1
|
Maruthai S, Thanarajan T, Ramesh T, Rajendran S. Multi-axis transformer based U-Net with class balanced ensemble model for lung disease classification using X-ray images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:540-552. [PMID: 40343880 DOI: 10.1177/08953996251317416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background: Chest X-rays are an essential diagnostic tool for identifying chest disorders because of its high sensitivity in detecting pathological anomalies in the lungs. Classification models based on conventional Convolutional Neural Networks (CNNs) are adversely affected due to their localization bias. Objective: In this paper, a new Multi-Axis Transformer based U-Net with Class Balanced Ensemble (MaxTU-CBE) is proposed to improve multi-label classification performance. Methods: This may be the first attempt to simultaneously integrate the benefits of hierarchical Multi-Axis Transformer into the encoder and decoder of the traditional U-shaped structure for improving the semantic segmentation superiority of lung image. Results: A key element of MaxTU-CBE is the Contextual Fusion Engine (CFE), which uses the self-attention mechanism to efficiently create global interdependence between features of various scales. Also, deep CNN incorporate ensemble learning to address the issue of class unbalanced learning. Conclusions: According to experimental findings, our suggested MaxTU-CBE outperforms the competing BiDLSTM classifier by 1.42% and CBIR-CSNN techniques by 5.2% in multi-label classification performance.
Collapse
Affiliation(s)
- Suresh Maruthai
- Department of Electronics and Communication Engineering, St Joseph's College of Engineering, Chennai, India
| | - Tamilvizhi Thanarajan
- Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India
| | - T Ramesh
- Department of Computer Science & Engineering, R.M.K Engineering College, Chennai, India
| | - Surendran Rajendran
- Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
2
|
Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ballal S, Sharma R, Debnath S, Sinha A, Rekha A, Khan NH, Alrashoud MM, Kamal M, Imran M. Pathological interplay of NF-κB and M1 macrophages in chronic inflammatory lung diseases. Pathol Res Pract 2025; 269:155903. [PMID: 40081284 DOI: 10.1016/j.prp.2025.155903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis depend on the pathology of the nuclear factor kappa B (NF-κB) signalling pathway and M1 macrophage polarization. This review discusses the intimate molecular interactions and processes that modulate NF-κB's promotion of M1 macrophages and chronic inflammation/tissue damage within the confines of this review. NF-κB activation in macrophages produces pro-inflammatory mediators (cytokines - TNFα, IL6, IL1β, and reactive oxygen species (ROS), further increasing airway remodeling and fibrosis. MAPK, JAK-STAT, and PI3K-Akt signalling systems cross-talked with the pathway, amplifying its effect on lung disease progression. Therapeutic strategies focused on inhibiting this axis, including inhibition of NF-κB and small molecule/modulation of macrophage polarization, represent potential ways to attenuate inflammation and promote tissue repair. The potential of precision medicine is illustrated by natural compounds such as curcumin and resveratrol and innovative RNA-based and nanoparticle delivery systems. Despite these challenges, specificity, minimizing systemic side effects, and optimized delivery methods remain difficult. To develop targeted therapies, more research must be conducted to refine targeted approaches, including immune profiling and single-cell analysis. This review aims to advance the management of hard-to-treat inflammatory lung diseases by addressing these complexities.
Collapse
Affiliation(s)
- Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Sourav Debnath
- Chandigarh pharmacy college, Chandigarh Group of colleges, Jhanjeri, Mohali 140307, Punjab, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - A Rekha
- Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | | | - Muhanad Mubarak Alrashoud
- Department of Inpatient Pharmacy, Dr. Sulaiman Alhabib Hospital, Alhamra Branch, Riyadh 13333, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
3
|
Li X, Mo Y, Shang S, Wu M, Ma S, Zhai Z, Song Q, Chen D. Gut Escherichia coli promotes lung cancer by increasing circulating STAMBP production. Discov Oncol 2025; 16:459. [PMID: 40180620 PMCID: PMC11968627 DOI: 10.1007/s12672-025-02206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Excessive abundance of gut pathogens and inflammatory lung damage are potential risk factors for lung cancer. Nevertheless, the exact function of inflammatory proteins in mediating the nexus between gut microbiota and lung cancer remains elusive. METHODS We first executed Mendelian randomization analysis with the inverse variance weighting method as the primary method, followed by a sensitivity analysis of the results. Finally, we carried out in vitro experiments and database analyses to corroborate our conclusions. RESULTS After multiple tests, we identified that the gut genus Parasutterella and species Escherichia coli (E. coli) were tied a heightened risk of lung cancer, while Bacteroides salyersiae was a protective factor against lung cancer. Circulating STAM-binding protein (STAMBP) and C-C Motif Chemokine Ligand 23 were considered potential risk factors for lung cancer. In vitro experimental results indicated that the E. coli supernatant significantly induced lung cancer cell proliferation and cell cycle transition but suppressed cell apoptosis. Mechanistically, E. coli increases the production of STAMBP to promote lung cancer progression. CONCLUSIONS Our results indicated that gut E. coli can potentially increase STAMBP secretion, thereby promoting lung cancer progression. This research delivers a new viewpoint for analyzing the carcinogenic mechanism of E. coli as well as the subsequent prevention and management of lung cancer.
Collapse
Affiliation(s)
- Xinpei Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - You Mo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Shang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Wu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuling Ma
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zijun Zhai
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Qian Song
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
4
|
Zheng Z, Qiao X, Yin J, Kong J, Han W, Qin J, Meng F, Tian G, Feng X. Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review). Int J Mol Med 2025; 55:38. [PMID: 39749711 PMCID: PMC11722059 DOI: 10.3892/ijmm.2024.5479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.
Collapse
Affiliation(s)
- Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junjie Kong
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Wanqing Han
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jing Qin
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fanda Meng
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
5
|
Ha AW, Meliton LN, Chen W, Wang L, Maienschein‐Cline M, Jacobson JR, Letsiou E, Dudek SM. Epigenetic mechanisms mediate cytochrome P450 1A1 expression and lung endothelial injury caused by MRSA in vitro and in vivo. FASEB J 2024; 38:e70205. [PMID: 39588951 PMCID: PMC11590412 DOI: 10.1096/fj.202401812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene. Subsequent experiments confirm that MRSA increases CYP1A1 protein and mRNA expression, and its enzymatic activity in EC. Epigenetic inhibitors (C646, RVX-208) reduce MRSA-induced CYP1A1 expression and inflammatory responses, including cytokine release and adhesion molecule expression. Inhibition of the Aryl hydrocarbon receptor (Ahr), a known mediator of CYP1A1 expression, blocks MRSA-induced upregulation of CYP1A1 mRNA and protein expression, enzyme activity, and cytokine release. Reduction of CYP1A1 protein expression by siRNA or inhibition of its activity by rhapontigenin attenuated MRSA-induced EC permeability and inflammatory responses. In a mouse model of MRSA-induced acute lung injury (ALI), inhibition of CYP1A1 activity by rhapontigenin improved multiple indices of ALI, including bronchoalveolar lavage (BAL) protein concentration, cytokine levels, and markers of endothelial damage. Analysis of publicly available data suggests upregulation of CYP1A1 expression in ARDS patients compared to ICU controls. In summary, these studies provide new insights into MRSA-induced lung injury and identify a novel functional role for epigenetic upregulation of CYP1A1 in lung EC during ARDS pathogenesis.
Collapse
Affiliation(s)
- Alison W. Ha
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lucille N. Meliton
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Mark Maienschein‐Cline
- Research Informatics Core, Research Resources CenterUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
6
|
Jin Y, Zhu K, Wu S, He S, Cao C. Biomarkers of Prothrombotic State and Risk Assessment of Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:2273-2283. [PMID: 39416877 PMCID: PMC11480642 DOI: 10.2147/copd.s466563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Background Epidemiologic studies have shown that patients with acute exacerbation of COPD (AECOPD) suffer from morbidity and mortality from venous thromboembolism (VTE) and poor diagnosis. Von Willebrand factor (vWF) and plasminogen activator inhibitor type-1 (PAI-1) are frequently investigated in COPD as crucial parameters for coagulation and fibrinolysis. Nevertheless, the role of vWF and PAI-1 in AECOPD needs further exploration. Objective We sought to evaluate the hypercoagulability in AECOPD and investigate the association of plasma vWF and PAI-1 with occurrence and exacerbation risk of AECOPD patients. Methods Fifty-seven AECOPD patients and 34 control subjects were enrolled in our study. The concentrations of plasma vWF and PAI-1 antigens were measured by ELISA kit. Independent samples t-test or Wilcoxon rank sum test was applied for group comparison. Spearman correlation analysis, subject work curve (ROC) analysis, and Logistic regression were used to evaluate the role of the plasma vWF and PAI-1 in AECOPD. Results We observed increased vWF (770.15 ± 325.52 vs 327.62 ± 210.97 ng/mL, P < 0.001) and PAI-1 (0.47 vs 0.17 ng/mL, P < 0.001) levels in AECOPD patients compared with control subjects. Both vWF and PAI-1 are closely related to COPD (vWF: AUC = 0.8741, P < 0.001; PAI-1: AUC = 0.8222, P < 0.001). Moreover, elevated vWF could be an independent risk factor for COPD (OR = 1.01, 95% CI: 1.00-1.01, P = 0.01). We also discovered higher plasma levels of vWF and PAI-1 in the COPD "E" group in contract to "AB" group (vWF: 966.29 ± 251.18 vs 552.21 ± 253.28, P < 0.0001; PAI-1: 1.02 vs 0.38, P = 0.003). And vWF levels increased with increasing COPD exacerbation risk, moreover, plasma vWF positively related with patients' CAT scores and SGRQ scores. In addition, plasma vWF and PAI-1 correlated with each other in total participants and AECOPD subgroup analysis. Conclusion This study demonstrated that AECOPD patients have a prothrombotic state, as demonstrated by vWF and PAI-1 levels in plasma compared with those in control subjects, and the prothrombotic state increases with increasing COPD exacerbation risk.
Collapse
Affiliation(s)
- Yan Jin
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, People’s Republic of China
| | - Ke Zhu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Shiyu Wu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Shiyi He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
7
|
Akhtar S, Ahmad F, Alam M, Ansari AW, Uddin S, Steinhoff M, Buddenkotte J, Ahmad A, Datsi A. Interleukin-31: The Inflammatory Cytokine Connecting Pruritus and Cancer. FRONT BIOSCI-LANDMRK 2024; 29:312. [PMID: 39344323 DOI: 10.31083/j.fbl2909312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor β chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Angeliki Datsi
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
8
|
Campisi M, Cannella L, Bordin A, Moretto A, Scapellato ML, Mason P, Liviero F, Pavanello S, on behalf of Occupational Medicine Working Group. Revealing the Hidden Impacts: Insights into Biological Aging and Long-Term Effects in Pauci- and Asymptomatic COVID-19 Healthcare Workers. Int J Mol Sci 2024; 25:8056. [PMID: 39125624 PMCID: PMC11311509 DOI: 10.3390/ijms25158056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19, in accelerating cellular biological aging. We investigated early molecular markers-DNA methylation age (DNAmAge) and telomere length (TL)-in blood leukocytes, nasal cells (NCs), and induced sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected during the first pandemic wave (February-May 2020), compared to COPD patients, model for "aged lung". Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac balance assessments, heart rate variability (HRV), and pulmonary function tests were collected. Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels, medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels, and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority of the general population.
Collapse
Affiliation(s)
- Manuela Campisi
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Luana Cannella
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Anna Bordin
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Angelo Moretto
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Scapellato
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Paola Mason
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Filippo Liviero
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Sofia Pavanello
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | | |
Collapse
|
9
|
Guan C, Kong L. Mass spectrometry imaging in pulmonary disorders. Clin Chim Acta 2024; 561:119835. [PMID: 38936534 DOI: 10.1016/j.cca.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Mass Spectrometry Imaging (MSI) represents a novel and advancing technology that offers unparalleled in situ characterization of tissues. It provides comprehensive insights into the chemical structures, relative abundances, and spatial distributions of a vast array of both identified and unidentified endogenous and exogenous compounds, a capability not paralleled by existing analytical methodologies. Recent scholarly endeavors have increasingly explored the utility of MSI in the adjunct diagnosis and biomarker research of pulmonary disorders, including but not limited to lung cancer. Concurrently, MSI has proven instrumental in elucidating the spatiotemporal dynamics of various pharmacological agents. This review concisely delineates the fundamental principles underpinning MSI, its applications in pulmonary disease diagnosis, biomarker discovery, and drug distribution investigations. Additionally, it presents a forward-looking perspective on the prospective trajectories of MSI technological advancements.
Collapse
Affiliation(s)
- Chunliu Guan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
10
|
Roy SK, Srivastava S, McCance C, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Clinical significance of PNO1 as a novel biomarker and therapeutic target of hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18295. [PMID: 38722284 PMCID: PMC11081011 DOI: 10.1111/jcmm.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
| | | | - Caroline McCance
- Department of Cellular and Molecular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- Department of GeneticsLouisiana State University Health Sciences Center – New OrleansNew OrleansLouisianaUSA
- GLAXDoverDelawareUSA
| |
Collapse
|
11
|
Martínez-Gómez LE, Martinez-Armenta C, Tusie-Luna T, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Gómez-Martín D, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, de la Peña A, Rodríguez-Pérez JM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Martínez-Ruiz FDJ, Zayago-Angeles DM, Ramos-Tavera L, Méndez-Aguilera A, Camacho-Rea MDC, Ordoñez-Sánchez ML, Segura-Kato Y, Suarez-Ahedo C, Olea-Torres J, Herrera-López B, Pineda C, Martínez-Nava GA, López-Reyes A. The fatal contribution of serine protease-related genetic variants to COVID-19 outcomes. Front Immunol 2024; 15:1335963. [PMID: 38601158 PMCID: PMC11004237 DOI: 10.3389/fimmu.2024.1335963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Rosa P. Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Juan P. Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Aurora de la Peña
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mónica M. Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Gustavo J. Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Felipe de J. Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Dulce M. Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Luis Ramos-Tavera
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Alberto Méndez-Aguilera
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - María del C. Camacho-Rea
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - María L. Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Jessel Olea-Torres
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Gabriela A. Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
12
|
Zheng CY, Yu YX, Bai X. Polycystic ovary syndrome and related inflammation in radiomics; relationship with patient outcome. Semin Cell Dev Biol 2024; 154:328-333. [PMID: 36933953 DOI: 10.1016/j.semcdb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) refers to a condition that often has 'poly' liquid containing sacks around ovaries. It affects reproductive-aged females giving rise to menstrual and related reproductive issues. PCOS is marked by hormonal imbalance often resulting in hyperandrogenism. Inflammation is now considered a central manifestation of this disease with several inflammatory biomarkers such as TNF-α, C-reactive protein and Interleukins-6/18 found to be particularly elevated in PCOS patients. Diagnosis is often late, and MRI-based diagnosis, along with blood-based analyses, are still the best bet for a definitive diagnosis. Radiomics also offers several advantages and should be exploited to the maximum. The mechanisms of PCOS onset and progression are not very well known but pituitary dysfunction and elevated gonadotrophin releasing hormone resulting in high levels of luteinizing hormone are indicative of an activated hypothalamic-pituitary-ovarian axis in PCOS. A number of studies have also identified signaling pathways such as PI3K/Akt, NF-κB and STAT in PCOS etiology. The links of these signaling pathways to inflammation further underline the importance of inflammation in PCOS, which needs to be resolved for improving patient outcomes.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
13
|
Ahmad A. Epigenetic regulation of inflammation. Semin Cell Dev Biol 2024; 154:165-166. [PMID: 37689497 DOI: 10.1016/j.semcdb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Affiliation(s)
- Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
14
|
Akhtar S, Alsayed RKME, Ahmad F, AlHammadi A, Al-Khawaga S, AlHarami SMAM, Alam MA, Al Naama KAHN, Buddenkotte J, Uddin S, Steinhoff M, Ahmad A. Epigenetic control of inflammation in Atopic Dermatitis. Semin Cell Dev Biol 2024; 154:199-207. [PMID: 37120405 DOI: 10.1016/j.semcdb.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a common but also complex chronic, itchy skin condition with underlying inflammation of the skin. This skin ailment is prevalent worldwide and affects people of all ages, particularly children below five years of age. The itching and resulting rashes in AD patients are often the result of inflammatory signals, thus necessitating a closer look at the inflammation-regulating mechanisms for putative relief, care and therapy. Several chemical- as well as genetically-induced animal models have established the importance of targeting pro-inflammatory AD microenvironment. Epigenetic mechanisms are gaining attention towards a better understanding of the onset as well as the progression of inflammation. Several physiological processes with implications in pathophysiology of AD, such as, barrier dysfunction either due to reduced filaggrin / human β-defensins or altered microbiome, reprograming of Fc receptors with resulting overexpression of high affinity IgE receptors, elevated eosinophil numbers or the elevated IL-22 production by CD4 + T cells have underlying epigenetic mechanisms that include differential promoter methylation and/or regulation by non-coding RNAs. Reversing these epigenetic changes has been verified to reduce inflammatory burden through altered secretion of cytokines IL-6, IL-4, IL-13, IL-17, IL-22 etc, with benefit against AD progression in experimental models. A thorough understanding of epigenetic remodeling of inflammation in AD has the potential of opening avenues for novel diagnostic, prognostic and therapeutic options.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
15
|
Ji YZ, Jia LL, Liu SR. Inflammation and epigenetics of sporotrichosis disease. Semin Cell Dev Biol 2024; 154:193-198. [PMID: 36990829 DOI: 10.1016/j.semcdb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/30/2023]
Abstract
Sporotrichosis, a fungal disease, is caused by exposure to soil that harbors Sporothrix schenckii or through inhalation of fungal spores. Skin is the most frequently exposed organ making sporotrichosis a primarily dermal disease. Many described reports in the literature suggest a connection of sporotrichosis with cutaneous squamous cell carcinoma with some connection between initial sporotrichosis diagnosis and treatment followed by development of cutaneous squamous cell carcinoma at the very site. Conversely, there is also evidence for sporotrichosis subsequent to skin cancer diagnosis, even after cancer chemotherapy, which points towards weakening of immune response by cancer chemotherapy leading to attack and infection by Sporothrix schenckii. We also propose and focus on inflammation as the connection between sporotrichosis, cancer and even the metastatic spread of cancer. Inflammation-associated IL-6, IFN-γ, natural killer cells and M2-macrophages possibly mechanistically link sporotrichosis with cancer, particularly cutaneous squamous cell carcinoma. These inflammation related factors/cells are regulated epigenetically raising the possibility of epigenetic regulation of sporotrichosis, which has not been described yet in the available literature. Clinical management of inflammation may thus be effective strategy not just against sporotrichosis but also the related onset of cutaneous squamous cell carcinoma and possibly its metastasis to lymph nodes.
Collapse
Affiliation(s)
- Yong-Zhi Ji
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Li-Li Jia
- Department of Dermatology, FAW General Hospital, Changchun, China
| | - Shi-Rui Liu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Wang D, Yin GH. Non-coding RNAs mediated inflammation in breast cancers. Semin Cell Dev Biol 2024; 154:215-220. [PMID: 37244867 DOI: 10.1016/j.semcdb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Breast cancer is the major cancer that affects women all over the world. The awareness over past several decades has led to intensive screening and detection as well as successful treatments. Still, the breast cancer mortality is unacceptable and needs to be urgently addressed. Among many factors, inflammation has often been associated with tumorigenesis, including breast cancer. More than a third of all breast cancer deaths are marked by deregulated inflammation. The exact mechanisms are still not completely known but among the many putative factors, the epigenetic changes, particularly those mediated by non-coding RNAs are fascinating. microRNAs, long non-coding RNAs as well as circular RNAs seem to impact the inflammation in breast cancer which further highlights their important regulatory role in breast cancer pathogenesis. Understanding inflammation in breast cancer and its regulation by non-coding RNAs is the primary objective of this review article. We attempt to provide the most complete information on the topic in hopes of opening new areas of research and discoveries.
Collapse
Affiliation(s)
- Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Guang-Hao Yin
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
17
|
Li JL, Han YB, Yang GY, Tian M, Shi CS, Tian D. Inflammation in Hernia and the epigenetic control. Semin Cell Dev Biol 2024; 154:334-339. [PMID: 37080853 DOI: 10.1016/j.semcdb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Inflammation is much more intrinsic to hernia then is what is generally appreciated. The occurrence of hernias is associated with swelling, stress and inflammation. Surgery remains an important intervention to treat hernias and for many years, post-surgical levels of inflammatory cytokines have been evaluated to compare the different strategies for their comparative advantages. All surgical procedures elicit some sort of inflammatory response and moreover the meshes used for hernia repair are also associated with elevated inflammatory response, although some favor predominantly a pro-inflammatory response while the other meshes favor anti-inflammatory response. An estimated more than 90% of hernia repairs involve some meshes with polypropylene considered as the gold standard. Efforts are underway to modulate polypropylene meshes associated inflammation through use of alternative materials as well as modifications to polypropylene meshes themselves. In the last one decade, miRNAs have entered hernia research and the data on a role of miRNAs in different hernias is slowly emerging, providing the first evidence of epigenetics in hernia. Some reports are connecting miRNAs with inflammation in hernia. All these aspects, such as, surgery-related to mesh-related inflammation as well as miRNA-related inflammation, are discussed in this article to present an up-to-date information on the topic.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-Yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Chang-Sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Li G, Wu J, Huang Y, Wang Q, Xing T, Ou T. Risk factors for SARS-CoV-2 pneumonia among renal transplant recipients in Beijing Omicron wave. Microbiol Spectr 2024; 12:e0300523. [PMID: 38230924 PMCID: PMC10846129 DOI: 10.1128/spectrum.03005-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease-19 had become an unprecedented global health emergency, quickly expanding worldwide. Omicron (B.1.1.529), as a novel variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially identified in South Africa and Botswana. Renal transplant recipients (RTRs) are a special group and are more vulnerable to viral pneumonia. Thus, this study aimed to assess the incidence and risk factors of SARS-CoV-2 pneumonia that occurred in RTRs with Omicron infection. This single-center case-control study enrolled the RTRs who were diagnosed with SARS-CoV-2 infection by the SARS-CoV-2 nucleic acid test, which were divided into two groups according to the imaging features of SARS-CoV-2 pneumonia. The parameters were collected by questionnaires and analyzed using Statistical Product and Service Solutions. A total of 313 RTRs completed the questionnaires, and 131 were enrolled in this study with a mean age of 42.66 years. The incidence of SARS-CoV-2 pneumonia among the enrolled participants was 76.3%. The first symptoms included fever (89.3%), cough (93.1%), and expectoration (81.7%). From the comparison, the parameters such as age, gender, body mass index, lymphocyte count, and the percent of neutrophils and the basic serum creatinine before SARS-CoV-2 infection were significantly different between the two groups (P < 0.05). In multivariate analysis, age and the basic serum creatinine were independent risk factors for developing SARS-CoV-2 pneumonia (P < 0.05). Older RTRs with a high level of serum creatinine before SARS-CoV-2 infection were more at risk of developing SARS-CoV-2 pneumonia. More randomized controlled studies are needed.IMPORTANCEThis study aimed to assess the incidence and the risk factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia that occurred in renal transplant recipients (RTRs) with Omicron infection. In conclusion, older RTRs with a high level of serum creatinine before SARS-CoV-2 infection were more at risk of developing SARS-CoV-2 pneumonia and should be timely treated, in case of severe pneumonia.
Collapse
Affiliation(s)
- Guangping Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ying Huang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tianying Xing
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Miao S, Qiu H. The microbiome in the pathogenesis of lung cancer: The role of microbiome in lung cancer pathogenesis. APMIS 2024; 132:68-80. [PMID: 37974493 DOI: 10.1111/apm.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
As one of the malignant tumors with high incidence rate and high mortality, lung cancer seriously threatens the life safety of patients. Research shows that microorganisms are closely related to lung cancer. The microbiome is symbiotic with the host and plays a vital role in the functions of the human body. Microbiota dysbiosis is correlated with development of lung cancer. However, the underlying mechanisms are poorly understood. This paper summarizes the composition characteristics of the gut-lung axis microbiome and intratumoral microbiome in patients with lung cancer. We then expound five potential carcinogenic mechanisms based on microorganisms, such as genotoxicity, metabolism, inflammation, immune response, and angiogenesis. Next, we list three high-throughput sequencing methods, and finally looks forward to the prospect of microorganisms as novel targets for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Sainan Miao
- School of Nursing, Anhui Medical University, Hefei, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Xiao Y, Liu C, Fu Y, Zhong G, Guan X, Li W, Wang C, Hong S, Fu M, Zhou Y, You Y, Wu T, Zhang X, He M, Li Y, Guo H. Mediation of association between benzo[a]pyrene exposure and lung cancer risk by plasma microRNAs: A Chinese case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115980. [PMID: 38262095 DOI: 10.1016/j.ecoenv.2024.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Ren Y, Wang Q, Xu C, Guo Q, Dai R, Xu X, Zhang Y, Wu M, Wu X, Tu H. Combining Classic and Novel Neutrophil-Related Biomarkers to Identify Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:513. [PMID: 38339264 PMCID: PMC10854517 DOI: 10.3390/cancers16030513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Recent studies have revealed that neutrophils play a crucial role in cancer progression. This study aimed to explore the diagnostic value of neutrophil-related biomarkers for non-small-cell lung cancer (NSCLC). METHODS We initially assessed the associations between classic neutrophil-related biomarkers (neutrophil-to-lymphocyte ratio (NLR), absolute neutrophil counts (NEU), absolute lymphocyte counts (LYM)) and NSCLC in 3942 cases and 6791 controls. Then, we measured 11 novel neutrophil-related biomarkers via Luminex Assays in 132 cases and 66 controls, individually matching on sex and age (±5 years), and evaluated their associations with NSCLC risk. We also developed the predictive models by sequentially adding variables of interest and assessed model improvement. RESULTS Interleukin-6 (IL-6) (odds ratio (OR) = 10.687, 95% confidence interval (CI): 3.875, 29.473) and Interleukin 1 Receptor Antagonist (IL-1RA) (OR = 8.113, 95% CI: 3.182, 20.689) shows strong associations with NSCLC risk after adjusting for body mass index, smoking status, NLR, and carcinoembryonic antigen. Adding the two identified biomarkers to the predictive model significantly elevated the model performance from an area under the receiver operating characteristic curve of 0.716 to 0.851 with a net reclassification improvement of 97.73%. CONCLUSIONS IL-6 and IL-1RA were recognized as independent risk factors for NSCLC, improving the predictive performance of the model in identifying disease.
Collapse
Affiliation(s)
- Yunzhao Ren
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Qinchuan Wang
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
- Department of Surgical Oncology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Rd., Hangzhou 310016, China
| | - Chenyang Xu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Qian Guo
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Ruoqi Dai
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Xiaohang Xu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Yuhao Zhang
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China;
| | - Xifeng Wu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
- Cancer Center, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China
| | - Huakang Tu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics, The Second Affiliated Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou 310058, China; (Y.R.); (Q.W.); (C.X.); (Q.G.); (R.D.); (X.X.); (Y.Z.)
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, 866 Yuhangtang Rd., Hangzhou 310058, China
| |
Collapse
|
23
|
Mahamed Z, Shadab M, Najar RA, Millar MW, Bal J, Pressley T, Fazal F. The Protective Role of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Protein Sigma-1 Receptor in Regulating Endothelial Inflammation and Permeability Associated with Acute Lung Injury. Cells 2023; 13:5. [PMID: 38201208 PMCID: PMC10778450 DOI: 10.3390/cells13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Earlier studies from our lab identified endoplasmic reticulum (ER) chaperone BiP/GRP78, an important component of MAM, to be a novel determinant of endothelial cell (EC) dysfunction associated with acute lung injury (ALI). Sigma1R (Sig1R) is another unique ER receptor chaperone that has been identified to associate with BiP/GRP78 at the MAM and is known to be a pluripotent modulator of cellular homeostasis. However, it is unclear if Sig1R also plays a role in regulating the EC inflammation and permeability associated with ALI. Our data using human pulmonary artery endothelial cells (HPAECs) showed that siRNA-mediated knockdown of Sig1R potentiated LPS-induced the expression of proinflammatory molecules ICAM-1, VCAM-1 and IL-8. Consistent with this, Sig1R agonist, PRE-084, known to activate Sig1R by inducing its dissociation from BiP/GRP78, blunted the above response. Notably, PRE-084 failed to blunt LPS-induced inflammatory responses in Sig1R-depleted cells, confirming that the effect of PRE-084 is driven by Sig1R. Furthermore, Sig1R antagonist, NE-100, known to inactivate Sig1R by blocking its dissociation from BiP/GRP78, failed to block LPS-induced inflammatory responses, establishing that dissociation from BiP/GRP78 is required for Sig1R to exert its anti-inflammatory action. Unlike Sig1R, the siRNA-mediated knockdown or Subtilase AB-mediated inactivation of BiP/GRP78 protected against LPS-induced EC inflammation. Interestingly, the protective effect of BiP/GRP78 knockdown or inactivation was abolished in cells that were depleted of Sig1R, confirming that BiP/GRP78 knockdown/inactivation-mediated suppression of EC inflammation is mediated via Sig1R. In view of these findings, we determined the in vivo relevance of Sig1R in a mouse model of sepsis-induced ALI. The intraperitoneal injection of PRE-084 mitigated sepsis-induced ALI, as evidenced by a decrease in ICAM-1, IL-6 levels, lung PMN infiltration, and lung vascular leakage. Together, these data evidence a protective role of Sig1R against endothelial dysfunction associated with ALI and identify it as a viable target in terms of controlling ALI in sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabeha Fazal
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (Z.M.); (M.S.); (R.A.N.); (M.W.M.); (J.B.); (T.P.)
| |
Collapse
|
24
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
25
|
Li D, Cao W, Zhou Q, Wu X, Song X, Qin H. COVID-19 and primary wound healing: A new insights and advance. Int Wound J 2023; 20:4422-4428. [PMID: 37488776 PMCID: PMC10681437 DOI: 10.1111/iwj.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
With the outbreak and pandemic of coronavirus disease-2019 (COVID-19), a huge number of people died of it. Apart from lung injuries, multiple organs have been confirmed to be impaired. In COVID-19 time, primary wound healing processes always prolong, however, its possible underlying mechanisms are still unclear. Therefore, to overcome this clinical problem, clarifying its underlying mechanisms clearly is necessary and urgently needed. In this review, we summarized that COVID-19 can prolong primary wound healing by inducing excessive inflammation and oxidative stress, disturbing immune system and haematological system, as well as influencing the functions and viability of epidermal stem cells (ESCs). Otherwise, we summarized that the strict control measures of blocking up COVID-19 pandemic can also have side effects on primary wound healing process.
Collapse
Affiliation(s)
- Danyi Li
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Wenjie Cao
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Qun Zhou
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Xiaomin Wu
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Xiayun Song
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Haofang Qin
- Department of OphthalmologyJiading District Central Hospital Affiliated Shanghai University of Medicine & Health SciencesShanghaiChina
| |
Collapse
|
26
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
27
|
Ramakrishnan K, Babu S, Shaji V, Soman S, Leelamma A, Rehman N, Raju R. Hepatitis B Virus Modulated Transcriptional Regulatory Map of Hepatic Cellular MicroRNAs. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:581-597. [PMID: 38064540 DOI: 10.1089/omi.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.
Collapse
Affiliation(s)
| | - Sreeranjini Babu
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Vineetha Shaji
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Anila Leelamma
- Department of Biochemistry, NSS College, Nilamel, Kollam, Kerala, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
28
|
Yazdani A, Shamloo M, Khaki M, Nahvijou A. Use of sentiment analysis for capturing hospitalized cancer patients' experience from free-text comments in the Persian language. BMC Med Inform Decis Mak 2023; 23:275. [PMID: 38031102 PMCID: PMC10685532 DOI: 10.1186/s12911-023-02358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Today, the Internet provides access to many patients' experiences, which is crucial in assessing the quality of healthcare services. This paper introduces a model for detecting cancer patients' opinions about healthcare services in the Persian language, both positive and negative. METHOD To achieve the objectives of this study, a combination of sentiment analysis (SA) and topic modeling approaches was employed. All pertinent comments made by cancer patients were collected from the patient feedback form of the Tehran University of Medical Science (TUMS) Cancer Institute (CI) in Iran, from March to October 2021. Conventional evaluation metrics such as accuracy, precision, recall, and F-measure were utilized to assess the performance of the proposed model. RESULT The experimental findings revealed that the proposed SA model achieved accuracies of 89.3%, 92.6%, and 90.8% in detecting patients' sentiments towards general services, healthcare services, and life expectancy, respectively. Based on the topic modeling results, the topic "Metastasis" exhibited lower sentiment scores compared to other topics. Additionally, cancer patients expressed dissatisfaction with the current appointment booking service, while topics such as "Good experience," "Affable staff", and "Chemotherapy" garnered higher sentiment scores. CONCLUSION The combined use of SA and topic modeling offers valuable insights into healthcare services. Policymakers can utilize the knowledge obtained from these topics and associated sentiments to enhance patient satisfaction with cancer institution services.
Collapse
Affiliation(s)
- Azita Yazdani
- Health Information Management Department, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Health Human Resources Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Shamloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khaki
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nahvijou
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ocanto A, Mielgo-Rubio X, Luna Tirado J, Linares Mesa N, López Valcárcel M, Pedraza S, Barragan VV, Nieto PV, Martín JZ, Couñago F. Coronavirus disease 2019 and lung cancer: where are we? EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1082-1094. [PMID: 38023992 PMCID: PMC10651354 DOI: 10.37349/etat.2023.00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023] Open
Abstract
Oncology patients are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection due to hospital contact and an immunological system that can be compromised by antineoplastic therapy and supportive treatments. Certain similarities have been described in the physiopathology of coronavirus disease 2019 (COVID-19) and lung cancer (LC) that may explain the higher probability of these patients of developing a more serious disease with more frequent hospitalizations and even death, especially with the addition of smoking, cardiovascular and respiratory comorbidities, old age and corticosteroids use. Pre-existing lesions and cancer therapies change the normal architecture of the lungs, so diagnostic scales such as COVID-19 Reporting and Data System (CO-RADS) are of vital importance for a correct diagnosis and patient homogenization, with a high inter-observer correlation. Moreover, anticancer treatments have required an adaptation to reduce the number of visits to the hospital [hypofractionated radiotherapy (RT), larger intervals between chemotherapy cycles, delay in follow-up tests, among others]. In a way, this has also caused a delay in the diagnosis of new cancers. On the other hand, vaccination has had a positive impact on the mortality of these patients, who maintain a similar seroprevalence to the rest of the population, with a similar impact in mortality.
Collapse
Affiliation(s)
- Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesiCare Madrid, 28002 Madrid, Spain
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesiCare Madrid, 28002 Madrid, Spain
| | - Xabier Mielgo-Rubio
- Department of Medical Oncology, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
| | - Javier Luna Tirado
- Department of Radiation Oncology, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Nuria Linares Mesa
- Department of Radiation Oncology, Hospital Universitario Juan Ramón Jiménez, 21005 Huelva, Spain
| | - Marta López Valcárcel
- Department of Radiation Oncology, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Sara Pedraza
- Department of Radiation Oncology, Hospital Universitario 12 de Octubre Madrid, 28041 Madrid, Spain
| | - Victoria Vera Barragan
- Department of Radiation Oncology, Hospital Universitario de Badajoz, 06080 Badajoz, Spain
| | - Patricia Valencia Nieto
- Department of Radiation Oncology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Juan Zafra Martín
- Group of Translational Research in Cancer Immunotherapy, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga (UMA), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesiCare Madrid, 28002 Madrid, Spain
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesiCare Madrid, 28002 Madrid, Spain
- Department of Radiation Oncology, Emilio Vargas, GenesisCare Madrid, 28002 Madrid, Spain
| |
Collapse
|
30
|
Chen J, Tang J, Nie M, Li Y, Wurfel MM, Meyer NJ, Wei Y, Zhao Y, Frank AJ, Thompson BT, Christiani DC, Chen F, Zhang R. WNT9A Affects Late-Onset Acute Respiratory Distress Syndrome and 28-Day Survival: Evidence from a Three-Step Multiomics Study. Am J Respir Cell Mol Biol 2023; 69:220-229. [PMID: 37094100 PMCID: PMC10399141 DOI: 10.1165/rcmb.2022-0416oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Late-onset (more than 48 h after ICU admission) acute respiratory distress syndrome (ARDS) is associated with shorter survival time and higher mortality; however, the underlying molecular targets remain unclear. As the WNT gene family is known to drive inflammation, immunity, and tissue fibrosis, all of which are closely related to the pathogenesis and prognosis of ARDS, we aim to investigate the associations of the WNT family with late-onset ARDS and 28-day survival. Genetic (n = 380), epigenetic (n = 185), transcriptional (n = 160), and protein (n = 300) data of patients with ARDS were extracted from the MEARDS (Molecular Epidemiology of ARDS) cohort. We used sure independence screening to identify late onset-related genetic biomarkers and constructed a genetic score on the basis of eight SNPs, which was associated with risk for late-onset ARDS (odds ratio [OR], 2.72; P = 3.81 × 10-14) and survival (hazard ratio [HR], 1.28; P = 0.008). The associations were further externally validated in the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) (ORlate onset, 2.49 [P = 0.006]; HRsurvival, 1.87 [P = 0.045]) and MESSI (Molecular Epidemiology of Severe Sepsis in the ICU) (ORlate onset, 4.12 [P = 0.026]; HRsurvival, 1.45 [P = 0.036]) cohorts. Furthermore, we functionally interrogated the six mapped genes of eight SNPs in the multiomics data and noted associations of WNT9A (WNT family member 9A) in epigenetic (ORlate onset, 2.95 [P = 9.91 × 10-4]; HRsurvival, 1.53 [P = 0.011]) and protein (ORlate onset, 1.42 [P = 0.035]; HRsurvival, 1.38 [P = 0.011]) data. The mediation analysis indicated that the effects of WNT9A on ARDS survival were mediated by late onset (HRindirect, 1.12 [P = 0.014] for genetic data; HRindirect, 1.05 [P = 0.030] for protein data). The essential roles of WNT9A in immunity and fibrosis may explain the different trajectories of recovery and dysfunction between early- and late-onset ARDS, providing clues for ARDS treatment.
Collapse
Affiliation(s)
- Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Jiaqi Tang
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Mengli Nie
- Department of Biostatistics, Center for Global Health, School of Public Health, and
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Angela J. Frank
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David C. Christiani
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, and
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
31
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
32
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
33
|
Zhou X, Jin W, Ma J. Lung inflammation perturbation by engineered nanoparticles. Front Bioeng Biotechnol 2023; 11:1199230. [PMID: 37304133 PMCID: PMC10248179 DOI: 10.3389/fbioe.2023.1199230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, the unique and diverse physicochemical properties of nanoparticles have brought about their wide use in many fields; however, it is necessary to better understand the possible human health risks caused by their release in the environment. Although the adverse health effects of nanoparticles have been proposed and are still being clarified, their effects on lung health have not been fully studied. In this review, we focus on the latest research progress on the pulmonary toxic effects of nanoparticles, and we summarized their disturbance of the pulmonary inflammatory response. First, the activation of lung inflammation by nanoparticles was reviewed. Second, we discussed how further exposure to nanoparticles aggravated the ongoing lung inflammation. Third, we summarized the inhibition of the ongoing lung inflammation by nanoparticles loaded with anti-inflammatory drugs. Forth, we introduced how the physicochemical properties of nanoparticles affect the related pulmonary inflammatory disturbance. Finally, we discussed the main gaps in current research and the challenges and countermeasures in future research.
Collapse
Affiliation(s)
| | | | - Jingjun Ma
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
34
|
Chen Y, Qin D, Zou J, Li X, Guo XD, Tang Y, Liu C, Chen W, Kong N, Zhang CY, Tao W. Living Leukocyte-Based Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207787. [PMID: 36317596 DOI: 10.1002/adma.202207787] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Indexed: 05/17/2023]
Abstract
Leukocytes play a vital role in immune responses, including defending against invasive pathogens, reconstructing impaired tissue, and maintaining immune homeostasis. When the immune system is activated in vivo, leukocytes accomplish a series of orderly and complex regulatory processes. While cancer and inflammation-related diseases like sepsis are critical medical difficulties plaguing humankind around the world, leukocytes have been shown to largely gather at the focal site, and significantly contribute to inflammation and cancer progression. Therefore, the living leukocyte-based drug delivery systems have attracted considerable attention in recent years due to the innate and specific targeting effect, low immunogenicity, improved therapeutic efficacy, and low reverse effect. In this review, the recent advances in the development of living leukocyte-based drug delivery systems including macrophages, neutrophils, and lymphocytes as promising treatment strategies for cancer and inflammation-related diseases are introduced. The advantages, current challenges, and limitations of these delivery systems are also discussed, as well as perspectives on the future development of precision and targeted therapy in the clinics are provided. Collectively, it is expected that such kind of living cell-based drug delivery system is promising to improve or even revolutionize the treatments of cancers and inflammation-related diseases in the clinics.
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, 311121, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 440300, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
35
|
Watkins TA, Nguyen K, Ali H, Gummakonda R, Pelman J, Taracena B. The impact of access to financial services on mitigating COVID-19 mortality globally. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001137. [PMID: 36963020 PMCID: PMC10022804 DOI: 10.1371/journal.pgph.0001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has disproportionately affected different social and demographic groups, deepening the negative health implications of social and economic inequalities and highlighting the importance of social determinants of health. Despite a deep literature on pandemic-related disparities, specifically regarding social determinants and health outcomes, the influence of the accessibility of financial services on health outcomes during COVID-19 remains largely unexplored. Modeling (pre-omicron) COVID-19 mortality across 142 nations, we assess the impact of national-level usage and access to formal financial services. Two financial access indexes constructed through principal component analysis capture (1) usage of and access to formal financial tools and (2) reliance on alternative and informal financial tools. On average, nations with higher pre-pandemic use of and access to formal financial services had substantially lower population mortality risk from COVID-19, controlling for key population health, demographic, and socioeconomic covariates. The scale of effect is similar in magnitude-but opposite in direction-to major risk factors identified in previous literature, such as lung cancer, hypertension, and income inequality. Findings suggest that financial services deserve greater attention both in the public health literature related to COVID-19 and more broadly in policy discussions about fostering better public health overall.
Collapse
Affiliation(s)
- Todd A. Watkins
- Department of Economics, Martindale Center for the Study of Private Enterprise, Lehigh University, Bethlehem, PA, United States of America
| | - Khue Nguyen
- Department of Economics, Martindale Center for the Study of Private Enterprise, Lehigh University, Bethlehem, PA, United States of America
- Data for Impact Fellows, Lehigh University, Bethlehem, PA, United States of America
| | - Hamza Ali
- Data for Impact Fellows, Lehigh University, Bethlehem, PA, United States of America
| | - Rishikesh Gummakonda
- Data for Impact Fellows, Lehigh University, Bethlehem, PA, United States of America
| | - Jacques Pelman
- Data for Impact Fellows, Lehigh University, Bethlehem, PA, United States of America
| | - Brianna Taracena
- Data for Impact Fellows, Lehigh University, Bethlehem, PA, United States of America
| |
Collapse
|
36
|
Leonardi B, Sagnelli C, Natale G, Leone F, Noro A, Opromolla G, Capaccio D, Ferrigno F, Vicidomini G, Messina G, Di Crescenzo RM, Sica A, Fiorelli A. Outcomes of Thoracoscopic Lobectomy after Recent COVID-19 Infection. Pathogens 2023; 12:257. [PMID: 36839529 PMCID: PMC9958887 DOI: 10.3390/pathogens12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The COVID-19 outbreak had a massive impact on lung cancer patients with the rise in the incidence and mortality of lung cancer. METHODS We evaluated whether a recent COVID-19 infection affected the outcome of patients undergoing thoracoscopic lobectomy for lung cancer using a retrospective observational mono-centric study conducted between January 2020 and August 2022. Postoperative complications and 90-day mortality were reported. We compared lung cancer patients with a recent history of COVID-19 infection prior to thoracoscopic lobectomy to those without recent COVID-19 infection. Univariable and multivariable analyses were performed. RESULTS One hundred and fifty-three consecutive lung cancer patients were enrolled. Of these 30 (19%), had a history of recent COVID-19 infection prior to surgery. COVID-19 was not associated with a higher complication rate or 90-day mortality. Patients with recent COVID-19 infection had more frequent pleural adhesions (p = 0.006). There were no differences between groups regarding postoperative complications, conversion, drain removal time, total drainage output, and length of hospital stay. CONCLUSIONS COVID-19 infection did not affect the outcomes of thoracoscopic lobectomy for lung cancer. The treatment of these patients should not be delayed in case of recent COVID-19 infection and should not differ from that of the general population.
Collapse
Affiliation(s)
- Beatrice Leonardi
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Natale
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Leone
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Antonio Noro
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giorgia Opromolla
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | | | - Francesco Ferrigno
- COVID-19 Hospital “M. Scarlato”, Department of Pneumology, 84018 Scafati, Italy
| | - Giovanni Vicidomini
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Gaetana Messina
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | | | - Antonello Sica
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
37
|
Pooladanda V, Thatikonda S, Priya Muvvala S, Godugu C. Acute respiratory distress syndrome enhances tumor metastasis into lungs: Role of BRD4 in the tumor microenvironment. Int Immunopharmacol 2023; 115:109701. [PMID: 36641892 PMCID: PMC9827001 DOI: 10.1016/j.intimp.2023.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA,Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Department of Head and Neck‐Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sai Priya Muvvala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
38
|
Roy SK, Srivastava S, Hancock A, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Inhibition of ribosome assembly factor PNO1 by CRISPR/Cas9 technique suppresses lung adenocarcinoma and Notch pathway: Clinical application. J Cell Mol Med 2023; 27:365-378. [PMID: 36625087 PMCID: PMC9889701 DOI: 10.1111/jcmm.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
| | | | - Andrew Hancock
- Department of Molecular and Cellular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Rakesh K. Srivastava
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
39
|
Alharbi KS, Alshehri SM, Alenezi SK. Epigenetic Optimization in Chronic Obstructive Pulmonary Disease (COPD). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:99-110. [DOI: 10.1007/978-981-99-4780-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Hatam S. MicroRNAs Improve Cancer Treatment Outcomes Through Personalized Medicine. Microrna 2023; 12:92-98. [PMID: 36733205 DOI: 10.2174/2211536612666230202113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The "oncogenic" action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumorsuppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny noncoding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumor biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.
Collapse
Affiliation(s)
- Saeid Hatam
- Department of Innovation and Industry, Science and Technology Park of Fars, ExirBitanic Co., Shiraz, Iran
- Department of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Biological Sciences, Azad University, Zarghan Branch, Shiraz, Iran
| |
Collapse
|
41
|
Rawat S, Gilhotra R, Singh SK, Bhat AA, Ojha A, Dhaundhiyal K, Dhramshaktu IS, Gupta G. Epigenetics of SARS-CoV2 (COVID-19). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:199-208. [DOI: 10.1007/978-981-99-4780-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Krygier A, Szmajda-Krygier D, Świechowski R, Pietrzak J, Wosiak A, Wodziński D, Balcerczak E. Molecular Pathogenesis of Fibrosis, Thrombosis and Surfactant Dysfunction in the Lungs of Severe COVID-19 Patients. Biomolecules 2022; 12:1845. [PMID: 36551272 PMCID: PMC9776352 DOI: 10.3390/biom12121845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The global scope and scale of the SARS-CoV-2 pandemic led to huge amounts of important data from clinical observations and experimental analyses being collected, in particular, regarding the long-term impact of COVID-19 on lung tissue. Visible changes in lung tissue mainly relate to the destruction of the alveolar architecture, dense cellularity, and pulmonary fibrosis with myofibroblast proliferation and collagen deposition. These changes are the result of infection, mainly with virus variants from the first pandemic waves (Alpha to Delta). In addition, proper regulation of immune responses to pathogenic viral stimuli is critical for the control of and recovery from tissue/organ damage, including in the lungs. We can distinguish three main processes in the lungs during SARS-CoV-2 infection: damage or deficiency of the pulmonary surfactant, coagulation processes, and fibrosis. Understanding the molecular basis of these processes is extremely important in the context of elucidating all pathologies occurring after virus entry. In the present review, data on the abovementioned three biochemical processes that lead to pathological changes are gathered together and discussed. Systematization of the knowledge is necessary to explore the three key pathways in lung tissue after SARS-CoV-2 virus infection as a result of a prolonged and intense inflammatory process in the context of pulmonary fibrosis, hemostatic disorders, and disturbances in the structure and/or metabolism of the surfactant. Despite the fact that the new Omicron variant does not affect the lungs as much as the previous variants, we cannot ignore the fact that other new mutations and emerging variants will not cause serious damage to the lung tissue. In the future, this review will be helpful to stratify the risk of serious complications in patients, to improve COVID-19 treatment outcomes, and to select those who may develop complications before clinical manifestation.
Collapse
Affiliation(s)
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Jia SN, Han YB, Yang R, Yang ZC. Chemokines in colon cancer progression. Semin Cancer Biol 2022; 86:400-407. [PMID: 35183412 DOI: 10.1016/j.semcancer.2022.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Colon cancer is a major human cancer accounting for about a tenth of all cancer cases thus making it among the top three cancers in terms of incidence as well as mortality. Metastasis to distant organs, particularly to liver, is the primary reason for associated mortality. Chemokines, the chemo-attractants for various immune cells, have increasingly been reported to be involved in cancer initiation and progression, including in colon cancer. Here we discuss the available knowledge on the role of several chemokines, such as, CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL8 in colon cancer progression. CCL20 is one chemokine with emerging evidence for its role in influencing colon cancer tumor microenvironment through the documents effects on fibroblasts, macrophages and immune cells. We focus on CCL20 and its receptor CCR6 as promising factors that affect multiple levels of colon cancer progression. They interact with several cytokines and TLR receptors leading to increased aggressiveness, as supported by multitude of evidence from in vitro, in vivo studies as well as human patient samples. CCL20-CCR6 bring about their biological effects through regulation of several signaling pathways, including, ERK and NF-κB pathways, in addition to the epithelial-mesenchymal transition. Signaling involving CCL20-CCR6 has profound effect on colon cancer hepatic metastasis. Combined with elevated CCL20 levels in colon tumors and metastatic patients, the above information points to a need for further evaluation of chemokines as diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Sheng-Nan Jia
- Department of HepatoPancreatoBiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ze-Cheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
44
|
Luo H, Shan J, Zhang H, Song G, Li Q, Xu CX. Targeting the epigenetic processes to enhance antitumor immunity in small cell lung cancer. Semin Cancer Biol 2022; 86:960-970. [PMID: 35189321 DOI: 10.1016/j.semcancer.2022.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Dysregulation of the epigenetic processes, such as DNA methylation, histone modifications, and modulation of chromatin states, drives aberrant transcription that promotes initiation and progression of small cell lung cancer (SCLC). Accumulating evidence has proven crucial roles of epigenetic machinery in modulating immune cell functions and antitumor immune response. Epigenetics-targeting drugs such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and histone methyltransferase inhibitors involved in preclinical and clinical trials may trigger antitumor immunity. Herein, we summarize the impact of epigenetic processes on tumor immunogenicity and antitumor immune cell functions in SCLC. Furthermore, we review current clinical trials of epigenetic therapy against SCLC and the mechanisms of epigenetic inhibitors to boost antitumor immunity. Eventually, we discuss the opportunities of developing therapeutic regimens combining epigenetic agents with immunotherapy for SCLC.
Collapse
Affiliation(s)
- Hao Luo
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China; School of Medicine, Chongqing University, Chongqing 400030, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jinlu Shan
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Guanbin Song
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Qing Li
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
45
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
46
|
Hardin LT, Xiao N. miRNAs: The Key Regulator of COVID-19 Disease. Int J Cell Biol 2022; 2022:1645366. [PMID: 36345541 PMCID: PMC9637033 DOI: 10.1155/2022/1645366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2024] Open
Abstract
As many parts of the world continue to fight the innumerable waves of COVID-19 infection, SARS-CoV-2 continues to sculpt its antigenic determinants to enhance its virulence and evolvability. Several vaccines were developed and used around the world, and oral antiviral medications are being developed against SARS-CoV-2. However, studies showed that the virus is mutating in line with the antibody's neutralization escape; thus, new therapeutic alternatives are solicited. We hereby review the key role that miRNAs can play as epigenetic mediators of the cross-talk between SARS-CoV-2 and the host cells. The limitations resulting from the "virus intelligence" to escape and antagonize the host miRNAs as well as the possible mechanisms that could be used in the viral evasion strategies are discussed. Lastly, we suggest new therapeutic approaches based on viral miRNAs.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| | - Nan Xiao
- Department of Biomedical Sciences at the Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, 94103 CA, USA
| |
Collapse
|
47
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Wang W, Shen Y, Zhang P, Liu L, Sha X, Li H, Wang S, Zhang H, Zhou Y, Shi J. Histone acetylation modification regulator-mediated tumor microenvironment infiltration characteristics and prognostic model of lung adenocarcinoma patients. J Thorac Dis 2022; 14:3886-3902. [PMID: 36389327 PMCID: PMC9641363 DOI: 10.21037/jtd-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The incidence rate of lung adenocarcinoma (LUAD) is rapidly increasing. Recent studies have reported that histone acetylation modification plays an important role in the occurrence and development of tumors. However, the potential role of modification of histone acetylation modification in the development of tumor immune microenvironment is still unclear. METHODS In this study, we comprehensively evaluated the acetylation modification patterns of LUAD samples obtained from various different databases based on 36 histone modification regulators, and constructed a prognostic model based on The Cancer Genome Atlas (TCGA) LUAD cohort using the Cox regression method. The close relationship between histone acetylation and tumor immune characteristics was further studied, including immune infiltration, immune escape and immunotherapy. Finally, we combined three cohort (GSE30219, GSE72094 and GSE50081) from Gene Expression Omnibus (GEO) database to verify the above results. RESULTS We analyzed the expression, mutation and interaction of 36 histone acetylation regulated genes. After Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO), 5 genes (KAT2B, SIRT2, HDAC5, KAT8, HDAC2) were screened to establish the prognosis model and calculate the risk score. Then, patients in the TCGA cohort were divided into high- and low-risk groups based on the risk scores. Further analysis indicated that patients in the high-risk group exhibited significantly reduced overall survival (OS) compared with those in the low-risk group. The high- and low-risk groups exhibited significant differences in terms of tumor immune characteristics, such as immune infiltration, immune escape and immunotherapy. The high-risk group had lower immune score, less immune cell infiltration and higher clinical stage. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. In addition, drugs sensitive for this classification were identified. Finally, the efficacy of the prognostic model was validated by cohort (GSE30219, GSE72094 and GSE50081) from GEO database. CONCLUSIONS Our study provided a robust signature for predicting changing prognosis of patients with LUAD. Thus, it appears to be a potentially useful prognostic tool. Moreover, the important relationship between histone acetylation and tumor immune microenvironment was revealed.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Yao Shen
- School of Medicine, Nantong University, Nantong, China
| | - Peng Zhang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Houqiang Li
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Silin Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China;,School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
49
|
Ahmad S, Abbas M, Ullah MF, Aziz MH, Beylerli O, Alam MA, Syed MA, Uddin S, Ahmad A. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2022; 85:155-163. [PMID: 34314819 DOI: 10.1016/j.semcancer.2021.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Cancer metastasis is a major reason for the cancer-associated deaths and a role of long non-coding RNAs (lncRNAs) in cancer metastasis is increasingly being realized. Among the many oncogenic pathways, NF-κB signalling's involvement in cancer metastasis as a key inflammation-regulatory transcription factor has been a subject of interest for long time. Accumulating data from in vitro as well as in vivo studies along with analysis of clinical cancer tissues points to regulation of NF-κB signalling by lncRNAs with implications toward the onset of cancer metastasis. LncRNAs FOXD2-AS1, KRT19P3 and the NF-κB interacting lncRNA (NKILA) associate with lymph node metastasis and poor prognosis of individual cancers. The role of epithelial-mesenchymal transition (EMT) in cancer metastasis is well known. EMT is regulated by NF-κB and regulation of NF-κB/EMT-induced metastasis by lncRNAs remains a hot topic of research with indications for such roles of lncRNAs MALAT1, SNHG15, CRNDE and AC007271.3. Among the many lncRNAs, NKILA stands out as the most investigated lncRNA for its regulation of NF-κB. This tumor suppressive lncRNA has been reported downregulated in clinical samples representing different human cancers. Mechanistically, NKILA has been consistently shown to inhibit NF-κB activation via inhibition of IκBα phosphorylation and the resulting suppression of EMT. NKILA is also a target of natural anticancer compounds. Given the importance of NF-κB as a master regulatory transcription factor, lncRNAs, as the modulators of NF-κB signaling, can provide alternate targets for metastatic cancers with constitutively active NF-κB.
Collapse
Affiliation(s)
- Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Madiha Abbas
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Moammir H Aziz
- James H. Quillen VA Medical Center, Johnson City, TN, 37604, USA
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Majid Ali Alam
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahab Uddin
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory of Animal Center, Qatar University, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute and Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
50
|
Loo CY, Lee WH. Nanotechnology-based therapeutics for targeting inflammatory lung diseases. Nanomedicine (Lond) 2022; 17:865-879. [PMID: 35315290 DOI: 10.2217/nnm-2021-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physiochemical properties of drugs used in treating inflammation-associated lung diseases (i.e., asthma, chronic obstructive pulmonary disease, pulmonary fibrosis) play an important role in determining the effectiveness of formulations. Most commonly used drugs are associated with low solubility, low stability and rapid clearance, thus resulting in low bioavailability and therapeutic index. This review focuses on current trends and development of drugs (i.e., corticosteroids, long-acting β-agonists and biomacromolecules such as DNA, siRNA and mRNA) employed to treat inflammatory lung diseases. In addition, this review includes the current challenges of and future perspective with regard to nanotechnology in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| |
Collapse
|