1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Tisdale EJ, Artalejo CR. ERK activation by Rab2B in the early secretory pathway impacts the ERGIC-Golgi interface. Cell Signal 2025; 130:111710. [PMID: 40037424 DOI: 10.1016/j.cellsig.2025.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The Golgi complex is a hub for several signal transduction networks that regulate Golgi morphology, membrane transport, and glycosylation. The Rab2 (A, B isoforms) protein participates in membrane trafficking to and from the Golgi and is also linked to signaling molecules. In that regard, Rab2A in breast cancer stem cells binds and blocks (p)ERK1/2 inactivation by MAP kinase phosphatase 3. However, the cellular role of Rab2B in ERK1/2 signaling activity at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC/IC) and cis Golgi where Rab2B immunolocalizes and functions is unknown. To address this question, normal rat kidney (NRK) cells were transfected with Rab2B cDNA to mimic Rab2 overexpression as found in cancer cells. Rab2B overexpressing NRK cells had a significant increase in steady state activated ERK. Studies were then performed to identify the Rab2-ERK1/2 substrate(s) that locate and function in the early secretory pathway. To that end, GRASP65 was identified as a target of ERK1/2 phosphorylation. In Rab2B overexpressing NRK cells, GRASP65 co-distributed with GM130 on membranes of the ERGIC/IC that increased in size and number with the concomitant appearance of unlinked cis Golgi elements. Additionally, we observed GRASP65 labeled ERGIC/IC membranes that accumulated at 15°C and remained prominent after temperature shift to 37 °C to promote transport. However, addition of a MEK inhibitor reversed the transport block indicating that ERK1/2 phosphorylation of GRASP65 effected ERGIC/IC redistribution to the cis Golgi. Since several glycosyltransferases cycle between the Golgi and ERGIC/IC, a potential consequence of Golgi structural changes is modification of protein glycosylation. Indeed, we found changes in total and cell surface O-glycosylation in Rab2B overexpressing cells. These results suggest that phosphoGRASP65 plays an important role in the protein sorting and recycling process from the ERGIC/IC to cis Golgi: Dysregulation results in cis Golgi discontinuities and aberrant glycosylated proteins that are potentially pro-oncogenic.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America.
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America
| |
Collapse
|
3
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
4
|
Qin X, Wang X, Yang C, Wang F, Fang T, Gu D, Guo Q, Meng Q, Liu W, Yang L. A potent dual inhibitor targeting COX-2 and HDAC of acute myeloid leukemia cells. Mol Divers 2025; 29:2433-2444. [PMID: 39480610 DOI: 10.1007/s11030-024-11000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer with complex issues of drug resistance and a poor prognosis; thus, effective therapeutics is urgently needed for AML. In this study, we designed and synthesized dual cyclooxygenase-2 (COX-2) and histone deacetylase (HDAC) inhibitors, IMC-HA and IMC-OPD, and applied them for the treatment of AML. IMC-HA comprised a COX-2 inhibitor skeleton of indomethacin (IMC) and an HDAC inhibitor moiety of the hydroxamic group and was found to exhibit potent antiproliferative activity against AML cells (THP-1 and U937) and low cytotoxicity toward normal cells. Molecular docking simulations suggested that IMC-HA had a high binding affinity for HDAC and COX-2, with binding energies of -6.8 and -9.0 kcal/mol, respectively. Mechanistic studies revealed that IMC-HA induced apoptosis and G0/G1 phase arrest in AML cells, which were characterized by alterations in the expression of apoptotic and cell cycle-related proteins. Further study demonstrated that IMC-HA also inhibited the MEK/ERK signaling pathway in AML cells. Overall, we believe that IMC-HA could serve as a potent COX-2/HDAC dual inhibitor and improve the treatment of AML.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueting Wang
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chunmei Yang
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fan Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tingting Fang
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Didi Gu
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Meng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjun Liu
- Department of Pediatrics (Hematological Oncology), Children Hematological Oncology and Birth Defects Laboratory, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Lu Yang
- Department of Radiology, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Li RC, Liu C, Wang GJ, Wang Z, Li RL, Lu HT, Xie XX, Zhang QM, Feng DQ, Yun X, Luo B. ELMOD2 Overexpression Predicts Adverse Outcomes and Regulates Tumor Progression in Gliomas. Curr Med Sci 2025:10.1007/s11596-025-00057-9. [PMID: 40397299 DOI: 10.1007/s11596-025-00057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Glioma is a highly heterogeneous and malignant intracranial tumor that presents challenges for clinical treatment. ELMO domain containing 2 (ELMOD2) is a GTPase-activating protein that regulates a range of cellular biological processes. However, its specific role and prognostic value in tumorigenesis are still unknown. This study aimed to assess the prognostic relevance and signaling function of ELMOD2 in gliomas. METHODS The Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases were utilized to conduct a comprehensive analysis of the expression profile of ELMOD2 in gliomas, elucidating its associations with clinicopathological parameters and patient prognosis. Single-cell analysis was performed to characterize ELMOD2 expression across distinct glioma cell subpopulations. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and Gene Set Variation Analysis (GSVA) were employed to evaluate the potential biological functions of ELMOD2 in gliomagenesis. Specific small interfering RNAs (siRNAs) were used to knock down ELMOD2 in the glioma cell lines U251 and A172 to assess their cellular behaviors and examine the levels of multiple key signaling molecules associated with the occurrence of gliomas. RESULTS ELMOD2 was overexpressed in gliomas, and this upregulation was correlated with tumor grade, isocitrate dehydrogenase mutation, and 1p/19q codeletion status. Notably, ELMOD2 expression was elevated in classical and mesenchymal subtypes, and single-cell resolution analysis revealed predominant enrichment within malignant cells. Functionally, ELMOD2 regulated cell cycle progression, and its overexpression was related to independent adverse outcomes. In vitro experiments revealed that ELMOD2 was located in the cytoplasm and nucleoplasm. Furthermore, ELMOD2 knockdown reduced proliferation, migration, and invasion and increased apoptosis in U251 and A172 cell lines. Finally, ELMOD2 knockdown significantly decreased p-Erk1/2. CONCLUSIONS ELMOD2 expression in glioma is positively correlated with tumorigenesis and is a crucial independent prognostic marker. Thus, ELMOD2 is a promising biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Rui-Chao Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China
- Department of Prenatal Genetics, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guo-Jian Wang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China
| | - Zi Wang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China
| | - Rong-Lin Li
- Department of Thoracic Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Hao-Tian Lu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, 530021, China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, 530021, China
| | - Da-Qin Feng
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xiang Yun
- Department of International Cooperation and Exchanges, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, 530021, China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, 530021, China.
| |
Collapse
|
6
|
Chen D, Guo Z, Yao L, Sun Y, Dian Y, Zhao D, Ke Y, Zeng F, Zhang C, Deng G, Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol 2025; 84:103686. [PMID: 40424719 DOI: 10.1016/j.redox.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS), regulators of cellular behaviors ranging from signaling to cell death, have complex production and control mechanisms to maintain a dynamic redox balance under physiological conditions. Redox imbalance is frequently observed in tumor cells, where ROS within tolerable limits promote oncogenic transformation, while excessive ROS induce a range of regulated cell death (RCD). As such, targeting ROS-mediated regulated cell death as a vulnerability in cancer. However, the precise regulatory networks governing ROS-mediated cancer cell death and their therapeutic applications remain inadequately characterized. In this Review, we first provide a comprehensive overview of the mechanisms underlying ROS production and control within cells, highlighting their dynamic balance. Next, we discuss the paradoxical nature of the redox system in tumor cells, where ROS can promote tumor growth or suppress it, depending on the context. We also systematically explored the role of ROS in tumor signaling pathways and revealed the complex ROS-mediated cross-linking networks in cancer cells. Following this, we focus on the intricate regulation of ROS in RCD and its current applications in cancer therapy. We further summarize the potential of ROS-induced RCD-based therapies, particularly those mediated by drugs targeting specific redox balance mechanisms. Finally, we address the measurement of ROS and oxidative damage in research, discussing existing challenges and future prospects of targeting ROS-mediated RCD in cancer therapy. We hope this review will offer promise for the clinical application of targeting oxidative stress-mediated regulated cell death in cancer therapy.
Collapse
Affiliation(s)
- Danyao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhe Ke
- The First Affliated Hospital of Shihezi University, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China.
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Li B, Xu C, Zhang D, Wang S, Xu J, Xiao B, Feng Y, Fu HY, Chen X, Zhang Z. Combined Analysis of Network Toxicology and Multiomics Revealed the Potential Mechanism of 6PPDQ-Induced Hepatotoxicity in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40387457 DOI: 10.1021/acs.est.5c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
6PPDQ, a rubber tire-derived environmental pollutant, exhibits significant hepatotoxicity. However, its hepatotoxic mechanisms remain insufficiently studied and systematically evaluated. This study integrated network toxicology, transcriptomics, and metabolomics to investigate its toxicity mechanisms. ADMETlab 3.0 was used to predict physicochemical properties and multiorgan toxicity. The targets related to 6PPDQ and liver injury were obtained from public databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. Meanwhile, molecular docking was performed to assess 6PPDQ's binding affinity to core proteins. Transcriptomics and differential gene expression analysis were performed on the livers of Kunming mice exposed to 4 mg/kg 6PPDQ to explore transcriptomic alterations, while metabolomic profiling identified disrupted metabolic pathways. Network toxicology results reveal that 6PPDQ primarily induces hepatotoxicity through apoptosis, inflammation, and lipid metabolic disturbances. Key targets, including P53, Mapk1, Mapk14, Casp8, Traf6, Ripk1, and Tnf, are identified, with strong binding affinities suggesting direct interactions. Transcriptomic and metabolomic analyses further confirms disruptions in TNF, NF-kappa B, oxidative phosphorylation, autophagy pathways, and glycerolipid metabolism. Overall, this study provides a comprehensive mechanistic framework for 6PPDQ-induced liver injury in mice and provides a new perspective for subsequent studies on the mechanism of 6PPDQ hepatotoxicity.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chenchen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Duo Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siwen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bang Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxiao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Wang X, Xiong X. Mitochondrial Reactive Oxygen Species (mROS) Generation and Cancer: Emerging Nanoparticle Therapeutic Approaches. Int J Nanomedicine 2025; 20:6085-6119. [PMID: 40385494 PMCID: PMC12085131 DOI: 10.2147/ijn.s510972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Mitochondrial reactive oxygen species (mROS) are generated as byproducts of mitochondrial oxidative phosphorylation. Changes in mROS levels are involved in tumorigenesis through their effects on cancer genome instability, sustained cancer cell survival, metabolic reprogramming, and tumor metastasis. Recent advances in nanotechnology offer a promising approach for precise regulation of mROS by either enhancing or depleting mROS generation. This review examines the association between dysregulated mROS levels and key cancer hallmarks. We also discuss the potential applications of mROS-targeted nanoparticles that artificially manipulate ROS levels in the mitochondria to achieve precise delivery of antitumor drugs.
Collapse
Affiliation(s)
- Xinyao Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Queen Mary School of Nanchang University, Nanchang, People’s Republic of China
| | - Xiangyang Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
9
|
Wang P, Sun Z, Lan Q, Zhang S, Song Y, Yang L, Chen M, Shen J, Huang Q, Zhang Y. Bioinformatics analysis combined with experimental validation reveals the novel mechanisms of multi-targets of dapagliflozin attenuating diabetic liver injury. Front Endocrinol (Lausanne) 2025; 16:1519153. [PMID: 40438398 PMCID: PMC12117336 DOI: 10.3389/fendo.2025.1519153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/17/2025] [Indexed: 06/01/2025] Open
Abstract
Objective Diabetic liver injury, a chronic complication of diabetes mellitus (DM), has been extensively documented. Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, has shown significant therapeutic benefits in clinical trials for the management of diabetes However, the specific mechanism on the treatment of diabetic liver injury with dapagliflozin is not fully understood. Therefore, this study aims to further explore the potential mechanism of dapagliflozin on diabetic liver injury based on bioinformatics analysis and experimental verification. Methods Diabetic liver injury was induced by a high-fat diet combined with STZ in mice. Biochemical kit detection and H&E staining were used to observe lipid aggregation and oxidative stress in liver tissue. Moreover, the expression of inflammatory and apoptosis-related factors was detected using western blotting (WB) and quantitative polymerase chain reaction (qPCR). Subsequently, differential expressions genes analysis, weighted gene co-expression network analysis (WGCNA), molecular docking, as well as molecular dynamics was conducted based on the Gene Expression Omnibus (GEO) and pharmacology databases. Finally, WB and qPCR were performed to validate the mechanism of dapagliflozin on diabetic liver injury in vivo and in vitro. Results Dapagliflozin alleviated diabetic liver injury by decreasing lipid deposition, oxidative stress levels, the inflammatary and apoptosis-related proteins and mRNA levels, while it also reducing blood glucose. Mechanically, 78 overlapping genes of dapagliflozin and diabetic liver injury were obtained. Notably, Mapk3, Mapk1, Ikbkb, and Nfkb1 as the hub genes involved in dapagliflozin attenuating diabetic liver injury were identified, and dapagliflozin exhibited better affinity with these proteins. Moreover, dapagliflozin inhibited the elevated protein (genes) levels of ERK1/2 (Mapk3, Mapk1), IKKβ(Ikbkb), and NF-κB (Nfkb1), which are induced by diabetic liver injury, as confirmed by both in vivo and in vitro experiments. Conclusion Dapagliflozin ameliorated diabetic liver injury by inhibiting the ERK/IKKβ/NF-κB signalling pathway, as demonstrated by bioinformatics analysis combined with in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Pengyu Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| | - Zhen Sun
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lan
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
- Experimental Animal Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuo Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| | - Yan Song
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| | - Leiming Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| | - Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jianfen Shen
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qi Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| | - Youzhi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
10
|
Xia S, Xu Z, Cheng C, An R, Chen W, Lin D, Gao Y, Wang L, Xie X, Zhang J. Blood metabolites, protein regulatory networks and their roles in pan-cancer: a mendelian randomisation study. Discov Oncol 2025; 16:721. [PMID: 40348923 PMCID: PMC12065688 DOI: 10.1007/s12672-025-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Metabolic dysregulation was closely associated with cancers. However, there is a lack of studies to explore the relationship between blood metabolites, related proteins, and different types of cancer. METHODS Two-sample Mendelian randomization (MR) analysis was used to assess the causal effects of genetically determined metabolites and metabolite ratios on solid cancers. we analyzed 1400 metabolites/metabolite ratios as exposures and 16 cancers from UK Biobank/FinnGen as outcomes. Protein-metabolite interactions were mapped via MR and visualized with Cytoscape, followed by Gene Ontology enrichment. Clinical validation included metabolomic profiling of 75 breast cancer patients and 20 controls. RESULTS MR analysis identified 11 metabolites or metabolite ratios causally associated with cancer risk. Moreover, 48 proteins were demonstrated to be involved in the regulation of these metabolites, which are predominantly enriched in 5 significant metabolic pathways in cancers. Clinically, elevated lignoceroylcarnitine (C24) reduced breast cancer risk, while high glucose-to-mannose and alanine-to-asparagine ratios increased risk. CONCLUSIONS Our study revealed a causal effects of metabolites and its related proteins/pathways on various types of cancers.
Collapse
Affiliation(s)
- Shenglong Xia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhengyang Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Cheng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310013, Zhejiang, China
| | - Rui An
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310013, Zhejiang, China
| | - Wenci Chen
- Department of Rehabilitation, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China
| | - Daopo Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310013, Zhejiang, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310013, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
11
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
12
|
Emami A, Mahdavi Sharif P, Rezaei N. KRAS mutations in colorectal cancer: impacts on tumor microenvironment and therapeutic implications. Expert Opin Ther Targets 2025:1-23. [PMID: 40320681 DOI: 10.1080/14728222.2025.2500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Despite decreasing trends in incidence, colorectal cancer (CRC) is still a major contributor to malignancy-related morbidities and mortalities. Groundbreaking advances in immunotherapies and targeted therapies benefit a subset of CRC patients, with sub-optimal outcomes. Hence, there is an unmet need to design and manufacture novel therapies, especially for advanced/metastatic disease. KRAS, the most highly mutated proto-oncogene across human malignancies, particularly in pancreatic adenocarcinoma, non-small cell lung cancer, and CRC, is an on-off switch and governs several fundamental cell signaling cascades. KRAS mutations not only propel the progression and metastasis of CRC but also critically modulate responses to targeted therapies. AREAS COVERED We discuss the impacts of KRAS mutations on the CRC's tumor microenvironment and describe novel strategies for targeting KRAS and its associated signaling cascades and mechanisms of drug resistance. EXPERT OPINION Drug development against KRAS mutations has been challenging, mainly due to structural properties (offering no appropriate binding site for small molecules), critical functions of the wild-type KRAS in non-cancerous cells, and the complex network of its downstream effector pathways (allowing malignant cells to develop resistance). Pre-clinical and early clinical data offer promises for combining KRAS inhibitors with immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Anita Emami
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Huang J, Wang J, Wang G, Zhao Y. Allele frequency in thyroid cancer: mechanisms, challenges, and applications in cancer therapy. Thyroid Res 2025; 18:19. [PMID: 40325461 PMCID: PMC12054298 DOI: 10.1186/s13044-025-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 05/07/2025] Open
Abstract
Allele Frequency (AF) is the percentage of sequence reads with a specific mutation relative to the read depth at that locus, reflecting the proportion of gene mutation. This review explores the AF characteristics of different mutations in thyroid cancer, investigating their connection with tumor features and clinical characteristics. BRAF mutation AF is associated with tumour malignancy and prognosis, exhibiting a relatively low peak value. TERT mutations in AF are associated with invasive characteristics, and the combination between BRAF and TERT mutations AF improved the diagnostic value in identifying patients' risk of recurrence and tumour malignancy. RET mutation is frequently observed in medullary carcinoma, and RET mutation AF is associated with partial tumour characteristics. RAS mutation is prevalent in follicular tumors, but the association between RAS mutation AF and tumour characteristics is relatively weak. TP53 mutation is more frequently occurred in poorly differentiated and anaplastic carcinoma, and its AF might be associated with the dedifferentiation process. We also concentrated on the mutually exclusive and synergistic effect between different mutations. The mutation rate of TERT increases with the elevation of BRAF mutation AF. Finally, the detection and assessment of AF by NGS in clinical practice helps to provide a reference for individualised targeted therapy plans.
Collapse
Affiliation(s)
- Jiayu Huang
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiazhi Wang
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Guangzhi Wang
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Yongfu Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
14
|
Huang L, Shi L, Li M, Yin X, Ji X. Oxidative stress in endometriosis: Sources, mechanisms and therapeutic potential of antioxidants (Review). Int J Mol Med 2025; 55:72. [PMID: 40052588 DOI: 10.3892/ijmm.2025.5513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025] Open
Abstract
Endometriosis affects ~15% of women of reproductive age worldwide, impacting ~190 million individuals. Despite its high prevalence, the precise pathogenesis of endometriosis remains unclear. Emerging evidence has highlighted oxidative stress as a pivotal factor in the initiation and progression of this disease. The present review comprehensively summarizes the sources of oxidative stress in endometriosis, including redox imbalance characterized by increased oxidative markers and diminished antioxidant defenses, mitochondrial dysfunction leading to excessive production of reactive oxygen species (ROS), and aberrant iron metabolism that further amplifies ROS generation. The accumulation of ROS disrupts cellular redox homeostasis, thereby exacerbating oxidative stress and activating key cell proliferation signaling pathways, such as the Raf/MEK/ERK and mTOR pathways. Activation of these pathways promotes the survival and proliferation of ectopic endometrial cells, contributing to lesion development and disease progression. The present review also discusses how oxidative stress induces epigenetic modifications that may further drive the pathological features of endometriosis. Finally, the recent advances in the application of antioxidants as therapeutic agents for endometriosis are highlighted, underscoring their potential to mitigate oxidative stress and ameliorate disease symptoms. Understanding the intricate relationship between oxidative stress and endometriosis may pave the way for novel diagnostic and therapeutic strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Ling Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Maoya Li
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiaolan Yin
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoli Ji
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
15
|
Fu Z, Feng B, Akogo HY, Ma J, Liu Y, Quan H, Zhang X, Hou Y, Zhang X, Ma J, Cui H. Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions. Mol Neurobiol 2025; 62:6383-6396. [PMID: 39792201 DOI: 10.1007/s12035-024-04681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts. Analysis of drug‒gene associations revealed potential therapeutic compounds linked to ALS and PD treatment. Additionally, we explored the interactions between transcription factors, miRNAs, and common DEGs, revealing aspects of gene regulatory networks. This study provides insights into the molecular mechanisms of ALS and PD, offering valuable contributions to ongoing research and potential therapeutic avenues.
Collapse
Affiliation(s)
- Zewei Fu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Herman Yao Akogo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jiajia Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yukun Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Hezhi Quan
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaohan Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yu Hou
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xuecong Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana.
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| |
Collapse
|
16
|
Zhang S, Wang H, Sai C, Wang Y, Cheng Z, Zhang Z. The Cytotoxic Activity of Secondary Metabolites from Marine-Derived Penicillium spp.: A Review (2018-2024). Mar Drugs 2025; 23:197. [PMID: 40422787 DOI: 10.3390/md23050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Marine-derived Penicillium spp., including Penicillium citrinum, Penicillium chrysogenum, and Penicillium sclerotiorum, have emerged as prolific producers of structurally diverse secondary metabolites with cytotoxic activity. This review systematically categorizes 177 bioactive compounds isolated from marine Penicillium spp. between 2018 and 2024, derived from diverse marine environments such as sediments, animals, plants, and mangroves. These compounds, classified into polyketides, alkaloids, terpenoids, and steroids, exhibit a wide range of cytotoxic activities. Their potency is categorized as potent (<1 μM or <0.5 μg/mL), notable (1-10 μM or 0.5-5 μg/mL), moderate (10-30 μM or 5-15 μg/mL), mild (30-50 μM or 15-25 μg/mL), and negligible (>50 μM or >25 μg/mL). The current review highlights the promising role of marine Penicillium spp. as a rich repository for the discovery of anticancer agents and the advancement of marine-inspired drug development.
Collapse
Affiliation(s)
- Shuncun Zhang
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Chunmei Sai
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Yan Wang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, 669 Xueyuan Road, Rizhao 276800, China
| |
Collapse
|
17
|
Fu S, Dong Q, Fu Y, Luo R, Li J, Sun Y, Liu S, Qiu Y, Guo L, Hu J. Baicalin Relieves Glaesserella parasuis-Triggered Immunosuppression Through Polarization via MIF/CD74 Signaling Pathway in Piglets. Biomolecules 2025; 15:640. [PMID: 40427533 PMCID: PMC12108920 DOI: 10.3390/biom15050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Glaesserella parasuis (G. parasuis) infection is responsible for Glässer's disease in pigs. G. parasuis could trigger piglet immunosuppression, but the mechanism of inducing immunosuppression by G. parasuis remains unknown. Macrophage migration inhibitory factor (MIF)/CD74 axis has been shown to participate in inflammation response and immunosuppression, but the function of MIF/CD74 during immunosuppression elicited by G. parasuis has not been fully explored. This experiment explored the efficacy of baicalin on immunosuppression elicited by G. parasuis alleviation through regulating polarization via the MIF/CD74 signaling pathway. Our data indicated that baicalin reduced IL-1β, IL-6, IL-8, IL-18, TNF-α, and COX-2 expression, and regulated MIF/CD74 axis expression in the spleen. Immunohistochemistry analysis showed that baicalin enhanced CD74 protein levels in the spleen of piglets induced by G. parasuis. Baicalin regulated the PI3K/Akt/mTOR signaling pathway and RAF/MEK/ERK signaling activation, modified the expression of the autophagy-related proteins Beclin-1, P62, and LC3B, promoted M2 polarization to M1 polarization, and enhanced CD3, CD4, CD8, and TIM3 levels in the spleen of piglets elicited by G. parasuis. Our study reveals the important functions of the MIF/CD74 axis in G. parasuis-induced immunosuppression and may offer a new therapeutic method to control G. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiaoli Dong
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjian Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ronghui Luo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyang Li
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yamin Sun
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyu Liu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ling Guo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jin Hu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
18
|
Alemán OR, Blanco-Camarillo C, Naranjo-Pinto N, Mora N, Rosales C. Fc gamma receptors activate different protein kinase C isoforms in human neutrophils. J Leukoc Biol 2025; 117:qiaf019. [PMID: 39946245 DOI: 10.1093/jleuko/qiaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Receptors for FcγR on human neutrophils constitute an important mechanism for the recognition of opsonized microorganisms and for cell activation. Human neutrophils express 2 FcγR: FcγRIIa and FcγRIIIb. Previously, it has been reported that activation of each FcγR induces different neutrophil responses by triggering distinct signal transduction pathways, although what particular signal transduction pathway is triggered by each FcγR has not been completely elucidated. It has also been reported that PKC is important for FcγR signaling and that each FcγR may activate different PKC isoforms. Therefore, we explored whether FcγRIIa or FcγRIIIb activates different PKC isoforms in human neutrophils and whether activation of these PKC isoforms results in different neutrophil responses. Hence, either FcγRIIa or FcγRIIIb was selectively cross-linked by monoclonal antibodies in the presence or absence of pharmacological inhibitors for various PKC isoforms. Inhibition of PKCα or PKCδ blocked FcγRIIa-induced reactive oxygen species productions. In contrast, inhibition of PKCα and/or PKCβ blocked FcγRIIIb-induced reactive oxygen species production. Also, inhibition of all PKC isoforms did not affect the FcγRIIa-induced increase in intracellular calcium concentration ([Ca2+]i), while inhibition of PKCα blocked FcγRIIIb-induced increase in [Ca2+]i. Additionally, inhibition of PKCδ blocked FcγRIIa-induced ERK phosphorylation, while inhibition of PKCα prevented FcγRIIIb-induced ERK phosphorylation. These results suggest that both FcγRIIa and FcγRIIIb activate unique PKC isoforms and that activation of these PKC isoforms can selectively regulate different neutrophil functions. These findings also reinforce the idea that each FcγR in human neutrophils triggers distinct signal transduction pathways.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Blanco-Camarillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio D primer piso, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nathalia Naranjo-Pinto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nancy Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
19
|
Liu YH, Wang ZY, Du YF, Liu XH, Niu JB, Song J, Jin CY, Zhang SY. Thienopyrimidine: A promising scaffold in the development of kinase inhibitors with anticancer activities. Bioorg Med Chem 2025; 121:118109. [PMID: 39955801 DOI: 10.1016/j.bmc.2025.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Protein kinases represent a highly promising drug target, with over 80 drugs that target about two dozen different protein kinases have been approved by the US FDA, particularly in cancer treatment. Over the past decades, the unique structural characteristics of the thienopyrimidine ring system provide an adaptive platform for designing potent anticancer agents, especially various kinase inhibitors, which has attracted widespread attention. Some of these thienopyrimidines as anticancer kinase inhibitors have already been marketed or are currently undergoing clinical/preclinical studies for the treatment of cancers, such as Olmutinib, Pictilisib, SNS-314, PF-03758309, and Fimepinostat, highlighting the substantial advantages of the thienopyrimidine scaffold in the discovery of anticancer agents. This article reviews the discovery, activity, and structure-activity relationships of antitumor kinase inhibitors based on the thienopyrimidine scaffold, and partially discusses the binding modes between thienopyrimidine derivatives and their kinase targets. By elucidating the application of thienopyrimidine derivatives as anticancer kinase inhibitors, this review aims to provide new perspectives for the development of more effective and novel kinase inhibitors.
Collapse
Affiliation(s)
- Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fei Du
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuan-Han Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Zhou Y, Ding Y, Xu B, Fei H, Wang Z. Genetically druggable targets for MAPK-activated colorectal cancer by a two-sample mendelian randomization analysis. Sci Rep 2025; 15:12239. [PMID: 40210889 PMCID: PMC11986099 DOI: 10.1038/s41598-024-82567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/06/2024] [Indexed: 04/12/2025] Open
Abstract
Colorectal cancer (CRC) is a significant worldwide health issue, ranking second in women and third in men. Predictions estimate a rise to 2.5 million cases by 2035, with CRC being the fourth deadliest cancer due to delayed diagnosis and the scarcity of effective treatment options. Over 60% of CRC cases involve MAPK-activated signal pathways, particularly driven by RAS oncogene mutations, which hinder treatment responses, making them 'undruggable.' This study conducts a two-sample Mendelian randomization protein quantitative trait loci (pQTL) analysis to investigate the causal association between plasma proteins and MAPK-activated CRCs. The study indicates that four plasma proteins-MHC class I polypeptide-related sequence B (MICB), complement C4A, C4B, and interleukin-21 (IL-21) are associated with an increased risk of MAPK-activated CRCs. These findings highlight the possibility of utilizing plasma proteins as therapeutic targets and diagnostic markers to advance the fight against CRCs, indicating promising results for more effective interventions. To ascertain and expand upon these discoveries, further research is imperative to fully harness the potential of these discoveries.
Collapse
Affiliation(s)
- Yuxuan Zhou
- Department of Gastrointestinal Surgery/Hernia Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China
| | - Yunlong Ding
- Department of Emergency General Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Bangyue Xu
- Jilin Central General Hospital, Changchun, Jilin, China
| | - Hongyang Fei
- Department of Hepatobiliary and Pancreatic Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery/Hernia Surgery, Jilin Province People's Hospital, No. 1183 Gongnong Road, Changchun, Jilin, China.
| |
Collapse
|
21
|
Regev C, Jang H, Nussinov R. ERK Allosteric Activation: The Importance of Two Ordered Phosphorylation Events. J Mol Biol 2025:169130. [PMID: 40216017 DOI: 10.1016/j.jmb.2025.169130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
ERK, a coveted proliferation drug target, is a pivotal kinase in the Ras/ERK signaling cascade. Despite this, crucial questions about its activation have not been fully explored on the foundational, conformational level. Such questions include (i) Why ERK's activation demands dual phosphorylation; (ii) What is the role of each phosphorylation site in the activation loop; and (iii) Exactly how the (ordered) phosphorylation steps affect the conformational ensembles of the activation loop, their propensities and restriction to a narrower range favoring ERK's catalytic action. Here we used explicit molecular dynamics simulations to study ERK's stability and the conformational changes in different stages along the activation process. The initial monophosphorylation event elongates the activation loop to enable successive phosphorylations, which reintroduce stability/compactness through newly formed salt bridges. The interactions formed by monophosphorylation are site-dependent, with threonine's phosphorylation presenting stronger electrostatic interactions compared to tyrosine's. Dual phosphorylated ERKs revealed a compact kinase structure which allows the HRD catalytic motif to stabilize the ATP. We further observe that the hinge and the homodimerization binding site responded to a tri-state signaling code based solely on the phosphorylation degree (unphosphorylated, monophosphorylated, dual phosphorylated) of the activation loop, confirming that the activation loop can allosterically influence distant regions. Last, our findings indicate that threonine phosphorylation as the second step is necessary for ERK to become effectively activated and that activation depends on the phosphorylation order. Collectively, we offer ERK's dual allosteric phosphorylation code in activation and explain why the phosphorylation site order is crucial.
Collapse
Affiliation(s)
- Clil Regev
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
22
|
Xu H, Zhao Q, Cai D, Chen X, Zhou X, Gao Y, Wu J, Yuan S, Li D, Zhang R, Peng W, Li G, Nan A. o8G-modified circKIAA1797 promotes lung cancer development by inhibiting cuproptosis. J Exp Clin Cancer Res 2025; 44:110. [PMID: 40176113 PMCID: PMC11963662 DOI: 10.1186/s13046-025-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Lung cancer is a serious threat to human life and health, but effective screening and treatment methods are lacking. Circular RNAs (circRNAs) have important biological functions and are closely related to tumour development. Some studies have shown that the 8-oxo-7,8-dihydroguanosine (o8G) modification plays a key role in the disease process, but the effect of the o8G modification on circRNAs has not been elucidated. Moreover, cuproptosis is a novel mode of cell death in which copper ions directly promote protein aggregation and the disruption of cellular metabolic pathways. The present study revealed that the o8G modification of circKIAA1797 occurs and promotes lung cancer development by inhibiting cuproptosis, which provides new perspectives for epitranscriptomic studies and the development of novel therapeutic approaches for lung cancer. METHODS circRNA differential expression profiles in lung cancer were revealed via RNA high-throughput sequencing, and circKIAA1797 expression in lung cancer cell lines and tissues was detected using qPCR. Experiments such as o8G RNA immunoprecipitation (o8G RIP) and crosslinking immunoprecipitation (CLIP) were performed to explore the presence of o8G on circKIAA1797. The regulation of circKIAA1797 by the o8G reader Y-box binding protein 1 (YBX1) was explored using nuclear-cytoplasmic fractionation, actinomycin D (Act D) stability experiments and other experiments. circKIAA1797 silencing and overexpression systems were constructed for in vivo and in vitro experiments to study the role of circKIAA1797 in lung cancer development. Tagged RNA affinity purification (TRAP), RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP), and immunofluorescence (IF) staining were subsequently conducted to reveal the molecular mechanism by which circKIAA1797 regulates cuproptosis and promotes lung cancer development. RESULTS This study is the first to reveal the presence of o8G on circKIAA1797 and that YBX1 is a reader that recognises ROS-induced circKIAA1797 o8G modifications and increases the stability and cytoplasmic expression of circKIAA1797. circKIAA1797, which is associated with the tumour stage and prognosis, has been shown to significantly promote the biological function of lung cancer development both in vivo and in vitro. This study revealed that circKIAA1797 inhibits intracellular cuproptosis by binding to the ferredoxin 1 (FDX1) mRNA, decreasing FDX1 mRNA stability, inhibiting FDX1 expression, and binding to the signal transducer and activator of transcription 1 (STAT1) protein and inhibiting lipoyltransferase 1 (LIPT1) transcription; moreover, circKIAA1797 promotes the closure of the mitochondrial permeability transition pore (mPTP), inhibits cuproptosis, and ultimately promotes lung cancer development. CONCLUSIONS This study revealed the presence of the o8G modification in circKIAA1797, which plays an important role in the development of lung cancer. circKIAA1797 can inhibit cuproptosis by inhibiting key cuproptosis proteins and promoting mPTP closure, ultimately promoting the development of lung cancer. This study provides not only a new theoretical basis for an in-depth understanding of the molecular mechanisms of lung cancer development but also a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
23
|
Zhou K, Liu Y, Tang C, Zhu H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm (Beijing) 2025; 6:e70162. [PMID: 40182139 PMCID: PMC11965705 DOI: 10.1002/mco2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy, with pancreatic ductal adenocarcinoma (PDAC) being the most common and aggressive subtype, characterized by late diagnosis, aggressive progression, and resistance to conventional therapies. Despite advances in understanding its pathogenesis, including the identification of common genetic mutations (e.g., KRAS, TP53, CDKN2A, SMAD4) and dysregulated signaling pathways (e.g., KRAS-MAPK, PI3K-AKT, and TGF-β pathways), effective therapeutic strategies remain limited. Current treatment modalities including chemotherapy, targeted therapy, immunotherapy, radiotherapy, and emerging therapies such as antibody-drug conjugates (ADCs), chimeric antigen receptor T (CAR-T) cells, oncolytic viruses (OVs), cancer vaccines, and bispecific antibodies (BsAbs), face significant challenges. This review comprehensively summarizes these treatment approaches, emphasizing their mechanisms, limitations, and potential solutions, to overcome these bottlenecks. By integrating recent advancements and outlining critical challenges, this review aims to provide insights into future directions and guide the development of more effective treatment strategies for PC, with a specific focus on PDAC. Our work underscores the urgency of addressing the unmet needs in PDAC therapy and highlights promising areas for innovation in this field.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yingping Liu
- Department of RadiotherapyCancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Chuanyun Tang
- The First Clinical Medical College of Nanchang UniversityNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
24
|
Han H, Du A, Li J, Han H, Feng P, Zhu Y, Li X, Tian G, Yu H, Zhang B, Liu W, Yuan G. Transitioning from molecular methods to therapeutic methods: An in‑depth analysis of glioblastoma (Review). Oncol Rep 2025; 53:48. [PMID: 40017136 PMCID: PMC11894601 DOI: 10.3892/or.2025.8881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumour, characterised by high heterogeneity, aggressiveness and resistance to conventional therapies, leading to poor prognosis for patients. In recent years, with the rapid development of molecular biology and genomics technologies, significant progress has been made in understanding the molecular mechanisms of GBM. This has revealed a complex molecular network involving aberrant key signalling pathways, epigenetic alterations, interactions in the tumour microenvironment and regulation of non‑coding RNAs. Based on these molecular features, novel therapeutic strategies such as targeted therapies, immunotherapy and gene therapy are rapidly evolving and hold promise for improving the outcome of GBM. This review systematically summarises the advances in molecular mechanisms and therapeutic approaches for GBM. It aims to provide new perspectives for the precise diagnosis and personalised treatment of GBM, and to ultimately improve the prognosis of patients.
Collapse
Affiliation(s)
- Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Aichao Du
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jinwen Li
- College of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hongyan Han
- Department of Neurology, Tianshui First People's Hospital, Tianshui, Gansu 741000, P.R. China
| | - Peng Feng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yufeng Zhu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Li
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guopeng Tian
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Haijia Yu
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Bo Zhang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weiguo Liu
- Lanzhou University of Basic Medical Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
25
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
26
|
Andersen MD, Wolter K, Enemark MH, Lauridsen KL, Hamilton-Dutoit SJ, Starklint J, d'Amore F, Ludvigsen M, Honoré B, Kamper P. Proteomic profiling identifies classic Hodgkin lymphoma patients at risk of bleomycin pulmonary toxicity. Leuk Lymphoma 2025; 66:656-667. [PMID: 39625996 DOI: 10.1080/10428194.2024.2434170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 03/29/2025]
Abstract
Advances in treating classic Hodgkin lymphoma (cHL) have improved cure rates, with overall survival exceeding 80%, resulting in a growing population of survivors at risk of long-term complications, particularly cardiac and pulmonary toxicity. Bleomycin, a key component of combination chemotherapy, is associated with bleomycin-induced pulmonary toxicity (BPT). Using label-free quantification nano liquid chromatography-tandem mass spectrometry, protein expression in diagnostic lymphoma samples from patients with and without BPT was compared. Results showed differential protein expression and disrupted cellular pathways, suggesting biological differences in BPT risk. Immunohistochemical analysis revealed higher expression of JAK3, BID, and MMP9, and lower expression of CD20, TPD52, and PIK3R4 in patients with BPT. High BID and low CD20 expression were associated with inferior overall survival, while high BID and low JAK3 and CD20 expression were linked to poorer progression-free survival. These findings highlight altered protein profiles in pretreatment cHL biopsies associated with BPT development.
Collapse
Affiliation(s)
- Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katharina Wolter
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jørn Starklint
- Department of Medicine, Regional Hospital Goedstrup, Herning, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Kamper
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Gajula SNR, Munjal V, Talari S, Rahman Z, Dandekar MP, Sonti R. The Influence of a Rat Model of Depression and Gastric Ulcer on the Pharmacokinetics of Encorafenib. Biopharm Drug Dispos 2025; 46:67-81. [PMID: 40202822 DOI: 10.1002/bdd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Encorafenib is used to treat melanoma and colorectal tumors. Depression and gastric ulcer conditions can impact various physiological processes, including drug metabolism and pharmacokinetics. This study investigated the effect of a rat model of depression and gastric ulcers on the pharmacokinetics (PK) of encorafenib using the developed LC-QqQ-MS method. The chronic unpredictable mild stress (CUMS) model of depression and the indomethacin-induced gastric ulcer model were utilized to investigate the effect of depression and gastric ulcers on the pharmacokinetics of orally administered encorafenib. The focus was on parameters such as maximum plasma concentration (Cmax), elimination half-life (t1/2), mean residence time (MRT), volume of distribution (Vd), area under the curve (AUC), and apparent clearance (CL/F). Rats with depression exhibited a significant increase in maximum plasma concentration (Cmax). In contrast, depression led to decreased t1/2 and MRT, implying alterations in the drug's absorption and clearance. On the one hand, rats with gastric ulcers displayed a significant decrease in Cmax, coupled with an extended time to reach maximum plasma concentration (Tmax), prolonged t1/2, MRT, and increased volume of distribution (Vd) of encorafenib. This preclinical study demonstrates that depression and gastric ulcers significantly impact the pharmacokinetics of encorafenib. These findings emphasize the importance of considering these disease conditions when designing encorafenib dosing regimens for optimal therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Department of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India
| | - Vijay Munjal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sasikala Talari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
28
|
Ye F, Xu Y, Zhu X, Ding Q, Wang Y, Lu S, Chen Y. The mechanism of E3 ubiquitin ligase HERC1 regulating ferroptosis in lung adenocarcinoma cells. Cancer Genet 2025; 292-293:92-99. [PMID: 39983667 DOI: 10.1016/j.cancergen.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Herein, we probed into the role of E3 ubiquitin protein ligase family member 1 (HERC1) in promoting ferroptosis and inhibiting LUAD cell proliferation by regulating RAF proto-oncogene serine/threonine-protein kinase (C-RAF). METHODS In cultured human normal lung epithelial cells and non-small cell lung adenocarcinoma cell lines, HERC1 expression was determined by RT-qPCR and Western blot tests. PC-9 and Calu-3 cells were transfected with oe-HERC1, oe-C-RAF or their negative controls. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and Fe2+ levels were assessed by biochemical assays. Cell viability, death, and proliferation were evaluated by CCK-8, LDH and colony formation assays, followed by assessments of HERC1-C-RAF interaction, C-RAF ubiquitin level, and C-RAF protein stability. RESULTS HERC1 was poorly expressed in LUAD cells. HERC1 promoted LUAD cell ferroptosis and repressed their proliferation and migration, corresponding to reduced levels of system xc-, GPX4, and GSH, as well as elevated levels of ROS, MDA, Fe2+, and ACSL4. LUAD cells overexpressing HERC1 displayed decreased C-RAF protein level, HERC1-C-RAF interaction, elevated C-RAF ubiquitin level, and accelerated C-RAF protein degradation, indicating that HERC1 facilitated C-RAF ubiquitin degradation and attenuated C-RAF protein stability via interaction with C-RAF. C-RAF overexpression partially abrogated the regulatory impact of HERC1 on LUAD cell ferroptosis and proliferation. CONCLUSION HERC1 expedites C-RAF ubiquitin degradation by interacting with C-RAF, which consequently promotes ferroptosis, thereby inhibiting LUAD cell proliferation.
Collapse
Affiliation(s)
- Fei Ye
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yi Xu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xujuan Zhu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qifeng Ding
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yifei Wang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Songhua Lu
- Haian People's Hospital Department of Thoracic Surgery, Nantong, 226000, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
29
|
Xu X, Luo S, Wang Q, Zhang E, Liu J, Duan L. Allosteric site engagement and cooperativity mechanism by PHI1 for BRAF V600E kinase inhibition. Int J Biol Macromol 2025; 302:140475. [PMID: 39884594 DOI: 10.1016/j.ijbiomac.2025.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
With the ability to reveal allosteric sites, Ponatinib and Ponatinib Hybrid Inhibitor 1 (PHI1) are novel inhibitors of BRAF, a potent oncogene that activates the MAPK pathway. PHI1 also exhibits unique positive cooperativity, with enhanced inhibition on the other monomer when one monomer of the BRAFV600E dimer bound to an inhibitor. The abovementioned properties lack rigorous theoretical verification, so this study compared the interaction mechanisms of four inhibitor types and explored the source of the cooperativity of PHI1 via various computational methods. Results revealed that residues on the αC-helix formed hydrogen bonds with inhibitors, shifting the position of the αC-helix. PHI1 induced binding pocket contraction through contact with allosteric sites. Entropy contributions were considerably weakened when both BRAFV600E monomers were occupied, thereby increasing the binding ability of PHI1, indicating that entropy contributions were the main source of PHI1 cooperativity. The change in overall motion intensity tightened the binding pocket, increasing the binding abilities of hotspot residues, including Arg575 and Leu567. Moreover, three key hydrogen bonds formed between PHI1 and BRAFV600E in the dimer system were conducive to the binding. The insights derived from this study are expected to advance the development of inhibitors targeting BRAFV600E kinase.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
30
|
Wang Y, Sun X, Ren M, Ma F, Zhao R, Zhu X, Xu Y, Cao N, Chen Y, Pan Y, Zhao A. Integrative network pharmacology, transcriptomics, and proteomics reveal the material basis and mechanism of the Shen Qing Weichang Formula against gastric cancer. Chin Med 2025; 20:42. [PMID: 40155922 PMCID: PMC11954191 DOI: 10.1186/s13020-025-01091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with poor prognosis and lack of efficient therapeutic methods. Shen Qing Weichang Formula (SQWCF) is a patented traditional herbal prescription for GC, but its efficacy and underlying mechanism remains to be clarified. PURPOSE To explore the efficacy and potential mechanism of SQWCF in treating GC. METHODS A subcutaneous transplantation tumor model of human GC was established for assessing SQWCF's efficacy and safety. A comprehensive strategy integrating mass spectrometry, network pharmacology, omics analysis, and bioinformatic methods was adopted to explore the core components, key targets, and potential mechanism of SQWCF in treating GC. Molecular docking, immunohistochemistry, quantitative real-time PCR, and western blot were applied to validation. RESULTS In the mouse model of GC, SQWCF effectively suppressed the GC growth without evident toxicity and enhanced the therapeutic efficacy of paclitaxel. Network pharmacology and molecular docking based on mass spectrometry showed that key targets (CASP3, TP53, Bcl-2, and AKT1) and core active components (Calycosin, Glycitein, Liquiritigenin, Hesperetin, and Eriodictyol) involved in the anti-GC effect of SQWCF had stable binding affinity, of which AKT1 ranked the top in the affinity. Validation based on network pharmacology and omics analysis confirmed that PI3K-AKT and MAPK signaling pathways, as well as downstream apoptosis pathway, explained the therapeutic effects of SQWCF on GC. In addition, family with sequence similarity 81 member A (FAM81A) was identified as a novel biomarker of GC that was aberrantly highly expressed in GC and associated with poor prognosis by bioinformatic analysis, and was an effector target of SQWCF at both mRNA and protein levels. CONCLUSION This study uncovers a synergistic multi-component, multi-target, and multi-pathway regulatory mechanism of SQWCF in treating GC comprehensively, emphasizing its potential for therapeutic use and providing new insights into GC treatment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yuanyuan Chen
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| |
Collapse
|
31
|
Hao MW, Zhang TX, Dong D, Zhou X, Gao H. Enhancing KRAS G12D inhibitor sensitivity in pancreatic cancer through SHP2/PI3K pathway. Med Oncol 2025; 42:139. [PMID: 40146324 DOI: 10.1007/s12032-025-02683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Pancreatic cancer with the KRAS G12D mutation, found in 40% of cases, is challenging to treat. MRTX1133, a non-covalent KRAS G12D inhibitor, shows therapeutic promise but faces resistance issues. Our study combines MRTX1133 with the SHP2 inhibitor SHP099 or PI3K inhibitor Buparlisib, showing synergistic inhibition of pancreatic cancer cell growth and enhanced apoptosis. These combination therapies could improve clinical outcomes for patients with KRAS G12D mutation in pancreatic cancer.
Collapse
Affiliation(s)
- Man-Wei Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tian-Xing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Dan Dong
- Gynaecology and Obstetrics Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
32
|
Ouyang Y, Cao L, Zhao Q, Yang W, Lin C. Biodegradable Mg-1%Ca alloy inhibits the growth of cervical cancer. Biomed Mater 2025; 20:035002. [PMID: 39908673 DOI: 10.1088/1748-605x/adb2cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The traditional treatment for cervical cancer involves aggressive surgery combined with radiotherapy and chemotherapy. Nevertheless, these treatments have certain limitations and side effects, thus breakthroughs and advances are required in cervical cancer therapy. Magnesium alloy is a promising antitumor biomaterial with excellent biocompatibility and biodegradability. However, the potential effects of magnesium alloy on cervical tumors have not been extensively explored. Recent studies have demonstrated that adding a small amount of calcium to the magnesium matrix can reduce grain size and corrosion rate while providing good biocompatibility. We conductedin vivoandin vitroexperiments to test the antitumor properties of Mg-1%Ca alloys. The results indicated that the Mg-1%Ca alloy released Mg2+and OH-more slowly, inhibited the proliferation of SiHa and HeLa cells, induced apoptosis in tumor cells, disrupted the cytoskeleton, and inhibited cell migration and invasion. At the molecular level, Mg-1%Ca alloy significantly activated the mitochondrial apoptosis pathway and inhibited the MAPK/ERK signaling pathway. In the future, Mg-1%Ca may be employed in the treatment of cervical cancer as a novel adjuvant therapeutic material with anticancer function to prevent the occurrence and progression of cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yunshan Ouyang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Lingling Cao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Qian Zhao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Wang Yang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences
| |
Collapse
|
33
|
Sun H, Liu Y, Huang Y, Xiong K, Zhang Z, Wang W, Dai Y, Li J, Li Q, Wang S, Shi C. Echinococcus granulosus sensu lato promotes osteoclast differentiation through DUSP4-MAPK signaling in osseous echinococcosis. Front Microbiol 2025; 16:1558603. [PMID: 40177487 PMCID: PMC11961949 DOI: 10.3389/fmicb.2025.1558603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Osseous echinococcosis, caused by Echinococcus granulosus infection, is characterized by progressive bone destruction driven by abnormal osteoclast activation. Dual-specificity phosphatase 4 (DUSP4), a key negative regulator of the MAPK pathway, inhibits osteoclast differentiation and bone resorption. This study aimed to elucidate the role of DUSP4 in E. granulosus-induced bone loss. Methods In vitro, a co-culture system of E. granulosus protoscoleces (PSCs) and bone marrow-derived macrophages (BMMs) was established. Osteoclast differentiation and bone resorption were assessed using TRAP staining and F-actin immunofluorescence. Transcriptome sequencing identified DUSP4 as a key regulator. DUSP4 overexpression was performed to evaluate its effects on osteoclast markers and MAPK signaling (ERK, JNK, p38). In vivo, a mouse model of osseous echinococcosis was developed, and DUSP4 overexpression was achieved via lentiviral transduction. Bone destruction was analyzed using X-ray, micro-CT, and histology. Results PSCs significantly enhanced osteoclast differentiation and bone resorption, upregulated osteoclast markers (CTSK, NFATc1), and activated MAPK signaling. DUSP4 overexpression reversed these effects, reducing osteoclast activity and MAPK phosphorylation. In vivo, PSC infection caused severe bone destruction, which was mitigated by DUSP4 overexpression. Disscussion This study reveals the molecular mechanism by which Echinococcus granulosus drives abnormal osteoclast activation through the DUSP4-MAPK signaling axis. Parasitic infection suppresses DUSP4 expression, relieving its negative regulation of the MAPK pathway and leading to excessive osteoclast differentiation. Restoring DUSP4 expression effectively reverses abnormal MAPK pathway activation, reducing osteoclast bone resorption activity to physiological levels. These findings not only provide new insights into the pathological mechanisms of bone destruction in osseous echinococcosis but also establish DUSP4 as a critical therapeutic target for pathological bone resorption, laying the groundwork for host-directed treatment strategies for parasitic bone diseases.
Collapse
Affiliation(s)
- Haohao Sun
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yaqing Liu
- The First Affiliated Hospital of Shihezi University, Shihezi, China
- The Medical College of Shihezi University, Shihezi, China
| | - Yiping Huang
- The Medical College of Shihezi University, Shihezi, China
| | - Kangjun Xiong
- The Medical College of Shihezi University, Shihezi, China
| | - Zhendong Zhang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Weishan Wang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yi Dai
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Jing Li
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Qi Li
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Sibo Wang
- Xi’an Jiaotong University Affiliated Honghui Hospital, Xi’an, China
| | - Chenhui Shi
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| |
Collapse
|
34
|
Anaya YA, Bracho RP, Chauhan SC, Tripathi MK, Bandyopadhyay D. Small Molecule B-RAF Inhibitors as Anti-Cancer Therapeutics: Advances in Discovery, Development, and Mechanistic Insights. Int J Mol Sci 2025; 26:2676. [PMID: 40141317 PMCID: PMC11942083 DOI: 10.3390/ijms26062676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
B-RAF is a serine/threonine kinase that plays a crucial role in the MAPK signaling pathway, regulating cell proliferation and survival. Mutations in B-RAF, particularly V600E, are associated with several malignancies, including melanoma, colorectal cancer, and non-small cell lung cancer, making it a key therapeutic target. The development of B-RAF inhibitors, such as Vemurafenib, Dabrafenib, and second-generation inhibitors like Encorafenib, has led to significant advancements in targeted cancer therapy. However, acquired resistance, driven by MAPK pathway reactivation, RAF dimerization, and alternative signaling pathways, remains a major challenge. This review explores the molecular mechanisms of B-RAF inhibitors, their therapeutic efficacy, and resistance mechanisms, emphasizing the importance of combination strategies to enhance treatment outcomes. The current standard of care involves B-RAF and MEK inhibitors, with additional therapies such as EGFR inhibitors and immune checkpoint blockades showing potential in overcoming resistance. Emerging pan-RAF and brain-penetrant inhibitors offer new opportunities for treating refractory cancers, while precision medicine approaches, including genomic profiling and liquid biopsies, are shaping the future of B-RAF-targeted therapy.
Collapse
Affiliation(s)
- Yamile Abuchard Anaya
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- Department of Health and Human Performance, College of Health Professions, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Ricardo Pequeno Bracho
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Manish K. Tripathi
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- School of Earth Environment & Marine Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
35
|
Li X, Shi Y, Liu S, Feng Z, Xiao H, Li R, Li Z, Zhang X, Han Y, Wang J, Liang C, Bai J, Zhang J. Sulfur dioxide increases testosterone biosynthesis by activating ERK1/2 pathway and disrupting autophagy in Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137001. [PMID: 39742863 DOI: 10.1016/j.jhazmat.2024.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Sulfur dioxide (SO2) is a ubiquitous environmental pollutant that has been shown to be toxic to the male reproductive system, but the underlying mechanism remains unclear. Therefore, the SO2-treated mice and primary Leydig cell models were established to investigate the effects of SO2 on the production of testosterone and its specific mechanism. The results demonstrated that SO2 activated the ERK1/2 signaling pathway, leading to increased key proteins expression of testosterone biosynthesis and elevated testosterone levels. The addition of ERK1/2 inhibitor U0126 attenuated SO2-induced increases in key testosterone biosynthetic gene mRNA levels of Star, Cyp17a1, Hsd3b1, and testosterone. Low doses of SO2 reduced the expression of BECLIN1 and LC3 proteins, increased P-4E-BP1 protein expression, and decreased autophagy in Leydig cells. Moreover, increasing doses of SO2 correlate with enhanced Leydig cell autophagy and testosterone levels initially. However, increasing the dose of SO2 resulted in a significant decrease in cell viability and ultimately decreased testosterone levels. These findings suggest that SO2 promotes testosterone production by activating ERK1/2 and disrupting autophagy. This study enriched the dose-effect relationship of SO2 on the male reproductive system and provided a theoretical reference for us to have a comprehensive and dynamic understanding of the SO2 toxic mechanism.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China; College of Life Science, Lv Liang University, Lishi, Shanxi 033001, China
| | - Yan Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Sha Liu
- Shanxi Animal Husbandry and Veterianary School, Taiyuan, Shanxi 030024, China
| | - Zhiyuan Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Haoran Xiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Rui Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Zirou Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Yongli Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China.
| | - Jian Bai
- College of Life Science, Lv Liang University, Lishi, Shanxi 033001, China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China.
| |
Collapse
|
36
|
Zhou J, Chen JR, Li JM, Han SQ, Deng XY, Li ZM, Tong W, Wang C, Bai Y, Zhang YM. IL-22/IL-22R1 pathway enhances cholangiocarcinoma progression via ERK1/2 activation. World J Gastrointest Oncol 2025; 17:102083. [PMID: 40092929 PMCID: PMC11866239 DOI: 10.4251/wjgo.v17.i3.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND IL-22 plays a pivotal role in the processes of inflammation and tissue healing., but its role in cholangiocarcinoma (CCA) remains unclear. our study explored the IL-22/IL-22R1 pathway and its impact on CCA progression through the ERK1/2 signaling cascade. AIM To determine the mechanism of the IL-22/IL-22R1 pathway in CCA and provide new directions for its clinical treatment. METHODS IL-22R1 expression was assessed in human and rat CCA tissues utilizing immunohistochemical techniques, Western blot analysis, and quantitative reverse transcription PCR. The impact of IL-22 on CCA cells was assessed in vitro via tests for proliferation, migration, invasion, and apoptosis assays. The rat models of thioacetamide-induced CCA and subcutaneous xenografts in nude mice were used to assess the in vivo effects. ERK1/2 inhibitors were applied to elucidate the mechanistic role of the pathway. RESULTS IL-22R1 was overexpressed in CCA cell lines and tissues. IL-22 treatment increased the phosphorylation of ERK1/2, promoting tumor cell proliferation, migration, invasion, and resistance to apoptosis. ERK1/2 inhibition considerably reversed these effects both in vitro and in vivo. CONCLUSION The IL-22/IL-22R1 axis promotes CCA progression by activating ERK1/2 signaling. Targeting this pathway with ERK1/2 inhibitors offers potential therapeutic strategies for CCA.
Collapse
Affiliation(s)
- Jin Zhou
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Jing-Rui Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Jin-Ming Li
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Shuang-Qing Han
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Xi-Yue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Zhong-Min Li
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300070, China
| | - Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Chao Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300070, China
| | - Ya-Min Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300070, China
| |
Collapse
|
37
|
Xiong Y, Zhang X, Xie W, Yin Y, Qian Y, Ying X, Zheng X, Wang X. DUSP4 inhibited tumor cell proliferation by downregulating glycolysis via p-ERK/p-PGK1 signaling in ovarian cancer. Cancer Cell Int 2025; 25:87. [PMID: 40082940 PMCID: PMC11908039 DOI: 10.1186/s12935-025-03722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related mortality, with poor prognosis and limited therapeutic options, underscoring the urgent need for a deeper understanding of OC biology. In this study, we identified a marked reduction in dual-specificity phosphatase 4 (DUSP4) expression in OC tissues compared to benign ovarian masses, with even further decreases observed in metastatic lesions. Moreover, DUSP4 expression varied among OC subtypes, with the lowest levels observed in serous ovarian cancer, and was associated with P53 and KI67 protein levels, altered TP53 mutation rates, advanced tumor stages, and poorer prognosis. Functional experiments demonstrated that DUSP4 overexpression suppressed OC cell proliferation, migration, and invasion in vitro. Phosphoproteomic profiling via LC-MS/MS analysis identified the MAPK pathway and cellular metabolism as key downstream targets of DUSP4. Notably, DUSP4 overexpression reduced phosphorylation of PGK1 at Ser203, a critical regulator of anaerobic glycolysis, and decreased its mitochondrial localization, leading to reduced lactate production and increased ROS levels. Mechanistically, DUSP4 dephosphorylated p-ERK, disrupting its interaction with PGK1 and subsequently reducing PGK1 S203 phosphorylation. In vivo, DUSP4 overexpression significantly inhibited tumor growth in mouse models, accompanied by decreased p-ERK and PGK1 S203 levels. These findings highlight a regulatory axis involving DUSP4, p-ERK, and PGK1, through which DUSP4 modulates glycolysis and tumor progression. This study establishes DUSP4 as a prognostic biomarker and a potential therapeutic target for OC, offering new insights into its role in tumor metabolism and growth.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Xie
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiang Ying
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
38
|
Mannino D, Basilotta R, De Luca F, Casili G, Esposito E, Paterniti I. KRAS-SOS-1 Inhibition as New Pharmacological Target to Counteract Anaplastic Thyroid Carcinoma (ATC). Int J Mol Sci 2025; 26:2579. [PMID: 40141222 PMCID: PMC11942110 DOI: 10.3390/ijms26062579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer. Tumor cells have been shown to activate alternative signaling pathways, making treatments less effective. One of the major proteins involved in the progression of ATC is the proto-oncogene KRAS that belongs to a group of small guanosine triphosphate (GTP)-binding proteins. Despite its recognized importance in cancer malignancy, KRAS is considered non-druggable and has never been studied in the field of ATC. In this context, a new synthetic molecule, BAY-293, has recently been developed that selectively inhibits the KRAS-SOS-1 interaction. Based on these findings, the aim of this study was to evaluate for the first time the antitumor effect of BAY-293 using in vitro and in vivo models of ATC. The in vitro model included different thyroid cancer (TC) cell lines used to study the effect of BAY-293 on the modulation of mitogen-activated protein kinase (MAPK) pathways, apoptosis, and cell migration. To confirm the in vitro findings and better mimic the complex tumor microenvironment, an in vivo orthotopic model of ATC was used. The results of the study indicate that BAY-293, both in vitro and in vivo, effectively blocked the KRAS/MAPK/ERK pathway and β-catenin, which act as downstream effectors essential for cell migration, and increased the apoptotic process by slowing the progression of ATC. In conclusion, this study demonstrated that KRAS/SOS-1 inhibition could be a promising therapeutic target for the treatment of ATC and highlighted BAY-293 as an innovative molecule that needs further research to fully evaluate its efficacy in the field of thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (R.B.); (F.D.L.); (G.C.); (E.E.)
| |
Collapse
|
39
|
Cai J, Wang J, Wang Z, Wang J, Jia Y, Ma X. Perspectives on the α5 nicotinic acetylcholine receptor in lung cancer progression. Front Cell Dev Biol 2025; 13:1489958. [PMID: 40143965 PMCID: PMC11937065 DOI: 10.3389/fcell.2025.1489958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in a variety of cell types and are involved in multiple physiological regulatory mechanisms in cells, tissues and systems. Increasing evidence suggests that the α5 nicotinic acetylcholine receptor (α5-nAChR), encoded by the CHRNA5 gene, is one of a key mediator involved in lung cancer development and immune responses. Several studies have shown that it is a regulator that stimulates processes via various signaling pathways, including STAT3 in lung cancer. In addition, α5-nAChR has a profound effect on lung immune response through multiple immune-related factor pathways. In this review, we focus on the perspectives on α5-nAChR in lung cancer progression, which indicates that targeting α5-nAChR could provide novel anticancer and immune therapy strategies for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
40
|
Abdelhamed AM, Helwa AA, Kadry HH, Hassan RA. Pyrazolopyrimidines: A Promising Frontier in Cancer Treatment-Reviewing Their Potential as Inhibitors of Serine/Threonine Kinases. Chem Biodivers 2025:e202403071. [PMID: 40063841 DOI: 10.1002/cbdv.202403071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Pyrazolopyrimidine derivatives have emerged as potent inhibitors targeting a broad spectrum of kinases, particularly serine/threonine kinases (STK). This review provides a comprehensive overview of the structural modifications and pharmacological relevance of pyrazolopyrimidine compounds in the realm of kinase inhibition. Specifically, the focus is placed on their inhibitory action against STK, key players in cell signaling and potential therapeutic targets in various diseases, especially cancer. The structure-activity relationship (SAR) of these derivatives highlights the importance of specific substituents in enhancing inhibitory activity, and pyrazolopyrimidine derivatives have shown promising inhibitory activity against certain STK. Challenges remain, including issues related to drug resistance, off-target effects, and potential toxicity. Future research is geared toward designing more selective derivatives with improved pharmacokinetic properties and reduced side effects.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Naldi L, Catalano M, Melica ME, Polvani S, Papini D, Landini I, Peri A, Roviello G. Effects of reduced extracellular sodium on proliferation and invasive activity of renal cell carcinoma cell lines. Sci Rep 2025; 15:8067. [PMID: 40055463 PMCID: PMC11889168 DOI: 10.1038/s41598-025-92674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/03/2025] [Indexed: 05/13/2025] Open
Abstract
Hyponatremia is the most common electrolyte disorder in cancer patients and is associated with a worse outcome. This finding has also been reported in patients with metastatic renal cell carcinoma (mRCC). We have previously demonstrated that low extracellular sodium concentrations ([Na+]) increase cell proliferation and invasion in several human cancer cell lines. The aim of the present study was to evaluate in vitro the effects of mild [Na+] alterations on two mRCC cell lines, ACHN and Caki-1. After growth in reduced extracellular [Na+], we observed that even mild reductions of [Na+] significantly enhanced different key cancer cell features, including proliferation, invasion and migration. Furthermore, we observed a reduction in reactive oxygen species (ROS) levels in low [Na+], with a significant increase of the antioxidant Nrf2/HMOX-1 pathway. Since an excess of ROS causes cell death, this finding clarifies the role of Nrf2/HMOX-1 in maintaining the balance between oxidant and antioxidant species in the tumor environment, promoting cell survival. Although further clinical studies are needed, aiming for instance to determine whether serum [Na+] correction improves the outcome of patients with mRCC, our findings suggest that attention should be deserved to serum [Na+] in this setting.
Collapse
Affiliation(s)
- Laura Naldi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Maria Elena Melica
- Nephrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
| | - Simone Polvani
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
| | - Dimitri Papini
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Alessandro Peri
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy.
- Pituitary Diseases and Sodium Alterations Unit, AOU Careggi, 50139, Florence, Italy.
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| |
Collapse
|
42
|
Liu Y, Liu F, Li C, Zhang T, Han T, Dai Y, Huang N, Tang H, Wang X, Lin S, Xue L, Wu ZB. TRIM21-mediated ubiquitination and phosphorylation of ERK1/2 promotes cell proliferation and drug resistance in pituitary adenomas. Neuro Oncol 2025; 27:727-742. [PMID: 39533840 PMCID: PMC11889717 DOI: 10.1093/neuonc/noae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pituitary adenomas (PAs) are common intracranial tumors and the TRIM family plays a crucial role in cell proliferation and therapeutic resistance of tumors. However, the role of the TRIM family in PAs is not well recognized. METHODS CRISPR screening explored the role of the TRIM family in cell proliferation and drug resistance in PAs. In vitro and in vivo experiments were performed to evaluate the effects of Tripartite Motif Containing 21 (TRIM21). RNA-sequencing, mass spectrometry, immunoprecipitation, and ubiquitination experiments were performed to explore the molecular mechanism. NanoBiT assays were used to screen the drugs reducing TRIM21 expression. RESULTS CRISPR-Cas9 screens identified that TRIM21 facilitated cell proliferation and drug resistance in PAs. Mechanistically, TRIM21 interacted with ERK1/2 through PRY-SPRY domain, leading to ERK1/2 K27-linked ubiquitination. The ERK1/2 ubiquitination promotes the interaction between ERK1/2 and MEK1/2, thereby facilitating the phosphorylation of ERK1/2. However, an excess presence of TRIM21 suppressed the phosphorylation of ERK1/2 and cell proliferation via activating ERK1/2 negative feedback pathways. Importantly, TRIM21 was upregulated in dopamine-resistant prolactinomas and cabergoline-resistant MMQ cells. Furthermore, drug screening identified that Fimepinostat and Quisinostat, can reduce the protein levels of TRIM21, inhibit tumor progression, and increase drug sensitivity. CONCLUSIONS TRIM21 may represent a therapeutic target for tumors, and inhibiting TRIM21 could be a potential strategy for tumor treatment.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanbao Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
| | - Shaojian Lin
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Yanova M, Stepanova E, Maltseva D, Tonevitsky A. CD44 variant exons induce chemoresistance by modulating cell death pathways. Front Cell Dev Biol 2025; 13:1508577. [PMID: 40114966 PMCID: PMC11924683 DOI: 10.3389/fcell.2025.1508577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer chemoresistance presents a challenge in oncology, often leading to treatment failure and disease progression. CD44, a multifunctional cell surface glycoprotein, has garnered attention for its involvement in various aspects of cancer biology. Through alternative splicing, CD44 can form isoforms with the inclusion of only standard exons, typical for normal tissue, or with the addition of variant exons, frequently expressed in cancer tissue and associated with chemoresistance. The functions of CD44 involved in regulation of cancer signaling pathways are being actively studied, and the significance of specific variant exons in modulating cell death pathways, central to the response of cancer cells to chemotherapy, begins to become apparent. This review provides a comprehensive analysis of the association of CD44 variant exons/total CD44 with clinical outcomes of patients undergoing chemotherapy. The role of CD44 variant exons v6, v9 and others with a significant effect on patient chemotherapy outcomes by means of key cellular death pathways such as apoptosis, ferroptosis and autophagy modulation is further identified, and their impact on drug resistance is highlighted. An overview of clinical trials aimed at targeting variant exon-containing isoforms is provided, and possible directions for further development of CD44-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Maria Yanova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Evgeniya Stepanova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Fan Y, Wang Q, Zhang Y, Wang Y, Li W, Jiang S, Duan JN. Mechanism of Guishao Yigong decoction in treating colorectal cancer based on network pharmacology and experimental validation. J Pharm Pharmacol 2025; 77:430-445. [PMID: 39352002 DOI: 10.1093/jpp/rgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/05/2024] [Indexed: 03/06/2025]
Abstract
OBJECTIVES To explore the effective components of Guishao Yigong decoction (GYD) in the treatment of colorectal cancer and reveal its potential mechanism of action. METHODS Through network pharmacology, the main target and signaling pathway of GYD therapy for colorectal cancer (CRC) were found. Subsequently, the effect of GYD was verified by in vitro cell viability measurements, colony formation, and scratch healing tests. The effects of GYD on metabolic pathways in vivo were found through plasma metabolomics. Finally, flow cytometry and qPCR experiments were used to verify the cycle-blocking effect of GYD on CRC cells. KEY FINDINGS Based on the network pharmacological analysis and molecular docking technology, it was found that GYD could restrain the growth of CRC cells by affecting lipid metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathways. A series of cell experiments showed that GYD could inhibit the proliferation, migration and clonogenic ability of CRC cells. Furthermore, the plasma metabolomics results showed that GYD could affect the production of unsaturated fatty acids in mice. Flow cytometry and qPCR experiments further proved that GYD blocked the CRC cells in the G1 phase and modulated the expression of cell cycle-related targets, such as AKT, TP53, CDKN1A, and CDK2. CONCLUSIONS All the results indicated that GYD could regulate the related metabolism of unsaturated fatty acids. Thus, the cell cycle was blocked and the expressions of the key proteins such as AKT and TP53 were regulated, which achieved the purpose of intervention in colorectal cancer.
Collapse
Affiliation(s)
- Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Ji-Nao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
46
|
Huang X, Arjsri P, Srisawad K, Umsumarng S, Yodkeeree S, Dejkriengkraikul P. Targeting MAPK Signaling: Loureirins A and B from Dracaena Loureiri Inhibit Epithelial-Mesenchymal Transition and Invasion in Non-Small Cell Lung Cancer Cell Lines. Life (Basel) 2025; 15:396. [PMID: 40141741 PMCID: PMC11943645 DOI: 10.3390/life15030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Metastasis remains the leading cause of death among patients with non-small cell lung cancer (NSCLC), emphasizing the urgent need for safer and more effective therapeutic options. Mitogen-activated protein kinase (MAPK) pathways play a crucial role in regulating EMT, migration, and invasion in NSCLC. Targeting these molecular mechanisms has become a key strategy in inhibiting NSCLC metastasis. Loureirin A and Loureirin B, flavonoids derived from the Thai traditional herb Dracaena loureiri, have shown potential pharmacological effects; however, their roles in NSCLC metastasis remain unexplored. This study aimed to elucidate the mechanisms by which Loureirin A and Loureirin B suppress EMT, migration, and invasion in NSCLC cells via the MAPK signaling pathway. The sulforhodamine B (SRB) assay showed that Loureirin A and Loureirin B, at concentrations ranging from 0 to 140 μM, were non-toxic to both A549 and H1299 cells. Additionally, Loureirins A and B exhibited no cytotoxic effects on primary human dermal fibroblast cells and did not induce hemolysis in red blood cells (RBCs). The wound-healing and trans-well assays were used to evaluate the anti-migratory and anti-invasion properties of Loureirin A and Loureirin B in NSCLC cell lines. Gelatin zymography was employed to investigate the activity of MMP-2 (gelatinase A) and MMP-9 (gelatinase B), while Western blot analysis was used to examine the expression of EMT markers and invasive proteins, and the phosphorylation of MAPK signaling molecules. Our results demonstrate that both Loureirin A and Loureirin B significantly suppressed the migration and invasion of A549 and H1299 cells. These compounds suppressed the activity of matrix metalloproteinases MMP-2 and MMP-9 and downregulated the expression of key invasive proteins including uPA, uPAR, and MT1-MMP. Additionally, they effectively suppressed the expression of EMT markers such as N-cadherin, Vimentin, and Fibronectin. Mechanistically, Loureirin A and Loureirin B inhibited the MAPK signaling pathway by downregulating the phosphorylation of ERK, JNK, and p38 proteins. In conclusion, these findings demonstrate that Loureirin A and Loureirin B exhibit potent anti-invasive properties and no cytotoxic effect on NSCLC cell lines, suggesting their potential as promising candidates for anti-cancer drug development. Furthermore, they may pave the way for the exploration of combination therapies with other anti-cancer drugs for clinical translation.
Collapse
Affiliation(s)
- Xiaomin Huang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
47
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
48
|
Shilyansky JS, Chan CJ, Xiao S, Gribovskaja-Rupp I, Quelle DE, Howe JR, Dillon JS, Ear PH. GLP-1R agonist promotes proliferation of neuroendocrine neoplasm cells expressing GLP-1 receptors. Surgery 2025; 179:108943. [PMID: 39665969 DOI: 10.1016/j.surg.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Semaglutide is a glucagon-like peptide 1 (GLP-1) analog that binds to GLP-1 receptors (GLP-1R) on beta-cells and neuronal cells and is used for treating type 2 diabetes and obesity. Insulin-secreting pancreatic neuroendocrine neoplasms have been reported to express high levels of GLP-1R protein, raising the possibility that GLP-1 receptor agonists could promote tumor growth. Our goal was to quantify GLP-1R expression levels in 6 neuroendocrine neoplasm cellular models and determine their proliferative response to semaglutide treatment. METHODS Gene expression of GLP-1R in neuroendocrine neoplasm cells (BON, GOT1, NT-3, NEC913, NEC1452, and NEC1583) was measured by quantitative polymerase chain reaction. Protein expression was determined by immunofluorescent staining and Western blotting. Neuroendocrine neoplasm cells were incubated with semaglutide, and cell growth was measured using a cell viability assay. Mice harboring GOT1 xenografts were treated with semaglutide, and tumor volumes were measured. RESULTS BON, NEC1452, and NEC1583 cells expressed significantly lower levels of GLP-1R transcript and protein than GOT1, NT-3, and NEC913 cells. GOT1 and NT-3 showed the highest response to semaglutide treatment, with a 19% and 22% increase in growth. Semaglutide promotes tumor growth in mice with GOT1 xenografts by 72%. CONCLUSION The impact of the GLP-1 receptor agonist semaglutide on neuroendocrine cancer growth is understudied. Our data revealed that 50% of neuroendocrine neoplasm cell lines tested expressed GLP-1R, and semaglutide treatment promoted their growth. These results indicate a potential risk in the use of semaglutide in patients with neuroendocrine neoplasms expressing GLP-1R. Investigations into a larger set of neuroendocrine neoplasms would be important because they are highly heterogeneous.
Collapse
Affiliation(s)
| | - Casandro J Chan
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sophia Xiao
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Dawn E Quelle
- Department of Pharmacology and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph S Dillon
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
49
|
Li ZZ, Cai Y, Wang TT, Peng S, Zhao JH, Tong W, Ren JG. Positive feedback loop between NRAS Q61R mutation and RAB27B expression in endothelial cells. Biochem Biophys Res Commun 2025; 750:151422. [PMID: 39899936 PMCID: PMC11970572 DOI: 10.1016/j.bbrc.2025.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Recent findings implicate somatic NRASQ61R mutation in human endothelial cells in the pathogenesis of vascular anomalies. Our previous study demonstrated that RAB27B, a small GTPase of the RAB family, regulates NRAS palmitoylation in leukemia cells and is essential for NRAS-mutant leukemia development. However, the role of RAB27B in NRASQ61R mutant endothelial cells are still unknown. Our present study revealed that knockdown of RAB27B, but not knockdown of RAB27A, inhibited the enhanced proliferation and migration of human umbilical vein endothelial cells (HUVEC) overexpressing NRASQ61R by suppressing ERK activation. Notably, RAB27B protein and gene expression levels were significantly elevated in HUVEC overexpressing NRASQ61R compared to those overexpressing NRASWT or empty vector. Treatment with a MEK1/2 inhibitor, but not a PI3K/mTOR inhibitor, markedly decreased RAB27B gene expression in HUVEC overexpressing NRASQ61R. Furthermore, we identified CCAAT enhancer binding protein beta as a downstream transcription factor of NRASQ61R/ERK pathway that induced RAB27B gene expression. Taken together, our study unmasked a positive feedback loop between NRASQ61R mutation and RAB27B expression in endothelial cells. Moreover, RAB27B is associated with the dysfunction of NRASQ61R mutant endothelial cells, highlighting RAB27B as a potential therapeutic target for NRAS-mutant vascular anomalies.
Collapse
Affiliation(s)
- Zhi-Zheng Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tian-Tian Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuai Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jian-Gang Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
50
|
Liu Q, Hu J, Li X, Gao H, Kong D, Jin M. Glutamine transporter inhibitor enhances the sensitivity of NSCLC to trametinib through GSDME-dependent pyroptosis. Biochem Pharmacol 2025; 233:116796. [PMID: 39923858 DOI: 10.1016/j.bcp.2025.116796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Trametinib, an inhibitor of mitogen-activated extracellular signal-regulated kinases 1/2 (MEK1/2), is used to treat BRAFV600E/K melanoma and non-small-cell lung cancer (NSCLC). Mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes glutamine utilization, therefore, in the present study we investigated the anti-cancer effects of trametinib in combination with V-9302, a glutamine transporter inhibitor, in NSCLC with KRAS mutations. Trametinib in combination with V-9302 exhibited a potent synergistic antitumor effect, inducing cell cycle arrest and pyroptosis. Mechanistically, combination treatment triggered caspase-3 activation and gasdermin E (GSDME) cleavage, as well as elevated lactate dehydrogenase (LDH) and IL-1β levels. Meanwhile, combination treatment reduced cyclin D1 and p-Rb levels and increased p27 expression. Moreover, this combination increased forkhead box class O3a (FOXO3a) levels and decreased forkhead box M1 (FOXM1) expression by regulating the phosphorylation of ERK, Akt, AMPK, and c-Jun N-terminal kinase (JNK). Trametinib in combination with V-9302 increased reactive oxygen species (ROS) generation and reduced glutathione (GSH) synthesis and ATP levels. Furthermore, V-9302 in combination with trametinib inhibited the trametinib-induced autophagy, thereby enhancing pyroptosis in cancer cells. In vivo, the co-administration of trametinib and V-9302 remarkably inhibited tumor growth in a xenograft mouse model compared to each drug alone. Taken together, the combination of trametinib and V-9302 resulted in increased pyroptosis and cell cycle arrest compared to each single agent through regulation of the FOXO3a/FOXM1 axis and autophagy and significantly enhanced antitumor efficacy in vivo. Our results suggest a potential new therapeutic strategy for KRAS-mutant NSCLC using trametinib in combination with glutamine restriction.
Collapse
Affiliation(s)
- Qingxia Liu
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Jinxia Hu
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xinzhen Li
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Haiwang Gao
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Dexin Kong
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Meihua Jin
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|