1
|
Ma J, Wang Y, Zhang Z, Cai X, Xiang X, Chen Y, Sun F, Dong J. Peripheral Blood T-Cell Receptor Repertoire Diversity as a Potential Biomarker in the Diagnosis and Treatment Evaluation of Colorectal and Lung Cancers: A Prospective Observational Study. Cancer Med 2025; 14:e70937. [PMID: 40387418 PMCID: PMC12086972 DOI: 10.1002/cam4.70937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND T-cell receptor (TCR) diversity 50 (D50) values could assess peripheral blood (PB) TCR diversity and immunity. This study aimed to evaluate the potential D50 value in the diagnosis and treatment evaluation of colorectal cancer (CRC) and nonsmall-cell lung cancer (NSCLC). METHODS This prospective observational study enrolled patients with CRC, benign colorectal disease (BCD), NSCLC, or benign nodule controls (BNC) and healthy donors (HD) at Yunnan Cancer Hospital between January 2021 and June 2022. PB specimens were used for TCRβ sequencing, and D50 was calculated and compared within different groups. The area under the curve (AUC) was used to evaluate the diagnostic performance of D50 in CRC and NSCLC. RESULTS A total of 114 HD and 115 CRC, 31 BCD, 67 NSCLC, and 25 BNC patients were enrolled. Both CRC and NSCLC patients exhibited significantly lower D50 compared with HDs (p < 0.001), whereas BCD and BNC patients showed a modest decrease in TCR diversity (p < 0.05). NSCLC patients with lymph node metastases had markedly lower D50 than those without lymph node metastasis (0.05 vs. 0.11, p < 0.01). Higher D50 was found in CRC and NSCLC patients with normal carcinoembryonic antigen (CEA) levels (p < 0.05). The potential of D50 value for early detection of CRC and NSCLC was demonstrated, with an area under the receiver operating characteristic curve (AUC) of 0.736 for CRC (sensitivity: 71.30%, specificity: 68.42%) and 0.768 for NSCLC (sensitivity: 83.58%, specificity: 60.53%). Significant differences in D50 values were observed between patients with tumor regression grade (TRG) 0-1 and those with TRG 2-3 (p = 0.027), with an AUC of 0.731 (sensitivity: 68.75%, specificity: 76.92%). CONCLUSION These findings suggest that the PB TCR D50 values may have significant clinical value in cancer diagnosis and in evaluating the efficacy of neoadjuvant therapies.
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Lung Neoplasms/diagnosis
- Lung Neoplasms/blood
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Prospective Studies
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/blood
- Colorectal Neoplasms/therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/blood
- Adult
Collapse
Affiliation(s)
- Jilong Ma
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Yuanbiao Wang
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Zhixin Zhang
- Department of TechnologyChengdu ExAb Biotechnology, LTDChengduSichuanChina
| | - Xinyi Cai
- Department of Colorectal SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Xudong Xiang
- Department of Thoracic Surgery IIThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Yan Chen
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Fengqiong Sun
- Department of Colorectal SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Jian Dong
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| |
Collapse
|
2
|
Zitvogel L, Derosa L, Routy B, Loibl S, Heinzerling L, de Vries IJM, Engstrand L, Segata N, Kroemer G. Impact of the ONCOBIOME network in cancer microbiome research. Nat Med 2025; 31:1085-1098. [PMID: 40217075 DOI: 10.1038/s41591-025-03608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The European Union-sponsored ONCOBIOME network has spurred an international effort to identify and validate relevant gut microbiota-related biomarkers in oncology, generating a unique and publicly available microbiome resource. ONCOBIOME explores the effects of the microbiota on gut permeability and metabolism as well as on antimicrobial and antitumor immune responses. Methods for the diagnosis of gut dysbiosis have been developed based on oncomicrobiome signatures associated with the diagnosis, prognosis and treatment responses in patients with cancer. The mechanisms explaining how dysbiosis compromises natural or therapy-induced immunosurveillance have been explored. Through its integrative approach of leveraging multiple cohorts across populations, cancer types and stages, ONCOBIOME has laid the theoretical and practical foundations for the recognition of microbiota alterations as a hallmark of cancer. ONCOBIOME has launched microbiota-centered interventions and lobbies in favor of official guidelines for avoiding diet-induced or iatrogenic (for example, antibiotic- or proton pump inhibitor-induced) dysbiosis. Here, we review the key advances of the ONCOBIOME network and discuss the progress toward translating these into oncology clinical practice.
Collapse
Affiliation(s)
- Laurence Zitvogel
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
- Clinicobiome, Gustave Roussy, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.
| | - Lisa Derosa
- INSERM U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Clinicobiome, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- University of Montreal Research Center (CR-CHUM), Montreal, Quebec, Canada
- Department of Hematology-Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Sibylle Loibl
- German Breast Group c/ GBG Forschungs GmbH, Neu-Isenburg, Goethe University, Frankfurt, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - I Jolanda M de Vries
- Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology IRCCS, Milan, Italy
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
3
|
Alves Costa Silva C, Almonte AA, Zitvogel L. Oncobiomics: Leveraging Microbiome Translational Research in Immuno-Oncology for Clinical-Practice Changes. Biomolecules 2025; 15:504. [PMID: 40305219 PMCID: PMC12024955 DOI: 10.3390/biom15040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Growing evidence suggests that cancer should not be viewed solely as a genetic disease but also as the result of functional defects in the metaorganism, including disturbances in the gut microbiota (i.e., gut dysbiosis). The human microbiota plays a critical role in regulating epithelial barrier function in the gut, airways, and skin, along with host metabolism and systemic immune responses against microbes and cancer. Collaborative international networks, such as ONCOBIOME, are essential in advancing research equity and building microbiome resources to identify and validate microbiota-related biomarkers and therapies. In this review, we explore the intricate relationship between the microbiome, metabolism, and cancer immunity, and we propose microbiota-based strategies to improve outcomes for individuals at risk of developing cancer or living with the disease.
Collapse
Affiliation(s)
- Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Andrew A. Almonte
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif, France; (C.A.C.S.); (A.A.A.)
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée—Ligue Nationale Contre le Cancer, 94800 Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, 94805 Villejuif, France
| |
Collapse
|
4
|
Guo R, Wei W. Association between lipid accumulation product and the risk of colon cancer in adults: A population-based study. PLoS One 2025; 20:e0317462. [PMID: 39869579 PMCID: PMC11771895 DOI: 10.1371/journal.pone.0317462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The purpose of this study was to look into any potential connections between the occurrence of colon cancer and the condition of the body of lipid accumulation product (LAP) index. METHODS Using data from the 2009-2018 National Health and Nutrition Examination Survey (NHANES), we performed a cross-sectional analysis with 24,592 individuals. Utilizing multivariate logistic regression modelling, the relationship between LAP levels and colon cancer risk was investigated. Subgroup analysis, trend test, interaction test, and stratified smoothed curve were also carried out. RESULTS LAP levels and colon cancer risk were positively correlated after controlling for potential covariates (OR = 10.56, 95% CI: 2.40-46.53), the findings of trend tests are statistically significant. In particular groups, subgroup analysis revealed a positive connection between LAP levels and the risk of colon cancer. The association between LAP levels and colon cancer risk was shown to be M-shaped in the group under 60 years old, inverted V-shaped in the female and no-diabetes groups, and inverted L-shaped in the smoking and no-hypertensive groups, according to stratified smoothed curve fitting. CONCLUSIONS According to our findings, there is a strong correlation between LAP levels and the risk of colon cancer.
Collapse
Affiliation(s)
- Renjie Guo
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Weiming Wei
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Yu J, Li L, Tao X, Chen Y, Dong D. Metabolic interactions of host-gut microbiota: New possibilities for the precise diagnosis and therapeutic discovery of gastrointestinal cancer in the future-A review. Crit Rev Oncol Hematol 2024; 203:104480. [PMID: 39154670 DOI: 10.1016/j.critrevonc.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Gastrointestinal (GI) cancer continues to pose a significant global health challenge. Recent advances in our understanding of the complex relationship between the host and gut microbiota have shed light on the critical role of metabolic interactions in the pathogenesis and progression of GI cancer. In this study, we examined how microbiota interact with the host to influence signalling pathways that impact the formation of GI tumours. Additionally, we investigated the potential therapeutic approach of manipulating GI microbiota for use in clinical settings. Revealing the complex molecular exchanges between the host and gut microbiota facilitates a deeper understanding of the underlying mechanisms that drive cancer development. Metabolic interactions hold promise for the identification of microbial signatures or metabolic pathways associated with specific stages of cancer. Hence, this study provides potential strategies for the diagnosis, treatment and management of GI cancers to improve patient outcomes.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
6
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Pu C, Li Y, Fu Y, Yan Y, Tao S, Tang S, Gai X, Ding Z, Gan Z, Liu Y, Cao S, Wang T, Ding J, Xu J, Geng M, Huang M. Low-Dose Chemotherapy Preferentially Shapes the Ileal Microbiome and Augments the Response to Immune Checkpoint Blockade by Activating AIM2 Inflammasome in Ileal Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304781. [PMID: 38189627 PMCID: PMC10953579 DOI: 10.1002/advs.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity.
Collapse
Affiliation(s)
- Congying Pu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yize Li
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yixian Fu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| | - Yiyang Yan
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyao Tao
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shuai Tang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Xiameng Gai
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
| | - Ziyi Ding
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhenjie Gan
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingluo Liu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyuwei Cao
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ting Wang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jian Ding
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- School of Pharmacy, Jiangxi Medical CollegeNanchang UniversityNanchang330031China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Jun Xu
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiyu Geng
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Min Huang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| |
Collapse
|
8
|
Wilson JN, Kigerl KA, Sunshine MD, Taylor CE, Speed SL, Rose BC, Calulot CM, Dong BE, Hawkinson TR, Clarke HA, Bachstetter AD, Waters CM, Sun RC, Popovich PG, Alilain WJ. Targeting the Microbiome to Improve Gut Health and Breathing Function After Spinal Cord Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546264. [PMID: 38187534 PMCID: PMC10769193 DOI: 10.1101/2023.06.23.546264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition characterized by impaired motor and sensory function, as well as internal organ pathology and dysfunction. This internal organ dysfunction, particularly gastrointestinal (GI) complications, and neurogenic bowel, can reduce the quality of life of individuals with an SCI and potentially hinder their recovery. The gut microbiome impacts various central nervous system functions and has been linked to a number of health and disease states. An imbalance of the gut microbiome, i.e., gut dysbiosis, contributes to neurological disease and may influence recovery and repair processes after SCI. Here we examine the impact of high cervical SCI on the gut microbiome and find that transient gut dysbiosis with persistent gut pathology develops after SCI. Importantly, probiotic treatment improves gut health and respiratory motor function measured through whole-body plethysmography. Concurrent with these improvements was a systemic decrease in the cytokine tumor necrosis factor-alpha and an increase in neurite sprouting and regenerative potential of neurons. Collectively, these data reveal the gut microbiome as an important therapeutic target to improve visceral organ health and respiratory motor recovery after SCI. Research Highlights Cervical spinal cord injury (SCI) causes transient gut dysbiosis and persistent gastrointestinal (GI) pathology.Treatment with probiotics after SCI leads to a healthier GI tract and improved respiratory motor recovery.Probiotic treatment decreases systemic tumor necrosis factor-alpha and increases the potential for sprouting and regeneration of neurons after SCI.The gut microbiome is a valid target to improve motor function and secondary visceral health after SCI.
Collapse
|
9
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Mazzio E, Barnes A, Badisa R, Council S, Soliman KFA. Plants against cancer: the immune-boosting herbal microbiome: not of the plant, but in the plant. Basic concepts, introduction, and future resource for vaccine adjuvant discovery. Front Oncol 2023; 13:1180084. [PMID: 37588095 PMCID: PMC10426289 DOI: 10.3389/fonc.2023.1180084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Andrew Barnes
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Ramesh Badisa
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Stevie Council
- John Gnabre Science Research Institute, Baltimore, MD, United States
| | - Karam F. A. Soliman
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Colon Cancer Microbiome Landscaping: Differences in Right- and Left-Sided Colon Cancer and a Tumor Microbiome-Ileal Microbiome Association. Int J Mol Sci 2023; 24:ijms24043265. [PMID: 36834671 PMCID: PMC9963782 DOI: 10.3390/ijms24043265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
In the current era of precision oncology, it is widely acknowledged that CRC is a heterogeneous disease entity. Tumor location (right- or left-sided colon cancer or rectal cancer) is a crucial factor in determining disease progression as well as prognosis and influences disease management. In the last decade, numerous works have reported that the microbiome is an important element of CRC carcinogenesis, progression and therapy response. Owing to the heterogeneous nature of microbiomes, the findings of these studies were inconsistent. The majority of the studies combined colon cancer (CC) and rectal cancer (RC) samples as CRC for analysis. Furthermore, the small intestine, as the major site for immune surveillance in the gut, is understudied compared to the colon. Thus, the CRC heterogeneity puzzle is far from being solved, and more research is necessary for prospective trials that separately investigate CC and RC. Our prospective study aimed to map the colon cancer landscape using 16S rRNA amplicon sequencing in biopsy samples from the terminal ileum, healthy colon tissue, healthy rectal tissue and tumor tissue as well as in preoperative and postoperative stool samples of 41 patients. While fecal samples provide a good approximation of the average gut microbiome composition, mucosal biopsies allow for detecting subtle variations in local microbial communities. In particular, the small bowel microbiome has remained poorly characterized, mainly because of sampling difficulties. Our analysis revealed the following: (i) right- and left-sided colon cancers harbor distinct and diverse microbiomes, (ii) the tumor microbiome leads to a more consistent cancer-defined microbiome between locations and reveals a tumor microbiome-ileal microbiome association, (iii) the stool only partly reflects the microbiome landscape in patients with CC, and (iv) mechanical bowel preparation and perioperative antibiotics together with surgery result in major changes in the stool microbiome, characterized by a significant increase in the abundance of potentially pathogenic bacteria, such as Enterococcus. Collectively, our results provide new and valuable insights into the complex microbiome landscape in patients with colon cancer.
Collapse
|
12
|
Kalia VC, Lee JK, Rangappa KS, Gupta VK. Special issue Microbes in Cancer Research in 'Seminar in Cancer Biology' 2021. Semin Cancer Biol 2022; 86:1102-1104. [PMID: 34979275 DOI: 10.1016/j.semcancer.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, & Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
13
|
The role of nutrition in harnessing the immune system: a potential approach to prevent cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:245. [PMID: 36180759 DOI: 10.1007/s12032-022-01850-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Cancer is a vital barrier to increase the life expectancy and the foremost cause of death globally. The initial diagnosis and proper management of cancer can expand the survival rate of individuals. This review provides an in-depth investigation of cancer causes symptoms, types of cancer, and worldwide distribution of cancer. The relation between nutrition (i.e., various food items) and cancer is also emphasized to offer a framework of nutrition management in different cancer types. The microbiota is closely associated with the occurrence of cancer. Thus, genomics of intestinal microbes and nutrigenomics have been discussed based on the reported meta-analysis studies. A dramatic increase in cancer rates has been observed due to intake of alcohol, microbial infections, and deficiency of nutrition. Malnutrition is a substantial problem in cancer patients linked with improper treatment and increased morbidity. The detail studies of cancer and nutrigenomics are an eminent approach to comprehend the relation between microbes and the consumption of certain food types which can further reduce the cancer risk. The incorporation of specific nutrients and probiotics improved the gut microbial health, increased life expectancy, and also decreased the incidence of tumorigenesis in individuals.
Collapse
|
14
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
15
|
Comprehensive Analysis of Pyroptosis-Related Long Noncoding RNA Immune Infiltration and Prediction of Prognosis in Patients with Colon Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2035808. [PMID: 35087586 PMCID: PMC8789477 DOI: 10.1155/2022/2035808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer (CC) is one of the most prevalent malignant tumours of the alimentary canal. It is unclear whether pyroptosis-related lncRNA expression is correlated with CC prognosis. We discovered 20 pyroptosis-related lncRNAs that were expressed differently in CC and normal colon tissues in our investigation. Based on differentially expressed genes (DEGs), we grouped all CC patients into two categories (Clusters 1 and 2). Cluster 1 was shown to be connected with a higher overall survival rate, upregulated expression of immune checkpoints, higher immunoscores, higher estimated scores, and immune cell infiltration. Using data from the Cancer Genome Atlas (TCGA), to create a multigene signature, the predictive significance of each lncRNA linked with pyroptosis for survival was assessed. A 9-lncRNA signature was established using the least absolute shrinkage and selection operator (LASSO) Cox regression method, and all CC patients in the TCGA cohort were classified into low-risk or high-risk groups. The low-risk CC patients had a much greater chance of survival than those in the high-risk group. The risk score is an independent prognostic indicator for predicting survival. In addition, risk characteristics are linked to immune characteristics. In summary, pyroptosis-related lncRNAs can be used to predict CC prognosis and participate in tumour immunity.
Collapse
|