1
|
Mould RR, Mackenzie AM, Kalampouka I, Nunn AVW, Thomas EL, Bell JD, Botchway SW. Ultra weak photon emission-a brief review. Front Physiol 2024; 15:1348915. [PMID: 38420619 PMCID: PMC10899412 DOI: 10.3389/fphys.2024.1348915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cells emit light at ultra-low intensities: photons which are produced as by-products of cellular metabolism, distinct from other light emission processes such as delayed luminescence, bioluminescence, and chemiluminescence. The phenomenon is known by a large range of names, including, but not limited to, biophotons, biological autoluminescence, metabolic photon emission and ultraweak photon emission (UPE), the latter of which shall be used for the purposes of this review. It is worth noting that the photons when produced are neither 'weak' nor specifically biological in characteristics. Research of UPE has a long yet tattered past, historically hamstrung by a lack of technology sensitive enough to detect it. Today, as technology progresses rapidly, it is becoming easier to detect and image these photons, as well as to describe their function. In this brief review we will examine the history of UPE research, their proposed mechanism, possible biological role, the detection of the phenomenon, and the potential medical applications.
Collapse
Affiliation(s)
- Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alasdair M Mackenzie
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V W Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
- The Guy Foundation, Beaminster, United Kingdom
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W Botchway
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| |
Collapse
|
2
|
Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur. Int J Mol Sci 2023; 24:ijms24044099. [PMID: 36835509 PMCID: PMC9964618 DOI: 10.3390/ijms24044099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure (12.6 nT covering 0.5 to 20 kHz) on the growth dynamics and invasiveness of M. furfur. The ability to modulate inflammation and innate immunity in normal human keratinocytes was also investigated. Using a microbiological assay, it was possible to demonstrate that, under the influence of uwf-EMF, the invasiveness of M. furfur was drastically reduced (d = 2.456, p < 0.001), while at the same time, its growth dynamic after 72 h having been in contact with HaCaT cells both without (d = 0.211, p = 0.390) and with (d = 0.118, p = 0.438) uwf-EM exposure, were hardly affected. Real-time PCR analysis demonstrated that a uwf-EMF exposure is able to modulate human-β-defensin-2 (hBD-2) in treated keratinocytes and at the same time reduce the expression of proinflammatory cytokines in human keratinocytes. The findings suggest that the underlying principle of action is hormetic in nature and that this method might be an adjunctive therapeutic tool to modulate the inflammatory properties of Malassezia in related cutaneous diseases. The underlying principle of action becomes understandable by means of quantum electrodynamics (QED). Given that living systems consist mainly of water and within the framework of QED, this water, as a biphasic system, provides the basis for electromagnetic coupling. The oscillatory properties of water dipoles modulated by weak electromagnetic stimuli not only affect biochemical processes, but also pave the way for a more general understanding of the observed nonthermal effects in biota.
Collapse
|
3
|
Cell-cell death communication by signals passing through non-aqueous environments: A reply. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Penkov N. Antibodies Processed Using High Dilution Technology Distantly Change Structural Properties of IFNγ Aqueous Solution. Pharmaceutics 2021; 13:1864. [PMID: 34834279 PMCID: PMC8618336 DOI: 10.3390/pharmaceutics13111864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Terahertz spectroscopy allows for the analysis of vibrations corresponding to the large-scale structural movements and collective dynamics of hydrogen-bonded water molecules. Previously, differences had been detected in the emission spectra of interferon-gamma (IFNγ) solutions surrounded by extremely diluted solutions of either IFNγ or antibodies to IFNγ without direct contact compared to a control. Here we aimed to analyse the structural properties of water in a sample of an aqueous solution of IFNγ via terahertz time-domain spectroscopy (THz-TDS). Tubes with the IFNγ solution were immersed in fluidised lactose saturated with test samples (dilutions of antibodies to IFNγ or control) and incubated at 37 °C for 1, 1.5-2, 2.5-3, or 3.5-4 h. Fluidised lactose was chosen since it is an excipient in the manufacture of drugs based on diluted antibodies to IFNγ. After incubation, spectra were recorded within a wavenumber range of 10 to 110 cm-1 with a resolution of 4 cm-1. Lactose saturated with dilutions of antibodies to IFNγ (incubated for more than 2.5 h) changed the structural properties of an IFNγ aqueous solution without direct contact compared to the control. Terahertz spectra revealed stronger intermolecular hydrogen bonds and an increase in the relaxation time of free and weakly bound water molecules. The methodology developed on the basis of THz-TDS could potentially be applied to quality control of pharmaceuticals based on extremely diluted antibodies.
Collapse
Affiliation(s)
- Nikita Penkov
- Laboratory of Optical and Spectral Analysis Methods, Institute of Cell Biophysics RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
5
|
Naumova EV, Vladimirov YA, Beloussov LV, Tuchin VV, Volodyaev IV. Methods of Studying Ultraweak Photon Emission from Biological Objects: I. History, Types and Properties, Fundamental and Application Significance. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921050158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Thackston KA, Deheyn DD, Sievenpiper DF. Limitations on electromagnetic communication by vibrational resonances in biological systems. Phys Rev E 2020; 101:062401. [PMID: 32688526 DOI: 10.1103/physreve.101.062401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/30/2020] [Indexed: 11/07/2022]
Abstract
Previous research in biology and physics speculates that high-frequency electromagnetic fields may be an unexplored method of cellular and subcellular communication. The predominant theory for generating electric fields in the cell is mechanical vibration of charged or polar biomolecules such as cell membranes or microtubules. The challenge to this theory is explaining how high-frequency vibrations would not be overdamped by surrounding biological media. As many of these suspected resonators are too large for atomistic molecular dynamics simulations, accurately modeling biological resonators remains an ongoing challenge. While many resonators have been studied and simulated, the general limitations on communication imposed by energy transfer arguments have not been considered. Starting with energy transfer expressions from coupled-mode theory, we derive expressions for the minimum quality factor (Q factor) required to sustain communication for both near- and far-field interactions. We compare previous simulation studies and our theory. We determine the flexing mode of microtubules as an identified resonance in the literature which meets our criteria. Our results suggest the major obstacle to meeting our criteria for effective electromagnetic communication is the trade-off between the Q factor and the plasma frequency: Resonators must be large enough to have a large Q factor, but small enough to resonate at frequencies greater than the plasma frequency.
Collapse
Affiliation(s)
- Kyle A Thackston
- Department of Electrical Engineering, University of California San Diego, San Diego, California 92161, USA
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, USA
| | - Daniel F Sievenpiper
- Department of Electrical Engineering, University of California San Diego, San Diego, California 92161, USA
| |
Collapse
|
7
|
Madl P, De Filippis A, Tedeschi A. Effects of ultra-weak fractal electromagnetic signals on the aqueous phase in living systems: a test-case analysis of molecular rejuvenation markers in fibroblasts. Electromagn Biol Med 2020; 39:227-238. [PMID: 32447985 DOI: 10.1080/15368378.2020.1762634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Skin aging is primarily associated with the alterations in dermal extracellular matrix, in particular a decrease in collagen type-1 content. Recent studies have shown that collagen-degrading matrix metalloproteinase (MMP-1) is produced by fibroblasts in response to chronoaging, which in human dermal fibroblasts leads to the release of proinflammatory cytokines. Past studies showed that anti-inflammatory capabilities could be induced via non-chemical means. One of these methods makes use of ultra-weak fractal electromagnetic (uwf-EM) signals. Such ultra-/very-low frequency (U/VLF) signals (few nT in intensity and within 0.5-30 kHz) interact with aqueous solutions in living systems. The fractal nature of such EM-signals relates to the self-similar property by which a "cut-out" and magnified piece of this signal reveals again the original. Thus, the aim of this study is twofold, to i) investigate the extent of this modulating effect using Human Dermal Fibroblasts (HDF)-cells, and ii) analyse molecular rejuvenation markers therein. We could demonstrate that a 10 min uwf-EM exposure (prior to incubation) increases type-1 collagen and modulates elastin in human fibroblasts cultured up to 96 h, while at the same time reduces IL-6, TNF-α and MMP-1 (the later three being statistically significant). Such up- respectively down-regulation of corresponding genes are strong indicators of an EM-induced hormetic effect that influences the epigenomic landscape of HDFs. In the Appendix, we present, in the framework of Quantum Field Theory (QFT), water as a biphasic liquid and how its coherent fraction can be affected by uwf-EM signals while at the same time resolving the "kT paradox".
Collapse
Affiliation(s)
- Pierre Madl
- Department of Physics and Biophysics, University of Salzburg , Salzburg, Austria.,Prototyping unit, Edge-Institute Austria at ER-System Mechatronics , Golling, Austria
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania "L. Vanvitelli" Naples , Italy
| | - Alberto Tedeschi
- Research & Development Unit, Edge-Institute Italia at WHB , Milano, Italy
| |
Collapse
|
8
|
Murugan NJ, Persinger MA, Karbowski LM, Dotta BT. Ultraweak Photon Emissions as a Non-Invasive, Early-Malignancy Detection Tool: An In Vitro and In Vivo Study. Cancers (Basel) 2020; 12:E1001. [PMID: 32325697 PMCID: PMC7226102 DOI: 10.3390/cancers12041001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Early detection of cancer improves treatment options and increases survival. Building upon previous demonstrations that ultraweak photon emissions (UPE) could be measured to detect cancers, we designed an early detection protocol to test malignancy in both in vitro and in vivo systems. Photons were measured for 100 s from plates containing ~1 million malignant or non-malignant cells from 13 different types of human and mouse cell lines. Tumor cells displayed increased photon emissions compared to non-malignant cells. Examining the standardized Spectral Power Density (SPD) configurations for flux densities between 0.1 and 25 Hz (Δf = 0.01 Hz) yielded 90% discriminant accuracy. The emission profiles of mice that had been injected with melanoma cells could be differentiated from a non-malignant reference groups as early as 24 h post-injection. The peak SPD associated with photon emissions was ~20 Hz for both malignant cell cultures and mice with growing tumors. These results extend the original suggestion by Takeda and his colleagues (2004) published in this journal concerning the potential diagnostic value of UPEs for assessing proliferations of carcinoma cells. The specificity of the spectral profile in the 20 Hz range may be relevant to the consistent efficacy reported by several authors that weak magnetic field pulsations within this frequency range can diminish the growth of malignant cells in culture and tumor weights in mice.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Michael A. Persinger
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Lukasz M. Karbowski
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
| | - Blake T. Dotta
- Behavioural Neuroscience & Biomolecular Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada; (N.J.M.); (M.A.P.); (L.M.K.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
9
|
Tessaro LWE, Dotta BT, Persinger MA. Bacterial biophotons as non-local information carriers: Species-specific spectral characteristics of a stress response. Microbiologyopen 2019; 8:e00761. [PMID: 30381897 PMCID: PMC6562132 DOI: 10.1002/mbo3.761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Studies by Alexander Gurwitsch in the 1920' s with onion root cells revealed the phenomenon of mitogenetic radiation. Subsequent works by Popp, Van Wijk, Quickenden, Tillbury, and Trushin have demonstrated a link between Gurwitsch's mitogenetic radiation and the biophoton, emissions of light correlated with biological processes. The present study seeks to expand upon these and other works to explore whether biophoton emissions of bacterial cultures is used as an information carrier of environmental stress. Bacterial cultures (Escherichia coli and Serratia marcescens) were incubated for 24 hr in 5 ml of nutrient broth to stationary phase and cell densities of ~107 cells/mL. Cultures of E. coli were placed upon a photomultiplier tube housed within a dark box. A second bacterial culture, either E. coli or S. marcescens, was placed in an identical dark box at a distance of 5 m and received injections of hydrogen peroxide. Spectral analyses revealed significant differences in peak frequencies of 7.2, 10.1, and 24.9 Hz in the amplitude modulation of the emitted biophoton signal with respect to whether a peroxide injection occurred or not, and whether the species receiving the injection was E. coli or S. marcescens. These and the subsequent results of discriminant functions suggest that bacteria may release biophotons as a non-local communication system in response to stress, and that these biophotons are species specific.
Collapse
Affiliation(s)
- Lucas W. E. Tessaro
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| | - Blake T. Dotta
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
| | - Michael A. Persinger
- Behavioural Neuroscience ProgramLaurentian UniversitySudburyOntarioCanada
- Department of PsychologyLaurentian UniversitySudburyOntarioCanada
- Interdisciplinary Human StudiesLaurentian UniversitySudburyOntarioCanada
| |
Collapse
|
10
|
The Double-Aspect of Life. BIOLOGY 2018; 7:biology7020028. [PMID: 29735890 PMCID: PMC6023002 DOI: 10.3390/biology7020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Life is based on two aspects: matter and a non-material, electrical component. In a dynamic system of reciprocal causality, matter and the so-called bioelectricity interact with one another, forming a functional unity. The aim of this essay is to summarize evidence for bioelectricity, for the sensitivity of biosystems to external physical factors and for the interactions of internal bioelectricity with internal biochemical structures. I propose non-material information of bioelectrical states to be just as inheritable from generation to generation as is the material genetic code.
Collapse
|
11
|
Tozzi A, Peters JF, Déli E. Towards plasma-like collisionless trajectories in the brain. Neurosci Lett 2018; 662:105-109. [PMID: 29031780 DOI: 10.1016/j.neulet.2017.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022]
Abstract
Plasma studies depict collisionless, collective movements of charged particles. In touch with these concepts, originally developed by the far-flung branch of high energy physics, here we evaluate the role of collective behaviors and long-range functional couplingsof charged particlesin brain dynamics. We build a novel, empirically testable, brain model which takes into account collisionless movements of charged particles in a system, the brain, equipped with oscillations. The model is cast in a mathematical fashion with the potential of being operationalized, because it can be assessed in terms of McKean-Vlasov equations, derived from the classical Vlasov equations for plasma. A plasma-like brain also elucidates cortical phase transitions in the context of a brain at the edge of chaos, describing the required order parameters. In sum, showing how the brain might exhibit plasma-like features,we go through the concept of holistic behavior of nervous functions.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas 1155 Union Circle, #311427 Denton, TX 76203-5017, USA; Computational Intelligence Laboratory, University of Manitoba, WPG, MB, R3T 5V6, Canada.
| | - James F Peters
- Department of Electrical and Computer Engineering, University of Manitoba 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada; Department of Mathematics, Adıyaman University, 02040 Adıyaman, Turkey, Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University 02040 Adıyaman, Turkey; Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University 02040 Adıyaman, Turkey; Computational Intelligence Laboratory, University of Manitoba, WPG, MB, R3T 5V6, Canada.
| | - Eva Déli
- Institute for Consciousness Studies (ICS) Benczurter 9 Nyiregyhaza, 4400 Hungary.
| |
Collapse
|
12
|
Endogenous physical regulation of population density in the freshwater protozoan Paramecium caudatum. Sci Rep 2017; 7:13800. [PMID: 29062014 PMCID: PMC5653844 DOI: 10.1038/s41598-017-14231-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Studies confirm physical long-range cell-cell communication, most evidently based on electromagnetic fields. Effects concern induction or inhibition of cell growth. Their natural function is unclear. With the protozoan Paramecium caudatum I tested whether the signals regulate cell density and are electromagnetic. Up to 300 cells/mL, cell growth in clones of this study is decreasingly pronounced. Using cuvettes as chemical barriers enabling physical communication I placed 5 indicator cells/mL, the inducer populations, into smaller cuvettes that stand in bigger and contained 50, 100, 200 or 300 cells/mL. Under conditions of total darkness such pairs were mutually exposed for 48 hours. The hypothesis was that indicator cells, too, grow less the more neighbor cells there are. The bigger inducer populations were in the beginning the less they grew. The indicator populations grew accordingly; the more cells they were surrounded by the less they grew. The suppressing neighbors-effect disappeared when inner cuvettes were shielded by graphite known to shield electromagnetic radiation from GHz to PHz, i.e. to absorb energy from microwaves to light. These are the first results demonstrating non-contact physical quorum sensing for cell population density regulation. I assume rules intrinsic to electromagnetic fields interacting with matter and life.
Collapse
|
13
|
Hammerschlag R, Levin M, McCraty R, Bat N, Ives JA, Lutgendorf SK, Oschman JL. Biofield Physiology: A Framework for an Emerging Discipline. Glob Adv Health Med 2015; 4:35-41. [PMID: 26665040 PMCID: PMC4654783 DOI: 10.7453/gahmj.2015.015.suppl] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Collapse
Affiliation(s)
- Richard Hammerschlag
- The Institute for Integrative Health, Baltimore, Maryland; Consciousness and Healing Initiative, San Diego, California; Oregon College of Oriental Medicine, Portland (Dr Hammerschlag)
| | - Michael Levin
- Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts (Dr Levin)
| | - Rollin McCraty
- Institute of HeartMath, Boulder Creek, California (Dr McCraty)
| | - Namuun Bat
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Ms Bat)
| | - John A Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, Virginia (Dr Ives)
| | - Susan K Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, and Urology, University of Iowa, Iowa City (Dr Lutgendorf)
| | - James L Oschman
- Nature's Own Research Association, Dover, New Hampshire (Dr Oschman)
| |
Collapse
|
14
|
Scholkmann F. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci 2015; 14:135-53. [DOI: 10.1142/s0219635215300115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Tozzi P. A unifying neuro-fasciagenic model of somatic dysfunction - Underlying mechanisms and treatment - Part II. J Bodyw Mov Ther 2015; 19:526-43. [PMID: 26118526 DOI: 10.1016/j.jbmt.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
This paper offers an extensive review of the main fascia-mediated mechanisms underlying various therapeutic processes of clinical relevance for manual therapy. The concept of somatic dysfunction is revisited in light of the several fascial influences that may come into play during and after manual treatment. A change in perspective is thus proposed: from a nociceptive model that for decades has viewed somatic dysfunction as a neurologically-mediated phenomenon, to a unifying neuro-fascial model that integrates neural influences into a multifactorial and multidimensional interpretation of manual therapeutic effects as being partially, if not entirely, mediated by the fascia. By taking into consideration a wide spectrum of fascia-related factors - from cell-based mechanisms to cognitive and behavioural influences - a model emerges suggesting, amongst other results, a multidisciplinary-approach to the intervention of somatic dysfunction. Finally, it is proposed that a sixth osteopathic 'meta-model' - the connective tissue-fascial model - be added to the existing five models in osteopathic philosophy as the main interface between all body systems, thus providing a structural and functional framework for the body's homoeostatic potential and its inherent abilities to heal.
Collapse
Affiliation(s)
- Paolo Tozzi
- School of Osteopathy C.R.O.M.O.N., Rome, Italy; C.O.ME. Collaboration, Pescara, Italy.
| |
Collapse
|
16
|
Farhadi A. Non-Chemical Distant Cellular Interactions as a potential confounder of cell biology experiments. Front Physiol 2014; 5:405. [PMID: 25368582 PMCID: PMC4201089 DOI: 10.3389/fphys.2014.00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022] Open
Abstract
Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Digestive Disease Center, Memorial Care Medical GroupCosta Mesa, CA, USA
| |
Collapse
|
17
|
Structure–affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist. Bioorg Med Chem 2014; 22:4770-83. [DOI: 10.1016/j.bmc.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 11/23/2022]
|
18
|
Prasad A, Rossi C, Lamponi S, Pospíšil P, Foletti A. New perspective in cell communication: potential role of ultra-weak photon emission. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:47-53. [PMID: 24703082 DOI: 10.1016/j.jphotobiol.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 01/11/2023]
Abstract
Evolution has permitted a wide range of medium for communication between two living organism varying from information transfer via chemical, direct contact or through specialized receptors. Past decades have evidenced the existence of cell-to-cell communication in living system. Several studies have demonstrated the existence of one cell system influencing the other cells by means of electromagnetic radiations investigated by the stimulation of cell division, neutrophils activation, respiratory burst induction and alteration in the developmental stages, etc. The responses were evaluated by methods such as chemiluminescence, ultra-weak photon emission, generation of free oxygen radicals, and level of thiobarbituric acid-reactive substances (TBARS). The cellular communication is hypothesized to occur via several physical phenomenon's, however the current review attempts to provide thorough information and a detailed overview of experimental results on the cell-to-cell communication observed in different living system via ultra-weak photon emission to bring a better understanding and new perspective to the phenomenon.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della, Lastruccia 3, Sesto Fiorentino, FI, Italy.
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2-53100 Siena, Italy
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Alberto Foletti
- Laboratory of Applied Mathematics and Physics, Department of Innovative Technologies - DTI, University of Applied Sciences of Southern Switzerland-SUPSI, Manno, Switzerland
| |
Collapse
|
19
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. HOMEOPATHY 2014; 103:22-43. [DOI: 10.1016/j.homp.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
|
20
|
Kučera O, Cifra M. Cell-to-cell signaling through light: just a ghost of chance? Cell Commun Signal 2013; 11:87. [PMID: 24219796 PMCID: PMC3832222 DOI: 10.1186/1478-811x-11-87] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/02/2013] [Indexed: 11/21/2022] Open
Abstract
Despite the large number of reports attributing the signaling between detached cell cultures to the electromagnetic phenomena, almost no report so far included a rigorous analysis of the possibility of such signaling. In this paper, we examine the physical feasibility of the electromagnetic communication between cells, especially through light, with regard to the ambient noise illumination. We compare theoretically attainable parameters of communication with experimentally obtained data of the photon emission from cells without a specially pronounced ability of bioluminescence. We show that the weak intensity of the emission together with an unfavorable signal-to-noise ratio, which is typical for natural conditions, represent an important obstacle to the signal detection by cells.
Collapse
Affiliation(s)
- Ondřej Kučera
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czechia.
| | | |
Collapse
|
21
|
Combining Spontaneous Polymerization and Click Reactions for the Synthesis of Polymer Brushes: A “Grafting Onto” Approach. Chemistry 2013; 19:9710-21. [DOI: 10.1002/chem.201202534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 04/17/2013] [Indexed: 11/07/2022]
|
22
|
Leone G, Bidini A, Lamponi S, Magnani A. States of water, surface and rheological characterisation of a new biohydrogel as articular cartilage substitute. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| | | | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy; University of Siena; Via Aldo Moro 2 53100 Siena Italy and INSTM
| |
Collapse
|
23
|
Paolino M, Ennen F, Lamponi S, Cernescu M, Voit B, Cappelli A, Appelhans D, Komber H. Cyclodextrin-Adamantane Host–Guest Interactions on the Surface of Biocompatible Adamantyl-Modified Glycodendrimers. Macromolecules 2013. [DOI: 10.1021/ma400352m] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| | - Franka Ennen
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
- Organic Chemistry
of Polymers, Technische Universität Dresden, 01062 Dresden,
Germany
| | - Stefania Lamponi
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Mihaela Cernescu
- Institute of Physical
and Theoretical
Chemistry, Johann-Wolfgang-Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
- Organic Chemistry
of Polymers, Technische Universität Dresden, 01062 Dresden,
Germany
| | - Andrea Cappelli
- Dipartimento di Biotecnologie,
Chimica e Farmacia and European Research Centre for Drug Discovery
and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| | - Hartmut Komber
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden,
Germany
| |
Collapse
|
24
|
Mugnaini C, Pedani V, Casu A, Lobina C, Casti A, Maccioni P, Porcu A, Giunta D, Lamponi S, Solinas M, Dragoni S, Valoti M, Colombo G, Castelli MP, Gessa GL, Corelli F. Synthesis and pharmacological characterization of 2-(acylamino)thiophene derivatives as metabolically stable, orally effective, positive allosteric modulators of the GABAB receptor. J Med Chem 2013; 56:3620-35. [PMID: 23544432 DOI: 10.1021/jm400144w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two recently reported hit compounds, COR627 and COR628, underpinned the development of a series of 2-(acylamino)thiophene derivatives. Some of these compounds displayed significant activity in vitro as positive allosteric modulators of the GABAB receptor by potentiating GTPγS stimulation induced by GABA at 2.5 and 25 μM while failing to exhibit intrinsic agonist activity. Compounds were also found to be effective in vivo, potentiating baclofen-induced sedation/hypnosis in DBA mice when administered either intraperitoneally or intragastrically. Although displaying a lower potency in vitro than the reference compound GS39783, the new compounds 6, 10, and 11 exhibited a higher efficacy in vivo: combination of these compounds with a per se nonsedative dose of baclofen resulted in shorter onset and longer duration of the loss of righting reflex in mice. Test compounds showed cytotoxic effects at concentrations comparable to or higher than those of GS39783 or BHF177.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
26
|
Gemma S, Camodeca C, Brindisi M, Brogi S, Kukreja G, Kunjir S, Gabellieri E, Lucantoni L, Habluetzel A, Taramelli D, Basilico N, Gualdani R, Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Martin RE, Summers RL, Lamponi S, Savini L, Fiorini I, Valoti M, Novellino E, Campiani G, Butini S. Mimicking the Intramolecular Hydrogen Bond: Synthesis, Biological Evaluation, and Molecular Modeling of Benzoxazines and Quinazolines as Potential Antimalarial Agents. J Med Chem 2012; 55:10387-404. [DOI: 10.1021/jm300831b] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Gemma
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Caterina Camodeca
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Margherita Brindisi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Simone Brogi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Gagan Kukreja
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Sanil Kunjir
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Emanuele Gabellieri
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Leonardo Lucantoni
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Scuola di Scienze del Farmaco
e dei Prodotti della Salute, Università di Camerino, 62032
Camerino (MC), Italy
| | - Annette Habluetzel
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Scuola di Scienze del Farmaco
e dei Prodotti della Salute, Università di Camerino, 62032
Camerino (MC), Italy
| | - Donatella Taramelli
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Nicoletta Basilico
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Roberta Gualdani
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Gianluca Bartolommei
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Maria Rosa Moncelli
- Department of Chemistry “Ugo
Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Rowena E. Martin
- Research School of Biology,
The Australian National University, Canberra ACT 0200, Australia
| | - Robert L. Summers
- Research School of Biology,
The Australian National University, Canberra ACT 0200, Australia
| | - Stefania Lamponi
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Luisa Savini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Isabella Fiorini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Massimo Valoti
- Dipartimento di Neuroscienze,
University of Siena, via A. Moro 2, Siena, Italy
| | - Ettore Novellino
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- Dipartimento di Chimica Farmaceutica
e Tossicologica, University of Naples Federico II, Via D. Montesano
49, 80131 Naples, Italy
| | - Giuseppe Campiani
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Stefania Butini
- European Research Centre for
Drug Discovery and Development (NatSynDrugs), University of Siena,
Via Aldo Moro, 53100 Siena, Italy
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| |
Collapse
|
27
|
Bonechi C, Martini S, Ciani L, Lamponi S, Rebmann H, Rossi C, Ristori S. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS One 2012; 7:e41438. [PMID: 22936976 PMCID: PMC3425584 DOI: 10.1371/journal.pone.0041438] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/05/2022] Open
Abstract
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol found in various plants, especially in the skin of red grapes. The effect of resveratrol on human health is the topic of numerous studies. In fact this molecule has shown anti-cancer, anti-inflammatory, blood-sugar-lowering ability and beneficial cardiovascular effects. However, for many polyphenol compounds of natural origin bioavailability is limited by low solubility in biological fluids, as well as by rapid metabolization in vivo. Therefore, appropriate carriers are required to obtain efficient therapeutics along with low administration doses. Liposomes are excellent candidates for drug delivery purposes, due to their biocompatibility, wide choice of physico-chemical properties and easy preparation. In this paper liposome formulations made by a saturated phosphatidyl-choline (DPPC) and cholesterol (or its positively charged derivative DC-CHOL) were chosen to optimize the loading of a rigid hydrophobic molecule such as resveratrol. Plain and resveratrol loaded liposomes were characterized for size, surface charge and structural details by complementary techniques, i.e. Dynamic Light Scattering (DLS), Zeta potential and Small Angle X-ray Scattering (SAXS). Nuclear and Electron Spin magnetic resonances (NMR and ESR, respectively) were also used to gain information at the molecular scale. The obtained results allowed to give an account of loaded liposomes in which resveratrol interacted with the bilayer, being more deeply inserted in cationic liposomes than in zwitterionic liposomes. Relevant properties such as the mean size and the presence of oligolamellar structures were influenced by the loading of RESV guest molecules. The toxicity of all these systems was tested on stabilized cell lines (mouse fibroblast NIH-3T3 and human astrocytes U373-MG), showing that cell viability was not affected by the administration of liposomial resveratrol.
Collapse
Affiliation(s)
- Claudia Bonechi
- Pharmaceutical and Applied Chemistry Departments & CSGI, University of Siena, Siena, Italy
| | - Silvia Martini
- Pharmaceutical and Applied Chemistry Departments & CSGI, University of Siena, Siena, Italy
| | - Laura Ciani
- Chemistry Department “Ugo Schiff” & CSGI, University of Florence, Sesto Fiorentino, Italy
| | - Stefania Lamponi
- Pharmaceutical and Applied Chemistry Departments & CSGI, University of Siena, Siena, Italy
| | | | - Claudio Rossi
- Pharmaceutical and Applied Chemistry Departments & CSGI, University of Siena, Siena, Italy
| | - Sandra Ristori
- Chemistry Department “Ugo Schiff” & CSGI, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| |
Collapse
|
28
|
Gemma S, Camodeca C, Sanna Coccone S, Joshi BP, Bernetti M, Moretti V, Brogi S, Bonache de Marcos MC, Savini L, Taramelli D, Basilico N, Parapini S, Rottmann M, Brun R, Lamponi S, Caccia S, Guiso G, Summers RL, E. Martin R, Saponara S, Gorelli B, Novellino E, Campiani G, Butini S. Optimization of 4-Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure–Activity Relationships, in Vivo Studies, and Preliminary Toxicity Profiling. J Med Chem 2012; 55:6948-67. [DOI: 10.1021/jm300802s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Gemma
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Caterina Camodeca
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Salvatore Sanna Coccone
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Bhupendra P. Joshi
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Matteo Bernetti
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Vittoria Moretti
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Simone Brogi
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | | | - Luisa Savini
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Donatella Taramelli
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Dipartimento
di Scienze Farmacologiche
e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Nicoletta Basilico
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Dipartimento di Scienze Biomediche,
Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Silvia Parapini
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
- Dipartimento
di Scienze Farmacologiche
e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel,
Switzerland and University of Basel, CH-4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel,
Switzerland and University of Basel, CH-4003 Basel, Switzerland
| | - Stefania Lamponi
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Silvio Caccia
- Istituto di Ricerche Farmacologiche “Mario Negri”, Via la Masa
19, 20156 Milano, Italy
| | - Giovanna Guiso
- Istituto di Ricerche Farmacologiche “Mario Negri”, Via la Masa
19, 20156 Milano, Italy
| | - Robert L. Summers
- Research School of Biology, The Australian National University, Canberra ACT 0200,
Australia
| | - Rowena E. Martin
- Research School of Biology, The Australian National University, Canberra ACT 0200,
Australia
| | - Simona Saponara
- Dipartimento di
Neuroscienze, University of Siena, via
A. Moro, 53100, Siena, Italy
| | - Beatrice Gorelli
- Dipartimento di
Neuroscienze, University of Siena, via
A. Moro, 53100, Siena, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Campiani
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| | - Stefania Butini
- CIRM Centro Interuniversitario
di Ricerche sulla Malaria, Università di Torino, Torino, Italy
| |
Collapse
|