1
|
Jiang Y, Ji D, Chen W, Zhu Y, Luo M, Zou R, Fu Y, Huang P, Shi Q, Wang D, Song Z. Phosphorylation of USP32 by CDK5 regulates Rap1 stability and therapeutic resistance in pancreatic ductal adenocarcinoma. Oncogene 2025:10.1038/s41388-024-03263-2. [PMID: 40379759 DOI: 10.1038/s41388-024-03263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 05/19/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal human cancer. Gemcitabine-based chemotherapy remains the cornerstone for advanced PDAC. However, resistance to chemotherapy greatly limits its clinical therapeutic efficacy. Accordingly, the identification of novel therapeutic targets to overcome chemoresistance and improve prognosis is urgently needed. Screening of deubiquitinase family members, tandem affinity purification, mass spectrometry, and RNA sequencing (RNA-Seq) analysis were performed to predict the interactions and function of the CDK5-USP32-Rap1 axis in PDAC. In vitro and in vivo experiments were performed to elucidate the regulatory mechanism and biological roles of this axis in glycolytic reprogramming and chemoresistance in PDAC. Finally, TCGA database analysis and immunohistochemistry were performed to determine the expression and clinical significance of CDK5, USP32, and Rap1 in PDAC tissues. USP32 was identified as a bona fide deubiquitinase of Rap1. USP32 deubiquitinates and stabilizes Rap1, thereby promoting glycolytic reprogramming and chemoresistance in PDAC cells. Moreover, we unexpectedly found that CDK5-mediated phosphorylation of USP32 is required for its deubiquitinase activity toward Rap1 and drives malignant phenotypes of PDAC. Additionally, these functions can be significantly inhibited by pharmacological inhibition (roscovitine) or genetic ablation of CDK5. Importantly, combining a CDK5 inhibitor with gemcitabine has a synergetic anticancer effect. Indeed, the effectiveness of targeting CDK5 to sensitize PDAC cells to gemcitabine was confirmed in a patient-derived xenograft (PDX) model. CDK5 and USP32 expression is markedly elevated in PDAC samples and positively associated with Rap1 expression. Increased expression of CDK5, USP32, and Rap1 is significantly associated with poorer prognosis in PDAC. We identified the previously unrecognized oncogenic function and clinical importance of the CDK5-USP32-Rap1 axis, providing preclinical evidence for potential new combination strategies for PDAC therapy.
Collapse
Affiliation(s)
- Yanxia Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dexiang Ji
- Department of Hematology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, the Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, China
| | - Yuanzhe Zhu
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ming Luo
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Rui Zou
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yilun Fu
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Huang
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qing Shi
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Dejie Wang
- Department of Gastroenterology, Collaborative Innovation Center of Gastroenterology, Angiocardiopathy and Neurosciences, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| | - Zhiwang Song
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Wang F, Gui W, Rong M, Zhang L, Wu J, Li J, Wang R, Gouttia OG, Wang L, Yang X, Peng A. TOX High-Mobility Group Box Family Member 4 promotes DNA double-strand break repair via nonhomologous end joining. J Biol Chem 2025; 301:110174. [PMID: 40328361 DOI: 10.1016/j.jbc.2025.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Nonhomologous end joining (NHEJ) is a pivotal mechanism in the repair of DNA double-strand breaks. Central to NHEJ is the DNA-dependent protein kinase (DNA-PK) complex, comprising the KU heterodimer and the catalytic subunit, DNA-PKcs. In this study, we characterize Thymocyte Selection-Associated High-Mobility Group Box Family Member 4 (TOX4) as a factor recruited to both laser-induced DNA damage and endonuclease-induced DNA double-strand breaks. Depletion of TOX4 leads to accumulation of DNA damage, which is epistatic to DNA-PKcs. Consistently, TOX4 depletion substantially reduces NHEJ efficiency measured using both intrachromosomal and extrachromosomal repair assays. Our proteomic and biochemical analyses reveal TOX4 association with DNA-PK that is required for DNA-PKcs activation. Furthermore, we show that TOX4 coordinates with phosphatase 1 nuclear-targeting subunit in NHEJ. Phosphatase 1 nuclear-targeting subunit, previously shown to protect DNA-PKcs phosphorylation from protein phosphatase 1-mediated dephosphorylation, binds DNA-PK in a TOX4-dependent manner. In line with its role in DNA repair, TOX4 emerges as a promising target for anticancer drug development, and its targeting enhances tumor cell sensitivity to DNA damage in head and neck cancer and other malignancies.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China.
| | - Wenli Gui
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China
| | - Mengtao Rong
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China
| | - Liang Zhang
- Department of Orthopedics, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, PR China
| | - Jiajing Wu
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China
| | - Juan Li
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China
| | - Renqing Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Odjo G Gouttia
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ling Wang
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xingyuan Yang
- Institute of Health Sciences and Technology, Institutes of Physical Sciences and Information Technology, Anhui University, Hefei, Anhui, China.
| | - Aimin Peng
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Li X, Liu J, Zhang J, Wang Y, He J, Zhang H. The association between breast cancer and lung cancer: a bidirectional Mendelian randomization study. Sci Rep 2024; 14:26942. [PMID: 39505936 PMCID: PMC11541960 DOI: 10.1038/s41598-024-76314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
With increasing life spans, breast cancer (BC) survivors may face the possibility of developing second primary cancer (SPC), which can considerably shorten survival. Lung cancer (LC) is a common SPC among BC survivors. This study explored the association between these two cancers through Mendelian randomization (MR) analysis. A bidirectional two-sample MR analysis was conducted with BC genome-wide association study (GWAS) data from the Breast Cancer Association Consortium (BCAC) included 228,951 individuals and the GWAS summary statistics from the Transdisciplinary Research in Cancer of the Lung (TRICL) of LC included 112,781 individuals. The IVW method and MR-RAPS method showed a causal effect of overall BC on lung adenocarcinoma (LUAD) (IVW: OR = 1.060, 95% CI = 1.008-1.116, P = 0.024; MR-RAPS: OR = 1.059, 95% CI = 1.005-1.116, P = 0.033), which indicated that patients with BC had an increased risk of LUAD. However, there is no strong evidence for a causal effect of LUAD on BC. Our study revealed a causal effect of BC on second primary LUAD, suggesting that we should intensify screening for second primary LC in BC survivors. Early intervention and treatment for patients with second primary LC are needed to reduce mortality in BC survivors.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Junjie Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jingyi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Yidi Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Huimin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Lin X, He Y, Liu Y, Zhou H, Xu X, Xu J, Zhou K. CDK1 promotes the phosphorylation of KIFC1 to regulate the tumorgenicity of endometrial carcinoma. J Gynecol Oncol 2024; 35:e68. [PMID: 38456590 PMCID: PMC11390247 DOI: 10.3802/jgo.2024.35.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE This study aims to clarify the mechanical action of cyclin-dependent protein kinase 1 (CDK1) in the development of endometrial carcinoma (EMCA), which may be associated with the phosphorylation of kinesin family member C1 (KIFC1) and further activate the PI3K/AKT pathway. METHODS The protein and gene expression of CDK1 in EMCA tissues and tumor cell lines were evaluated by western blot, quantitative polymerase chain reaction, and immunohistochemistry staining. Next, Cell Counting Kit-8 and colony formation assay detected cell survival and proliferation. Cell migration and invasion were measured by Transwell assay. Cell apoptosis and cell cycle were tested by flow cytometry. Immunofluorescence staining of γH2AX was used to evaluate DNA damage, respectively. Subsequently, a co-immunoprecipitation assay was used to detect the interaction between CDK1 and KIFC1. The phosphorylated protein of KIFC1 and PI3K/AKT was detected by western blot. Finally, the effect of CDK1 on the tumor formation of EMCA was evaluated in a nude mouse xenograft model. RESULTS CDK1 was highly expressed in EMCA tumor cell lines and tissues, which contributed to cell survival, proliferation, invasion, and migration, inhibited cell apoptosis, and induced DNA damage of EMCA cells dependent on the phosphorylation of KIFC1. Moreover, the CDK1-KIFC1 axis further activated PI3K/AKT pathway. Finally, CDK1 knockdown repressed tumor formation of EMCA in vivo. CONCLUSION We report that increased CDK1 promotes tumor progression and identified it as a potential prognostic marker and therapeutic target of EMCA.
Collapse
Affiliation(s)
- Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yiming Liu
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
5
|
Liu J, Cao L, Wang Y, Zou Y, Guo Q, Chen S, Jiang B, Wu X, Zheng L, Zhang S, Lu S, Zhou K, Jiang P, Xiao Y, Yang R, Dong S, Li Z, Chen D, Zhang Y, Zhang N, Sun G, Xing C, Song X, Wang Z, Cao L. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress. Cell Rep 2024; 43:114366. [PMID: 38879877 DOI: 10.1016/j.celrep.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China; Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yu Zou
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Shu Chen
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Bo Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xuan Wu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Lixia Zheng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Keshen Zhou
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Pengcheng Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Shiyuan Dong
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ziwei Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Di Chen
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ying Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Zhenning Wang
- Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China; Key Laboratory of Cell Biology of the Ministry of Public Health, Key Laboratory of Medical Cell Biology of the Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of the Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
6
|
Kundi M, Nersesyan A, Schmid G, Hutter HP, Eibensteiner F, Mišík M, Knasmüller S. Mobile phone specific radiation disturbs cytokinesis and causes cell death but not acute chromosomal damage in buccal cells: Results of a controlled human intervention study. ENVIRONMENTAL RESEARCH 2024; 251:118634. [PMID: 38452915 DOI: 10.1016/j.envres.2024.118634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.
Collapse
Affiliation(s)
- Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Gernot Schmid
- EMC & Optics, Seibersdorf Labor GmbH, 2444 Seibersdorf, Austria
| | - Hans-Peter Hutter
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Florian Eibensteiner
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Siegfried Knasmüller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
7
|
Gu Y, Liang C. TRAIP suppressed apoptosis and cell cycle to promote prostate cancer proliferation via TRAF2-PI3K-AKT pathway activation. Int Urol Nephrol 2024; 56:1639-1648. [PMID: 38100027 DOI: 10.1007/s11255-023-03890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND TRAF-interacting protein (TRAIP) is a RING-type E3 ubiquitin ligase, which has been implicated in various cellular processes and participated in various cancers as an oncogene. However, the function and potential mechanism of TRAIP in prostate cancer (PCa) have not been investigated so far. METHODS Public TGCA data were used to evaluate the expression profile of TRAIP in prostatic tumors. The relative expression of TRAIP and TRAF2 in PCa tissues and tumor cell lines was detected by qPCR, western blot, and IHC staining. Next, TRAIP knockdown and overexpression plasmids were constructed and transfected into PCa cell lines. Moreover, cell proliferation, invasion, migration, and apoptosis were measured by colony formation, Transwell, wound healing, and flow cytometry assays. Subsequently, cell cycle and signaling pathway-related proteins were tested by western blot. Finally, the effect of TRAIP on PCa was measured based on the nude mouse xenograft model. RESULTS TRAIP was significantly upregulated in PCa tissues and tumor cell lines. In addition, TRAIP promoted cell proliferation, invasion, and migration of PCa cell lines. Such an oncogenic property was mediated by the cell cycle arrest and the inhibition of apoptosis, as indicated by different functional assays and the expression of cell cycle and apoptosis regulatory proteins in cultured cells. Moreover, TRAIP combined with TRAF2 to activate PI3K/AKT pathway. Finally, TRAIP depletion suppressed the growth of tumors and cell proliferation in vivo. CONCLUSIONS Our study first revealed that TRAIP promoted tumor progression and identified it as a potential therapeutic target for PCa patients in the future.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China
- Department of Urology, Anhui Second People's Hospital, Hefei, 230041, Anhui, China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
8
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
9
|
Huang Y, Tang M, Hu Z, Cai B, Chen G, Jiang L, Xia Y, Guan P, Li X, Mao Z, Wan X, Lu W. SMYD3 promotes endometrial cancer through epigenetic regulation of LIG4/XRCC4/XLF complex in non-homologous end joining repair. Oncogenesis 2024; 13:3. [PMID: 38191478 PMCID: PMC10774296 DOI: 10.1038/s41389-023-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Endometrial cancer (EC) stands as one of the most prevalent malignancies affecting the female genital tract, witnessing a rapid surge in incidence globally. Despite the well-established association of histone methyltransferase SMYD3 with the development and progression of various cancers, its specific oncogenic role in endometrial cancer remains unexplored. In the present study, we report that the expression level of SMYD3 is significantly upregulated in EC samples and associated with EC progression. Through meticulous in vivo and in vitro experiments, we reveal that depletion of SMYD3 curtails cell proliferation, migration, and invasion capabilities, leading to compromised non-homologous end joining repair (NHEJ) and heightened sensitivity of EC cells to radiation. Furthermore, our pathway enrichment analysis underscores the pivotal involvement of the DNA damage repair pathway in regulating EC progression. Mechanistically, in response to DNA damage, SMYD3 is recruited to these sites in a PARP1-dependent manner, specifically methylating LIG4. This methylation sets off a sequential assembly of the LIG4/XRCC4/XLF complex, actively participating in the NHEJ pathway and thereby fostering EC progression. Notably, our findings highlight the promise of SMYD3 as a crucial player in NHEJ repair and its direct correlation with EC progression. Intriguingly, pharmacological intervention targeting SMYD3 with its specific inhibitor, BCI-121, emerges as a potent strategy, markedly suppressing the tumorigenicity of EC cells and significantly enhancing the efficacy of radiotherapy. Collectively, our comprehensive data position SMYD3 as a central factor in NHEJ repair and underscore its potential as a promising pharmacological target for endometrial cancer therapy, validated through both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bailian Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Xia
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pujun Guan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
11
|
Tang M, Chen G, Tu B, Hu Z, Huang Y, DuFort CC, Wan X, Mao Z, Liu Y, Zhu WG, Lu W. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. SCIENCE ADVANCES 2023; 9:eade6624. [PMID: 37315132 DOI: 10.1126/sciadv.ade6624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8+ T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Christopher C DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wen Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Wang PZ, Wei W. Special issue: Targeting cellular signaling pathways for cancer therapy. Semin Cancer Biol 2021; 85:1-3. [PMID: 34487833 DOI: 10.1016/j.semcancer.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Peter Zhiwei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|