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
9
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
10
|
Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 2014; 65:1056-74. [PMID: 24399703 DOI: 10.1016/s1734-1140(13)71465-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Indexed: 12/17/2022]
Abstract
The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.
Collapse
Affiliation(s)
- Michał S Karbownik
- Department of Pharmacology, Medical University of Lodz, Żeligowskiego 7/9, PL 90-752 Łódź, Poland. ;
| | | |
Collapse
|
11
|
Kooy FK, Beeftink HH, Eppink MH, Tramper J, Eggink G, Boeriu CG. Kinetic and structural analysis of two transferase domains in Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Kundu B, Saha P, Datta K, Kundu SC. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials 2013; 34:9462-74. [PMID: 24016853 DOI: 10.1016/j.biomaterials.2013.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/19/2013] [Indexed: 01/14/2023]
Abstract
Microenvironment around tumor cells plays an important role in its malignancy or invasiveness. Hyaluronan (HA), a major component of extracellular matrix is found to be elevated in most of cancerous niche/microenvironment and performs regulatory role in the progression of tumors and metastasis. Overexpression of the hyaladherin, hyaluronan-binding protein 1 (HABP1) in the hepatocarcinoma cells (HepG2) termed as HepR21 leads to enhanced cell proliferation with increased HA 'pool' associated with HA 'cables' indicating elevated tumorous potential under 2D culture conditions. For in vitro experimentation, scaffold based three dimensional niche modeling may have greater acceptance than conventional 2D culture condition. Thus, we have examined the influence of intrinsic properties of non-mulberry tropical tasar silk fibroin on the HepR21 cells in order to develop a 3D hepatocarcinoma construction to act as model. The scaffold of tasar silk fibroin of Antheraea mylitta when efficiently loaded with transformed hepatocarcinoma cells, HepR21; exhibits enhanced adhesiveness, viability, metabolic activity, proliferation and enlarged cellular morphology in 3D compared to its parent cell line HepG2, supporting the earlier observation made in 2D system. In addition, formation of multicellular aggregates, the indicator of tumor progression is also revealed in silk based 3D culture conditions. Further, the use of 4-MU (a hyaluronan synthase inhibitor) on HepR21 cells reduces the HA level and downregulates the expression of growth promoting factors like pAKT and PKC; while upregulating the expression of the tumor suppressor p53. Thus, 4-MU efficiently reduces the tumor potency associated with increased HA pool as well as HA cables and the effect of 4-MU doubling up as an anticancer agent in 2D and 3D are also comparable. The in vitro 3D multicellular model demonstrates the insight of hepatocarcinoma progression and offers the predictability of cellular response to transfection efficacy, drug treatment and therapeutic intervention.
Collapse
Affiliation(s)
- Banani Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
13
|
Koren A, Motaln H, Cufer T. Lung cancer stem cells: a biological and clinical perspective. Cell Oncol (Dordr) 2013; 36:265-75. [DOI: 10.1007/s13402-013-0141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
|
14
|
Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG, Yan QG, Ye J, Wang JB, Guo Y, Huang XF, Yu YH. Invasive cancers are not necessarily from preformed in situ tumours - an alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 2013; 17:921-6. [PMID: 23741988 PMCID: PMC3822897 DOI: 10.1111/jcmm.12078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/29/2013] [Indexed: 11/28/2022] Open
Abstract
Cancers are thought to be the result of accumulated gene mutations in cells. Carcinomas, which are cancers arising from epithelial tissues usually go through several stages of development: atypical hyperplasia, carcinoma in situ and then invasive carcinoma, which might further metastasize. However, we think that the present pathological data are enough to prove that there might be an alternative way of carcinogenesis. We propose that majority of invasive cancers arise in the connective tissue stroma de novo, from the misplaced epithelial stem cells which come to the wrong land of connective tissue stroma by accident. The in situ carcinomas, which are mostly curable, should not be considered genuine cancer, but rather as quasi-cancer. We design this new theory of carcinogenesis as the stem cell misplacement theory (SCMT). Our SCMT theory chains together other carcinogenesis theories such as the inflammation-cancer chain, the stem cell theory and the tissue organization field theory. However, we deny the pathway of somatic mutation theory as the major pathway of carcinogenesis.
Collapse
Affiliation(s)
- Rui-An Wang
- State Key Lab of Cancer Biology, The Fourth Military Medical University, Xi'an, Shaanxi Pr., China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McClements L, Yakkundi A, Papaspyropoulos A, Harrison H, Ablett MP, Jithesh PV, McKeen HD, Bennett R, Donley C, Kissenpfennig A, McIntosh S, McCarthy HO, O'Neill E, Clarke RB, Robson T. Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin Cancer Res 2013; 19:3881-93. [PMID: 23741069 DOI: 10.1158/1078-0432.ccr-13-0595] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE FK506-binding protein like (FKBPL) and its peptide derivative, AD-01, have already shown tumor growth inhibition and CD44-dependent antiangiogenic activity. Here, we explore the ability of AD-01 to target CD44-positive breast cancer stem cells (BCSC). EXPERIMENTAL DESIGN Mammosphere assays and flow cytometry were used to analyze the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anticancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples, and xenografts. Delays in tumor initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, quantitative PCR (qPCR), and immunofluorescence. RESULTS AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere-forming efficiency and ESA(+)/CD44(+)/CD24(-) or aldehyde dehydrogenase (ALDH)(+) cell subpopulations in vitro and tumor initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism seems to be due to AD-01-mediated BCSC differentiation shown by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4, and Sox2, were also significantly reduced. Furthermore, we showed additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy-induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signaling. CONCLUSIONS AD-01 has dual antiangiogenic and anti-BCSC activity, which will be advantageous as this agent enters clinical trial.
Collapse
Affiliation(s)
- Lana McClements
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and β-catenin, in primary lung adenocarcinoma--their prognostic significance. Pathol Int 2013; 62:792-801. [PMID: 23252868 DOI: 10.1111/pin.12019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/08/2012] [Indexed: 01/06/2023]
Abstract
The present study investigated expression profiles of the potential CSC markers including CD133, CD44, ALDH1, and β-catenin, and evaluated their prognostic value in lung adenocarcinomas. One-hundred-and-seventy-seven tumors (stage I) were immunohistochemically examined for the expression of these markers, and thresholds to subdivide expression levels were determined using receiver operating characteristics curves. Tumors with high levels of CD133 (adjusted hazard ratio (HR) 4.55 (95% confidence interval (CI) 1.26-16.40, P = 0.021), CD44 (HR 3.73, 95% CI 1.20-11.58, P = 0.023) or ALDH1 (HR 3.61, 95% CI 1.09-12.3, P = 0.036), but not β-catenin (HR 2.43, 95% CI 0.59-10.8, P = 0.220), showed a significantly higher risk of recurrence than the corresponding low expressers. In conclusion, levels of CD133, CD44, and ALDH1 had independent prognostic value to predict the recurrence of lung adenocarcinoma.
Collapse
Affiliation(s)
- Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Hiraga T, Ito S, Nakamura H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 2013; 73:4112-22. [PMID: 23633482 DOI: 10.1158/0008-5472.can-12-3801] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD44, an adhesion molecule that binds to the extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis are unclear. Here, we addressed this issue by using bone metastatic cancer cell lines, in which CD44 was stably knocked down. Tumor sphere formation and cell migration and invasion were significantly inhibited by CD44 knockdown. Furthermore, the downregulation of CD44 markedly suppressed tumorigenicity and bone metastases in nude mice. Of note, the number of osteoclasts decreased in the bone metastases. Microarray analysis revealed that the expression of HA synthase 2 was downregulated in CD44-knockdown cells. The localization of HA in the bone metastatic tumors was also markedly reduced. We then examined the roles of CD44-HA interaction in bone metastasis using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. 4-MU decreased tumor sphere and osteoclast-like cell formation in vitro. Moreover, 4-MU inhibited bone metastases in vivo with reduced number of osteoclasts. These results collectively suggest that CD44 expression in cancer cells promotes bone metastases by enhancing tumorigenicity, cell migration and invasion, and HA production. Our results also suggest the possible involvement of CD44-expressing cancer stem cells in the development of bone metastases through interaction with HA. CD44-HA interaction could be a potential target for therapeutic intervention for bone metastases.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Nagano, Japan
| | | | | |
Collapse
|
18
|
Kooy FK, Beeftink HH, Eppink MHM, Tramper J, Eggink G, Boeriu CG. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aer.2013.14011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chang JY, Chiang MF, Lin SR, Lee MH, He H, Chou PY, Chen SJ, Chen YA, Yang LY, Lai FJ, Hsieh CC, Hsieh TH, Sheu HM, Sze CI, Chang NS. TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis 2012; 3:e302. [PMID: 22534828 PMCID: PMC3358014 DOI: 10.1038/cddis.2012.36] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 12/22/2022]
Abstract
Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death.
Collapse
Affiliation(s)
- J-Y Chang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - M-F Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan, ROC
| | - S-R Lin
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - M-H Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - H He
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - P-Y Chou
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - S-J Chen
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Y-A Chen
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - L-Y Yang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - F-J Lai
- Department of Dermatology, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - C-C Hsieh
- Department of Dermatology, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - T-H Hsieh
- Department of Anatomy and Cell Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - H-M Sheu
- Department of Dermatology, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - C-I Sze
- Department of Anatomy and Cell Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - N-S Chang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
- Department of Neurosurgery, Mackay Memorial Hospital, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan, ROC
- Advanced Optoelectronic Technology Center, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
- Center of Infectious Disease and Signal Research, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
20
|
Aupperle H, Disatian S. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 2012; 14:59-71. [PMID: 22364722 DOI: 10.1016/j.jvc.2012.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/25/2011] [Accepted: 01/02/2012] [Indexed: 01/19/2023]
Abstract
Myxomatous degenerative mitral valve disease (MMVD) is a common heart disease in dogs. Although several morphological similarities occur between human and canine MMVD differences exist. However, in advanced stages the accumulation of proteoglycans is the main finding in both species. The extracellular matrix (ECM) in normal canine and human mitral valves is similar. In MMVD of both species proteoglycans is the major alteration, although specific changes in collagen distribution exists. The valvular expression pattern of matrix metalloproteinases (MMPs) and of their inhibitors (TIMPs) differs, in part, between dogs and humans. The MMPs and TIMPs expression patterns are similar in normal canine and human mitral valves, but they are quite different during degenerative progression. Valve endothelial cells (VEC) and interstitial cells (VIC) are phenotypically transformed in canine and human MMVD. Inflammation is an unlikely cause of valve degeneration in humans and dogs. There are several lines of evidence suggesting that transforming growth factor β1 (TGF β1) and serotonin signaling may mediate valve degeneration in humans and dogs. Although human and canine MMVD share structural similarities, there are some differences in ECM changes, enzyme expression and cell transformation, which may reflect a varied pathogenesis of these diseases.
Collapse
Affiliation(s)
- Heike Aupperle
- Institute of Veterinary-Pathology, University Leipzig, Germany.
| | | |
Collapse
|
21
|
Yoffou PH, Edjekouane L, Meunier L, Tremblay A, Provencher DM, Mes-Masson AM, Carmona E. Subtype specific elevated expression of hyaluronidase-1 (HYAL-1) in epithelial ovarian cancer. PLoS One 2011; 6:e20705. [PMID: 21695196 PMCID: PMC3112150 DOI: 10.1371/journal.pone.0020705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is morphologically heterogeneous being classified as serous, endometrioid, clear cell, or mucinous. Molecular genetic analysis has suggested a role for tumor suppressor genes located at chromosome 3p in serous EOC pathogenesis. Our objective was to evaluate the expression of HYAL1, located at chromosome 3p21.3, in these EOC subtypes, and to investigate its correlation with the expression of steroid hormone receptors. METHODOLOGY/PRINCIPAL FINDINGS We determined the mRNA expression of HYAL1, estrogen receptor (ER)-α, ERβ and progesterone receptor (PR) in EOC tumor samples and cell lines using quantitative RT-PCR. We also examined the expression of these genes in a publicly available microarray dataset. HYAL-1 enzyme activity was measured in EOC cell lines and in plasma samples from patients. We found that HYAL1 mRNA expression was elevated in clear cell and mucinous EOC tissue samples, but not in serous and endometrioid samples, normal ovaries or benign tumors. Similar results were obtained by two different techniques and with tissue sample cohorts from two independent institutions. Concordantly, HYAL1 mRNA levels and enzymatic activity were elevated only in EOC cell lines derived from clear cell and mucinous subtypes. We also showed that HYAL1 mRNA was inversely correlated to that of ERα specifically in clear cell and mucinous EOCs. Additionally, ectopic expression of ERα in a clear cell EOC cell line (ER- and PR-negative) induced 50% reduction of HYAL1 mRNA expression, supporting a role of ERα in HYAL1 gene regulation. Significantly, HYAL-1 activity was also high in the plasma of patients with these EOC subtypes. CONCLUSIONS/SIGNIFICANCE This is the first report showing high HYAL-1 levels in EOC and demonstrating HYAL1 gene repression by ERα. Our results identify Hyaluronidase-1 as a potential target/biomarker for clear cell and mucinous EOCs and especially in tumors with low ERα levels.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/blood
- Adenocarcinoma, Clear Cell/enzymology
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/blood
- Adenocarcinoma, Mucinous/enzymology
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/blood
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Culture Media, Conditioned
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hyaluronoglucosaminidase/genetics
- Hyaluronoglucosaminidase/metabolism
- Neoplasms, Glandular and Epithelial/blood
- Neoplasms, Glandular and Epithelial/classification
- Neoplasms, Glandular and Epithelial/enzymology
- Neoplasms, Glandular and Epithelial/genetics
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/classification
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/genetics
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
| | - Lydia Edjekouane
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - André Tremblay
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
- Research Center, Centre hospitalier universitaire Ste-Justine, Montreal, Quebec, Canada
| | - Diane Michèle Provencher
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Euridice Carmona
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Kadirvelraj R, Sennett NC, Polizzi SJ, Weitzel S, Wood ZA. Role of packing defects in the evolution of allostery and induced fit in human UDP-glucose dehydrogenase. Biochemistry 2011; 50:5780-9. [PMID: 21595445 DOI: 10.1021/bi2005637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric feedback inhibition is the mechanism by which metabolic end products regulate their own biosynthesis by binding to an upstream enzyme. Despite its importance in controlling metabolism, there are relatively few allosteric mechanisms understood in detail. This is because allostery does not have an identifiable structural motif, making the discovery of new allosteric enzymes a difficult process. The lack of a conserved motif implies that the evolution of each allosteric mechanism is unique. Here we describe an atypical allosteric mechanism in human UDP-α-d-glucose 6-dehydrogenase (hUGDH) based on an easily acquired and identifiable structural attribute: packing defects in the protein core. In contrast to classic allostery, the active and allosteric sites in hUGDH are present as a single, bifunctional site. Using two new crystal structures, we show that binding of the feedback inhibitor, UDP-α-d-xylose, elicits a distinct induced-fit response; a buried loop translates ∼4 Å along and rotates ∼180° about the main chain axis, requiring surrounding side chains to repack. This allosteric transition is facilitated by packing defects, which negate the steric conformational restraints normally imposed by the protein core. Sedimentation velocity studies show that this repacking favors the formation of an inactive hexameric complex with unusual symmetry. We present evidence that hUGDH and the unrelated enzyme dCTP deaminase have converged to very similar atypical allosteric mechanisms using the same adaptive strategy, the selection for packing defects. Thus, the selection for packing defects is a robust mechanism for the evolution of allostery and induced fit.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
23
|
Jung T, Gross W, Zöller M. CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem 2011; 286:15862-74. [PMID: 21372142 PMCID: PMC3091196 DOI: 10.1074/jbc.m110.208421] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/01/2011] [Indexed: 12/14/2022] Open
Abstract
Tumor progression requires a crosstalk with the tumor surrounding, where the tumor matrix plays an essential role. We recently reported that only the matrix delivered by a CD44v6-competent (ASML(wt)), but not that of a CD44v6-deficient (ASML-CD44v(kd)) rat pancreatic adenocarcinoma line supports metastasis formation. We here describe that this matrix provides an important feedback toward the tumor cell and that CD44v6 accounts for orchestrating signals received from the matrix. ASML(wt) cells contain more hyaluronan synthase-3 and secrete higher amounts of >50 kDa HA than ASML-CD44v(kd) cells, which secrete more hyaluronidase. Only the ASML(wt)-matrix supports migration and apoptosis resistance, which both can be initiated via CD44v6, c-Met, and α6β4 ligand binding and proceed via FAK, PI3K/Akt, and MAPK activation, respectively. However, c-Met- and α6β4-initiated signaling are strongly augmented by the association with CD44v6 as only very weak effects are observed in CD44v6-deficient cells. The same CD44v6-dependent convergence of motility- and apoptosis resistance-related signals also accounts for human tumor lines. Thus, CD44v6 promotes motility and apoptosis resistance via its involvement in assembling a matrix that, in turn, triggers activation of signaling cascades, which proceeds, independent of the initiating receptor-ligand interaction, in a concerted action via CD44v6.
Collapse
Affiliation(s)
- Thorsten Jung
- From the Departments of Tumor Cell Biology, University Hospital of Surgery, and
| | - Wolfgang Gross
- Experimental Surgery, University of Heidelberg, D-69120 Heidelberg, Germany and
| | - Margot Zöller
- From the Departments of Tumor Cell Biology, University Hospital of Surgery, and
- German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs; also known as cancer stem cells), which constitute the minority of cells within the mass of a tumour? CD44 has been implicated as a CIC marker in several malignancies of haematopoietic and epithelial origin. Is this a fortuitous coincidence owing to the widespread expression of the molecule or is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial-mesenchymal transition and resistance to apoptosis?
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery and German Cancer Research Centre, D69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Dosio F, Stella B, Arpicco S, Cattel L. Macromolecules as taxane delivery systems. Expert Opin Drug Deliv 2010; 8:33-55. [DOI: 10.1517/17425247.2011.541437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Chang JY, He RY, Lin HP, Hsu LJ, Lai FJ, Hong Q, Chen SJ, Chang NS. Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2010; 235:796-804. [PMID: 20542955 DOI: 10.1258/ebm.2010.009351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The family of WW domain-containing proteins contains over 2000 members. The small WW domain module is responsible, in part, for protein/protein binding interactions and signaling. Many of these proteins are located at the membrane/cytoskeleton area, where they act as adaptors to receive signals from the cell surface. In this review, we provide molecular insights regarding recent novel findings on signaling from the cell surface toward WW domain-containing oxidoreductase, known as WWOX, FOR or WOX1. More specifically, transforming growth factor beta 1 utilizes cell surface hyaluronidase Hyal-2 (hyaluronoglucosaminidase 2) as a cognate receptor for signaling with WWOX and Smad4 to control gene transcription, growth and death. Complement C1q alone, bypassing the activation of classical pathway, signals a novel event of apoptosis by inducing microvillus formation and WWOX activation. Deficiency in these signaling events appears to favorably support cancer growth.
Collapse
Affiliation(s)
- Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and In Vitro Efficiency. Pharm Res 2009; 27:380-9. [DOI: 10.1007/s11095-009-9997-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 10/15/2009] [Indexed: 01/31/2023]
|
28
|
Kitamura H, Okudela K, Yazawa T, Sato H, Shimoyamada H. Cancer stem cell: implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer 2009; 66:275-81. [PMID: 19716622 DOI: 10.1016/j.lungcan.2009.07.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) theory is currently central to the field of cancer research, because it is not only a matter of academic interest but also crucial in cancer therapy. CSCs share a variety of biological properties with normal somatic stem cells in terms of self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cells in their tumorigenic activity. Thus, CSCs are also termed cancer initiating cells. In this paper, we briefly review hitherto described study results and refer to some excellent review articles to understand the basic properties of CSCs. In addition, we focus upon CSCs of lung cancers, since lung cancer is still increasing in incidence worldwide and remains the leading cause of cancer deaths. Understanding the properties of, and exploring cell markers and signaling pathways specific to, CSCs of lung cancers, will lead to progress in therapy, intervention, and improvement of the prognosis of patients with lung cancer. In the near future, the evaluation of CSCs may be a routine part of practical diagnostic pathology.
Collapse
Affiliation(s)
- Hitoshi Kitamura
- Department of Pathology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | |
Collapse
|
29
|
Stewart C, Brennan B, Leung Y, Little L. MELF pattern invasion in endometrial carcinoma: association with low grade, myoinvasive endometrioid tumours, focal mucinous differentiation and vascular invasion. Pathology 2009; 41:454-9. [DOI: 10.1080/00313020903041135] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 703] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|