1
|
Zhang X, Artz N, Steindler DA, Hingtgen S, Satterlee AB. Exosomes: Traversing the blood-brain barrier and their therapeutic potential in brain cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189300. [PMID: 40097050 PMCID: PMC12124962 DOI: 10.1016/j.bbcan.2025.189300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
The blood-brain barrier (BBB) presents a major challenge for the effective delivery of therapeutic agents to the brain tumor cells from the peripheral blood circulation, making the treatment of central nervous system (CNS)-related cancers more difficult and resistant to both standard treatments and emerging therapies. Exosomes, which serve as messengers for intercellular communication throughout the body, can naturally or be modified to penetrate the BBB. Recently, exosomes have been increasingly explored as an invasive or non-invasive approach for delivering therapeutic agents to the CNS. With their low immunogenicity, ease of modification, excellent cargo protection, and inherent ability to cross the BBB, exosomes hold great promise for revolutionizing targeted therapy for CNS-related diseases, including brain cancer. In this review, we highlight recent discoveries and insights into the mechanisms exosomes use to penetrate the BBB, the methods they employ to payload diverse therapeutics, and their roles in transporting therapeutic compounds for brain cancer and other neurological disorders.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Nichole Artz
- Department of Pediatric Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Wu X, Meng Y, Yao Z, Lin X, Hu M, Cai S, Gao S, Zhang H. Extracellular vesicles as nature's nano carriers in cancer therapy: insights toward preclinical studies and clinical applications. Pharmacol Res 2025:107751. [PMID: 40345354 DOI: 10.1016/j.phrs.2025.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025]
Abstract
Extracellular vesicles (EVs), which are secreted by various cell types, hold significant potential for cancer therapy. However, there are several challenges and difficulties that limit their application in clinical settings. This review, which integrates the work of our team and recent advancements in this research field, discusses EV-based cancer treatment strategies to guide their clinical application. The following treatment strategies are discussed: 1) leveraging the inherent properties of EVs for the development of cancer treatments; 2) modifying EVs using EV engineering methods to improve drug loading and delivery; 3) targeting key molecules in tumor-derived EV (TDE) synthesis to inhibit their production; and 4) clearing TDEs from the tumor microenvironment. Additionally, on the basis of research into EV-based vaccines and bispecific antibodies, this review elaborates on strategies to enhance antitumor immunity via EVs and discusses engineering modifications that can improve EV targeting ability and stability and the research progress of AI technology in targeted delivery of EV drugs. Although there are limited strategies for enhancing EV targeting abilities, this review provides an in-depth discussion of prior studies. Finally, this review summarizes the clinical progress on the use of EVs in cancer therapy and highlights challenges that need to be addressed.
Collapse
Affiliation(s)
- Xiaotong Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Meng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaona Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China.
| |
Collapse
|
3
|
Xu Z, Yang X, Lu X, Su D, Wang Y, Wu H, Zhang Z, Long C, Su L, Wang Y, Chen H, Xiang S, Zhou B. PD-L1 antibody-modified plant-derived nanovesicles carrying a STING agonist for the combinational immunotherapy of melanoma. Biomaterials 2025; 322:123396. [PMID: 40367814 DOI: 10.1016/j.biomaterials.2025.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Combination therapies for melanoma face challenges due to asynchronous drug delivery and associated toxicity, underscoring the need for advanced delivery systems. While immune checkpoint inhibitors (ICIs) enhance T cell activity, optimal cytotoxic responses require efficient antigen presentation by mature dendritic cells (DCs), which are often functionally impaired in the tumor microenvironment. Thus, effective treatment requires coordinated T cell activation, DC-mediated priming, and direct tumor suppression. Herein, wild Glycyrrhiza uralensis Fisch roots-derived nanovesicles (GC NV) are demonstrated to be effective inhibitors of melanoma proliferation. The vesicles exert this activity through the intracellular delivery of encapsulated miRNA (miR2916) and bioactive molecules (isoliquiritigenin), with this capacity for intracellular delivery extending to the STING agonist DMXAA. We also demonstrate how chemical modification can be used to install PD-L1 antibodies on the membrane surface of these GC NV, imbuing these vesicles with selectivity for tumor cells. Combining DMXAA encapsulation with surface-displayed PD-L1 antibodies creates vesicles (GP@DMX NV) that both promote DCs maturation and elicit CD8+ T cell response. Our multifunctional GP@DMX NV reverse the immunosuppressive microenvironment of melanoma and significantly enhance the immunotherapeutic potential of immune checkpoints.
Collapse
Affiliation(s)
- Zhanxue Xu
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xingyu Lu
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yidan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Huixing Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhenhua Zhang
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Changrui Long
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liqian Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanyu Wang
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shijian Xiang
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Benjie Zhou
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Nathani A, Sun L, Li Y, Lazarte J, Aare M, Singh M. Targeting EGFR-TKI resistance in lung cancer: Role of miR-5193/miR-149-5p loaded NK-EVs and Carboplatin combination. Int J Pharm 2025; 675:125573. [PMID: 40204039 DOI: 10.1016/j.ijpharm.2025.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Lung cancer remains the leading cause of cancer-related deaths, and there is an urgent need for innovative therapies. MicroRNA (miRNA)-based gene therapy has shown promise, but efficient delivery systems are required for its success. This study investigates the use of extracellular vehicles (EVs) secreted by natural killer (NK) cells as delivery systems for miRNAs targeting PD-L1/PD-1 immune checkpoint and FOXM1, in combination with Carboplatin, to enhance anticancer efficacy in lung cancer models. NK-EVs were isolated from NK92-MI cells and characterized using nanoparticle tracking analysis (NTA), proteomics and Western blotting, confirming their exosomal characteristics. Gene ontology profiling and RNA-seq identified highly expressed miRNAs such as miR-5193 and miR-149-5p, which were loaded into NK-EVs via electroporation. Agarose gel electrophoresis confirmed their entrapment and Quickdrop spectrophotometer was used to estimate the quantity. In vitro, miRNA-loaded NK-EVs demonstrated significant cytotoxicity against Osimertinib-resistant PDX (TM0019, Jackson Labs) and H1975R (with L858R mutations) lung cancer cells, with approximately 1.2 to 1.6-fold (p < 0.01) decrease in cell viability compared to NK-EVs alone. In vivo, the combination of miRNA-loaded NK-EVs and Carboplatin significantly reduced tumor volumes (3.5 to 4-fold, p < 0.001) in PDX and H1975R xenograft models, with the most pronounced effect observed in combination therapies. Western blot analysis showed downregulation of tumor-associated markers: PD-1/PD-L1, FOXM1, Survivin, NF-κB and others vs untreated group, p < 0.001) suggesting immune checkpoint inhibition, apoptosis and anti-inflammatory activity. These findings highlight the potential of NK-EVs as effective carriers for miRNAs in combination with chemotherapy, offering a promising therapeutic strategy for NSCLC with EGFR mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jassy Lazarte
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
5
|
Vafadar A, AlaviManesh S, Maddahi ME, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of prostate cancer. Clin Chim Acta 2025; 571:120243. [PMID: 40090566 DOI: 10.1016/j.cca.2025.120243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Prostate cancer (PCa) is a highly life-threatening disease in men, causing numerous deaths worldwide. As PCa is often diagnosed at a late stage, current diagnostic methods can be invasive and sometimes lead to unnecessary treatments. Therefore, new non-invasive approaches are needed to detect biomarkers for more rapid and accurate PCa diagnosis. Exosomes, extracellular vesicles, provide valuable insights into cellular health and disease progression. Recent studies have indicated the potential use of exosomes as biomarkers for diagnosing PCa. Developing fast, reliable, and sensitive methods for exosome detection is essential. Biosensors, powerful analytical tools for biological samples, have become increasingly crucial in exosome analysis. This review summarizes recent advancements in biosensor technology for exosome detection and provides insights into future perspectives. The goal is to encourage innovative biosensor-based approaches for exosome detection and contribute to the early diagnosis and clinical monitoring of various diseases.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad AlaviManesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ehsan Maddahi
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Alfawaz Altamimi AS, Arockia Babu M, Afzal M, Bishoyi AK, Roopashree R, Saini S, Sharma RSK, Pathak PK, Chauhan AS, Goyal K, Ali H, Khan NH, Balaraman AK. Exosomes derived from natural killer cells: transforming immunotherapy for aggressive breast cancer. Med Oncol 2025; 42:114. [PMID: 40100465 DOI: 10.1007/s12032-025-02647-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Natural killer cell-derived exosomes (NK-Exos) hold great promise as immune modulators and immunotherapeutics against cancer due to their intrinsically latent anti-tumor effects. They use these nanosized vesicles to deliver cytotoxic molecules, such as perforin, granzymes, and miRNAs, directly to cancer cells to kill them, avoiding immune suppression. NK-Exos has particular efficacy for treating aggressive breast cancer by modulating the TME to activate the immune response and suppress immunosuppressive factors. Bioengineering advances have extended the therapeutic potential of NK-Exos, which permits precise tumor cell targeting and efficient delivery of therapeutic payloads, including small RNAs and chemotherapeutic agents. In engineered NK-Exos, sensitization of cancer cells to apoptosis, reduction of tumor growth, and resistance to drugs have been demonstrated to be highly effective. When combined, NK-Exos synergizes with radiotherapy, chemotherapy, or checkpoint inhibitors, enhancing therapeutic efficacy, and minimizing systemic toxicity. This review emphasizes the critical role of NK-Exos in breast cancer treatment, their integration into combination therapies, and the need for further research to overcome existing limitations and fully realize their clinical potential.
Collapse
Affiliation(s)
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
7
|
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers (Basel) 2025; 17:940. [PMID: 40149276 PMCID: PMC11940788 DOI: 10.3390/cancers17060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Exosomes have emerged as pivotal players in precision oncology, offering innovative solutions to longstanding challenges such as metastasis, therapeutic resistance, and immune evasion. These nanoscale extracellular vesicles facilitate intercellular communication by transferring bioactive molecules that mirror the biological state of their parent cells, positioning them as transformative tools for cancer diagnostics and therapeutics. Recent advancements in exosome engineering, artificial intelligence (AI)-driven analytics, and isolation technologies are breaking barriers in scalability, reproducibility, and clinical application. Bioengineered exosomes are being leveraged for CRISPR-Cas9 delivery, while AI models are enhancing biomarker discovery and liquid biopsy accuracy. Despite these advancements, key obstacles such as heterogeneity in exosome populations and the lack of standardized isolation protocols persist. This review synthesizes pioneering research on exosome biology, molecular engineering, and clinical translation, emphasizing their dual roles as both mediators of tumor progression and tools for intervention. It also explores emerging areas, including microbiome-exosome interactions and the integration of machine learning in exosome-based precision medicine. By bridging innovation with translational strategies, this work charts a forward-looking path for integrating exosomes into next-generation cancer care, setting it apart as a comprehensive guide to overcoming clinical and technological hurdles in this rapidly evolving field.
Collapse
|
8
|
Tang J, Li D, Wang R, Li S, Xing Y, Yu F. Engineered extracellular vesicles: an emerging nanomedicine therapeutic platform. Chem Commun (Camb) 2025; 61:4123-4146. [PMID: 39969526 DOI: 10.1039/d4cc06501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The intercellular communication role of extracellular vesicles has been widely proved in various organisms. Compelling evidence has illustrated the involvement of these vesicles in both physiological and pathological processes. Various studies indicate that extracellular vesicles surpass conventional synthetic drug carriers, owing to their abundance in organisms, enhanced targeting ability and low immunogenicity. Therefore, extracellular vesicles have been deemed to be potential drug carriers for the treatment of various diseases, and related studies have increased rapidly. Here, we intend to provide a comprehensive and in-depth review of recent advances in the sources, delivery function, extraction and cargo-loading technologies of extracellular vesicles, as well as their clinical potential in constructing emerging nanomedicine therapeutic platforms. In particular, microfluidic-based isolation and drug-loading technologies, as well as the treatment of various diseases, are highlighted. We also make comparisons between extracellular vesicles and other conventional drug carriers and discuss the challenges in developing drug delivery platforms for clinical translation.
Collapse
Affiliation(s)
- Jingshi Tang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Dezhong Li
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Shiwei Li
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
9
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Tuscharoenporn T, Apaijai N, Charoenkwan K, Chattipakorn N, Chattipakorn SC. Emerging roles of exosomes in diagnosis, prognosis, and therapeutic potential in ovarian cancer: a comprehensive review. Cancer Gene Ther 2025; 32:149-164. [PMID: 39843770 DOI: 10.1038/s41417-025-00871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Ovarian cancer is a leading cause of cancer-related deaths in women, and the development of chemoresistance remains a major challenge during and after its treatment. Exosomes, small extracellular vesicles involved in intercellular communication, have emerged as potential biomarkers and therapeutic targets in ovarian cancer. This review summarizes the current literature on differences in exosomal protein/gene expression between chemosensitive and chemoresistant ovarian cancer, and the effects of exosomal modifications on chemotherapeutic response. Clinical studies have identified alterations in several exosomal components from ovarian cancer tissues and serum samples arising as a consequence of chemosensitivity, which indicates their potential usefulness as potential biomarkers for predicting the development of chemoresistance. Interventional investigations from in vitro and in vivo studies demonstrated that modulation of specific exosomal components can influence ovarian cancer cell phenotypes and individual responses to chemotherapy. Exosomal delivery of chemotherapeutic agents, such as cisplatin, has presented as a potential targeted drug delivery strategy for overcoming chemoresistance in preclinical models. In summary, this review highlights the potential for exosomal proteins and genes to be useful biomarkers for predicting chemotherapy response and being therapeutic targets for overcoming chemoresistance in ovarian cancer. However, future research is still needed to validate these findings and explore the clinical utility of exosomal biomarkers and therapeutics in ovarian cancer management. In addition, understanding the molecular mechanisms underlying exosome-mediated chemoresistance may provide valuable insights for the development of personalized therapeutic strategies, improving outcomes for patients with ovarian cancer.
Collapse
Affiliation(s)
- Thunwipa Tuscharoenporn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittipat Charoenkwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Zhu S, Shou X, Kuang G, Kong X, Sun W, Zhang Q, Xia J. Stimuli-responsive hydrogel microspheres encapsulated with tumor-cell-derived microparticles for malignant ascites treatment. Acta Biomater 2025; 192:328-339. [PMID: 39586349 DOI: 10.1016/j.actbio.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Tumor-cell-derived microparticles (TMPs) have been recognized as chemotherapeutic drug carriers and immunomodulators for anti-tumor therapy. Research in the clinical application of TMPs has been devoted to developing an effective delivery formulation that could enhance their therapeutic effects. Here, we propose thermal-responsive agarose hydrogel microspheres (MTX-TMPs@MSs) with encapsulation of Methotrexate (MTX)-packaging TMPs (MTX-TMPs) and black phosphorus quantum dots (BPQDs) by microfluidic technology for synergistic treatment of malignant ascites. The laden MTX-TMPs, separated from apoptotic tumor cells, could target tumor cells for the delivery of chemotherapy drugs and modulate the tumor immune microenvironment. Under near-infrared (NIR) induced thermal stimulation, MTX-TMPs could be controllably released from the low-melting-point agarose matrix hydrogel microspheres for chemotherapy (CHT) and immunotherapy (IMT). In addition, benefiting from photothermal therapy (PTT)-induced tumor immunogenic death, the anti-tumor immune response triggered by MTX-TMPs was further enhanced. Based on these features, the MTX-TMPs@MSs could remarkably eliminate tumor cells in vitro and obviously suppress tumor growth in vivo through synergistic PTT, CHT, and IMT. Therefore, it is envisaged that this TMPs-integrated microcarrier will have promising applications in clinical tumor therapy. STATEMENT OF SIGNIFICANCE: Primary liver cancer ranks third among the causes of cancer deaths globally, with hepatocellular carcinoma (HCC) being the most common type. In particular, patients with advanced HCC accompanied by malignant ascites, a common complication, indicate tumor metastasis and a poor prognosis. In this paper, we developed stimuli-responsive hydrogel microspheres from microfluidics for the delivery of methotrexate (MTX)-loaded tumor-cell-derived microparticles (MTX-TMPs) for synergistic chemotherapy, photothermal therapy, and immunotherapy. The release of MTX-TMPs from hydrogel microspheres could be on-demand controlled through BPQDs-mediated photothermal stimulus. On the other hand, BPQDs-mediated mild hyperthermia cooperatesss with MTX-TMPs-induced chemotherapy could participate in remodeling the tumor immunosuppressive microenvironment. Thus, the prepared microcarrier system holds great promise for tumor therapy.
Collapse
Affiliation(s)
- Shishi Zhu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xin Shou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Gaizhen Kuang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Weijian Sun
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Qingfei Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
12
|
Weng L, Ren H, Xu R, Xu J, Lin J, Shen JW, Zheng Y. Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot. Colloids Surf B Biointerfaces 2025; 245:114340. [PMID: 39476655 DOI: 10.1016/j.colsurfb.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/05/2025]
Abstract
In recent years, as a new type of quasi-zero-dimensional nanomaterials, graphene quantum dots (GQDs) have shown excellent performance in advanced drug targeted delivery and controlled release. In this work, the delivery process of model drugs translocating into POPC lipid membrane with the assistance of GQDs was investigated via molecular dynamics (MD) simulation. Our simulation results demonstrated that a single doxorubicin (DOX) or deoxyadenine (DA) molecule is difficult to penetrate into the cell membrane. GQD7 could form sandwich-like structure with DOX and assist DOX to enter into the POPC membrane. However, due to the weak interaction with DA, both GQD7 and GQD19 can not assist DA translocating the POPC membrane in the limited MD simulation time. The drug delivery process for DOX could be divided into two steps: 1. GQDs and DOX aggregated into a cluster; 2. the aggregates enter into the POPC membrane. In all our simulation systems, if GQDs loaded with model drugs and entered the cell membrane, it had little effect on the cell membrane structure, and the cell membrane could maintain high integrity and stability. These results may promote the molecular design and application of GQD-based drug delivery systems.
Collapse
Affiliation(s)
- Luxi Weng
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hao Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiahao Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yongke Zheng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, Zhejiang 310006, China; Department of Intensive Care Unit, Hangzhou Geriatric Hospital, Hangzhou 310022, China.
| |
Collapse
|
13
|
Ghosh S, Dey A, Chakrabarti A, Bhuniya T, Indu N, Hait A, Chowdhury A, Paul A, Mahajan AA, Papadakis M, Alexiou A, Jha SK. The theragnostic advances of exosomes in managing leukaemia. J Cell Mol Med 2024; 28:e70052. [PMID: 39659020 PMCID: PMC11632122 DOI: 10.1111/jcmm.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 12/12/2024] Open
Abstract
Leukaemia, a group of haematological malignancies, presents ongoing diagnosis, prognosis, and treatment challenges. A major obstacle in treating this disease is the development of drug resistance. Overcoming drug resistance poses a significant barrier to effective leukaemia treatment. The emergence of exosome research has unveiled new insights into the probable theragnostic implementations in leukaemia. Various research has exhibited the diagnostic possibilities of exosomes in identifying leukaemia-specific biomarkers, including genetic mutations and fusion transcripts. Additionally, exosomes have been implicated in disease progression and treatment response, rendering them appealing targets for therapeutics. Exosomes, originating from diverse cell types, are instrumental in intercellular communication as they participate in the functional transportation of molecules like proteins, nucleic acids and lipids across space. Exosomes have a dual role in immune regulation, mediating immune suppression and modulating anti-leukaemia immune responses. Interestingly, exosomes can even act as drug transport vehicles. This review delves into the intricate process of exosome biogenesis, shedding light on their formation and release from donor cells. The key mechanisms engaged in exosome biogenesis, for instance, the endosomal sorting complexes required for transport (ESCRT) machinery and ESCRT-independent pathways, are thoroughly discussed. Looking ahead, future approaches that leverage innovative technologies hold the promise of revolutionizing disease management and improving patient outcomes.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of BiotechnologyIndian Institute of Technology MadrasChennaiTamil NaduIndia
| | - Anuvab Dey
- Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahatiAssamIndia
| | - Aneshwa Chakrabarti
- Department of Chemistry and Chemical BiologyIndian Institute of Technology, Indian School of Mines DhanbadDhanbadIndia
| | - Tiyasa Bhuniya
- Department of BiotechnologyNIT DurgapurDurgapurWest BengalIndia
| | - Neelparna Indu
- Department of BiotechnologyHeritage Institute of TechnologyKolkataIndia
| | - Anirban Hait
- Department of BiotechnologyHeritage Institute of TechnologyKolkataIndia
| | - Ankita Chowdhury
- Department of BiotechnologyHeritage Institute of TechnologyKolkataIndia
| | - Aritra Paul
- Department of BiotechnologyHeritage Institute of TechnologyKolkataIndia
| | | | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | | |
Collapse
|
14
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
15
|
Marjani AA, Nader ND, Aghanejad A. Exosomes as targeted diagnostic biomarkers: Recent studies and trends. Life Sci 2024; 354:122985. [PMID: 39151882 DOI: 10.1016/j.lfs.2024.122985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Different categories of extracellular vesicles (EVs) are identified based on their origin and formation processes. Among these, exosomes (EXOs) originate from endosomal compartments merging with the plasma membrane, forming small lipid vesicles that transport a range of molecular cargo such as nucleic acids, proteins, and lipids. The composition of EXOs varies depending on their cellular source, encompassing various cell types, including neutrophils, dendritic cells, and even tumor cells. Remarkably, EXOs possess inherent stability, low immunogenicity, and compatibility, making them efficient nano vectors for drug delivery. Imaging techniques like bioluminescence, fluorescence, and nuclear imaging are crucial in non-invasively tracking EXOs within living organisms. This process requires the attachment of radionuclides to the EXO's structure without altering its essential characteristics. Real-time imaging of EXOs is vital for their clinical application, and recent advancements in labeling and tracking methodologies provide insights into biodistribution, functionality, and potential pathways for EXO-mediated drug delivery. This review presents updated progress in the diverse applications of EXOs in targeted imaging across various modalities, where they function as contrast agents facilitating tissue visualization and disease tracking. Consequently, EXOs emerge as promising entities in medical diagnostics and imaging.
Collapse
Affiliation(s)
- Aida Abbasi Marjani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Geng T, Tian L, Paek SY, Leung E, Chamley LW, Wu Z. Characterizing Extracellular Vesicles Generated from the Integra CELLine Culture System and Their Endocytic Pathways for Intracellular Drug Delivery. Pharmaceutics 2024; 16:1206. [PMID: 39339242 PMCID: PMC11434853 DOI: 10.3390/pharmaceutics16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Extracellular vesicles (EVs) have attracted great attention as promising intracellular drug delivery carriers. While the endocytic pathways of small EVs (sEVs, <200 nm) have been reported, there is limited understanding of large EVs (lEVs, >200 nm), despite their potential applications for drug delivery. Additionally, the low yield of EVs during isolation remains a major challenge in their application. Herein, we aimed to compare the endocytic pathways of sEVs and lEVs using MIA PaCa-2 pancreatic cancer cell-derived EVs as models and to explore the efficiency of their production. The cellular uptake of EVs by MIA PaCa-2 cells was assessed and the pathways were investigated with the aid of endocytic inhibitors. The yield and protein content of sEVs and lEVs from the Integra CELLine culture system and the conventional flasks were compared. Our findings revealed that both sEVs and lEVs produced by the Integra CELLine system entered their parental cells via multiple routes, including caveolin-mediated endocytosis, clathrin-mediated endocytosis, and actin-dependent phagocytosis or macropinocytosis. Notably, caveolin- and clathrin-mediated endocytosis were more prominent in the uptake of sEVs, while actin-dependent phagocytosis and macropinocytosis were significant for both sEVs and lEVs. Compared with conventional flasks, the Integra CELLine system demonstrated a 9-fold increase in sEVs yield and a 6.5-fold increase in lEVs yield, along with 3- to 4-fold higher protein content per 1010 EVs. Given that different endocytic pathways led to distinct intracellular trafficking routes, this study highlights the unique potentials of sEVs and lEVs for intracellular cargo delivery. The Integra CELLine proves to be a highly productive and cost-effective system for generating EVs with favourable properties for drug delivery.
Collapse
Affiliation(s)
- Tianjiao Geng
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Tian
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| | - Song Yee Paek
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| |
Collapse
|
17
|
Kawasaki R, Oshige A, Kono N, Yamana K, Hirano H, Miura Y, Yorioka R, Bando K, Tabata A, Yasukawa N, Sadakane M, Sanada Y, Suzuki M, Takata T, Sakurai Y, Tanaka H, Yimiti D, Miyaki S, Adachi N, Mizuta R, Sasaki Y, Akiyoshi K, Hattori Y, Kirihata M, Nagasaki T, Ikeda A. Extracellular Vesicles Comprising Carborane Prepared by a Host Exchanging Reaction as a Boron Carrier for Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47137-47149. [PMID: 39106079 DOI: 10.1021/acsami.4c07650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
With their low immunogenicity and excellent deliverability, extracellular vesicles (EVs) are promising platforms for drug delivery systems. In this study, hydrophobic molecule loading techniques were developed via an exchange reaction based on supramolecular chemistry without using organic solvents that can induce EV disruption and harmful side effects. To demonstrate the availability of an exchanging reaction to prepare drug-loading EVs, hydrophobic boron cluster carborane (CB) was introduced to EVs (CB@EVs), which is expected as a boron agent for boron neutron capture therapy (BNCT). The exchange reaction enabled the encapsulation of CB to EVs without disrupting their structure and forming aggregates. Single-particle analysis revealed that an exchanging reaction can uniformly introduce cargo molecules to EVs, which is advantageous in formulating pharmaceuticals. The performance of CB@EVs as boron agents for BNCT was demonstrated in vitro and in vivo. Compared to L-BPA, a clinically available boron agent, and CB delivered with liposomes, CB@EV systems exhibited the highest BNCT activity in vitro due to their excellent deliverability of cargo molecules via an endocytosis-independent pathway. The system can deeply penetrate 3D cultured spheroids even in the presence of extracellular matrices. The EV-based system could efficiently accumulate in tumor tissues in tumor xenograft model mice with high selectivity, mainly via the enhanced permeation and retention effect, and the deliverability of cargo molecules to tumor tissues in vivo enhanced the therapeutic benefits of BNCT compared to the L-BPA/fructose complex. All of the features of EVs are also advantageous in establishing anticancer agent delivery platforms.
Collapse
Affiliation(s)
- Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Ayano Oshige
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Nanami Kono
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hidetoshi Hirano
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yamato Miura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Ryuji Yorioka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kaori Bando
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Anri Tabata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Naoki Yasukawa
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masahiro Sadakane
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Dilimulati Yimiti
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihide Hattori
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku Sakai, Osaka 599-8531, Japan
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku Sakai, Osaka 599-8531, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
18
|
Paramanantham A, Asfiya R, Manjunath Y, Xu L, McCully G, Das S, Yang H, Kaifi JT, Srivastava A. Induction of Ferroptosis by an Amalgam of Extracellular Vesicles and Iron Oxide Nanoparticles Overcomes Cisplatin Resistance in Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608664. [PMID: 39229071 PMCID: PMC11370464 DOI: 10.1101/2024.08.19.608664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Extracellular vesicles (EVs) hold potential as effective carriers for drug delivery, providing a promising approach to resolving challenges in lung cancer treatment. Traditional treatments, such as with the chemotherapy drug cisplatin, encounter resistance in standard cell death pathways like apoptosis, prompting the need to explore alternative approaches. This study investigates the potential of iron oxide nanoparticles (IONP) and EVs to induce ferroptosis-a regulated cell death mechanism-in lung cancer cells. We formulated a novel EV and IONP-based system, namely 'ExoFeR', and observed that ExoFeR demonstrated efficient ferroptosis induction, evidenced by downregulation of ferroptosis markers (xCT/SLC7A11 and GPX4), increased intracellular and mitochondrial ferrous iron levels, and morphological changes in mitochondria. To enhance efficacy, tumor-targeting transferrin (TF)-conjugated ExoFeR (ExoFeR TF ) was developed. ExoFeR TF outperformed ExoFeR, exhibiting higher uptake and cell death in lung cancer cells. Mechanistically, nuclear factor erythroid 2-related factor 2 (Nrf2)-a key regulator of genes involved in glutathione biosynthesis, antioxidant responses, lipid metabolism, and iron metabolism-was found downregulated in the ferroptotic cells. Inhibition of Nrf2 intracellular translocation in ExoFeR TF -treated cells was also observed, emphasizing the role of Nrf2 in modulating ferroptosis-dependent cell death. Furthermore, ExoFeR and ExoFeR TF demonstrated the ability to sensitize chemo-resistant cancer cells, including cisplatin-resistant lung cancer patient-derived tumoroid organoids. In summary, ExoFeR TF presents a promising and multifaceted therapeutic approach for combating lung cancer by intrinsically inducing ferroptosis and sensitizing chemo-resistant cells.
Collapse
|
19
|
Küstermann C, Narbute K, Movčana V, Parfejevs V, Rūmnieks F, Kauķis P, Priedols M, Mikilps-Mikgelbs R, Mihailova M, Andersone S, Dzalbs A, Bajo-Santos C, Krams A, Abols A. iPSC-derived lung and lung cancer organoid model to evaluate cisplatin encapsulated autologous iPSC-derived mesenchymal stromal cell-isolated extracellular vesicles. Stem Cell Res Ther 2024; 15:246. [PMID: 39113093 PMCID: PMC11304910 DOI: 10.1186/s13287-024-03862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality globally. Although recent therapeutic advancements have provided targeted treatment approaches, the development of resistance and systemic toxicity remain primary concerns. Extracellular vesicles (EVs), especially those derived from mesenchymal stromal cells (MSC), have gained attention as promising drug delivery systems, offering biocompatibility and minimal immune responses. Recognizing the limitations of conventional 2D cell culture systems in mimicking the tumor microenvironment, this study aims to describe a proof-of-principle approach for using patient-specific organoid models for both lung cancer and normal lung tissue and the feasibility of employing autologous EVs derived from induced pluripotent stem cell (iPSC)-MSC in personalized medicine approaches. METHODS First, we reprogrammed healthy fibroblasts into iPSC. Next, we differentiated patient-derived iPSC into branching lung organoids (BLO) and generated patient-matched lung cancer organoids (LCO) from patient-derived tumor tissue. We show a streamlined process of MSC differentiation from iPSC and EV isolation from iPSC-MSC, encapsulated with 0.07 µg/mL of cytotoxic agent cisplatin and applied to both organoid models. Cytotoxicity of cisplatin and cisplatin-loaded EVs was recorded with LDH and CCK8 tests. RESULTS Fibroblast-derived iPSC showed a normal karyotype, pluripotency staining, and trilineage differentiation. iPSC-derived BLO showed expression of lung markers, like TMPRSS2 and MUC5A while patient-matched LCO showed expression of Napsin and CK5. Next, we compared the effects of iPSC-MSC derived EVs loaded with cisplatin against empty EVs and cisplatin alone in lung cancer organoid and healthy lung organoid models. As expected, we found a cytotoxic effect when LCO were treated with 20 µg/mL cisplatin. Treatment of LCO and BLO with empty EVs resulted in a cytotoxic effect after 24 h. However, EVs loaded with 0.07 µg/mL cisplatin failed to induce any cytotoxic effect in both organoid models. CONCLUSION We report on a proof-of-principle pipeline towards using autologous or allogeneic iPSC-MSC EVs as drug delivery tests for lung cancer in future. However, due to the time and labor-intensive processes, we conclude that this pipeline might not be feasible for personalized approaches at the moment.
Collapse
Affiliation(s)
- Caroline Küstermann
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia.
| | - Karīna Narbute
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Valērija Movčana
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, Jelgavas Iela 3, Riga, Latvia
| | - Fēlikss Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Pauls Kauķis
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Miks Priedols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Rihards Mikilps-Mikgelbs
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | | | | | - Aigars Dzalbs
- IVF Riga Stem Cell Center, Zaļā Iela 1, Rīga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| | - Alvils Krams
- Riga East Clinical University Hospital Center of Tuberculosis and Lung Diseases, Upeslejas, Ropažu Novads, Latvia
| | - Arturs Abols
- Latvian Biomedical Research and Study Center, Rātsupītes Iela 1, Riga, 1067, Latvia
| |
Collapse
|
20
|
Liu S, Shang W, Song J, Li Q, Wang L. Integration of photomagnetic bimodal imaging to monitor an autogenous exosome loaded platform: unveiling strong targeted retention effects for guiding the photothermal and magnetothermal therapy in a mouse prostate cancer model. J Nanobiotechnology 2024; 22:421. [PMID: 39014370 PMCID: PMC11253357 DOI: 10.1186/s12951-024-02704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most prevalent cancer among males, emphasizing the critical need for precise diagnosis and treatment to enhance patient prognosis. Recent studies have extensively utilized urine exosomes from patients with cancer for targeted delivery. This study aimed to employ highly sensitive magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor the targeted delivery of an exosome-loaded platform at the tumour site, offering insights into a potential combined photothermal and magnetic thermal therapy regime for PCa. RESULTS MPI and FMI were utilized to monitor the in vivo retention performance of exosomes in a prostate tumour mouse model. The exosome-loaded platform exhibited robust homologous targeting ability during imaging (SPIONs@EXO-Dye:66·48%±3·85%; Dye-SPIONs: 34·57%±7·55%, **P<0·01), as verified by in vitro imaging and in vitro tissue Prussian blue staining. CONCLUSIONS The experimental data underscore the feasibility of using MPI for in vivo PCa imaging. Furthermore, the exosome-loaded platform may contribute to the precise diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Songlu Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiubai Li
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Liang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
21
|
Kathait P, Patel PK, Sahu AN. Harnessing exosomes and plant-derived exosomes as nanocarriers for the efficient delivery of plant bioactives. Nanomedicine (Lond) 2024; 19:2679-2697. [PMID: 38900607 DOI: 10.1080/17435889.2024.2354159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Exosomes, a category of extracellular vesicle (EV), are phospholipid bilayer structures ranging from 30 to 150 nm, produced by various organisms through the endosomal pathway. Recent studies have established the utilization of exosomes as nanocarriers for drug distribution across various therapeutic areas including cancer, acute liver injury, neuroprotection, oxidative stress, inflammation, etc. The importance of plant-derived exosomes and exosome vesicles derived from mammalian cells or milk, loaded with potent plant bioactives for various therapeutic indications are discussed along with insights into future perspectives. Moreover, this review provides a detailed understanding of exosome biogenesis, their composition, classification, stability of different types of exosomes, and different routes of administration along with the standard techniques used for isolating, purifying, and characterizing exosomes.
Collapse
Affiliation(s)
- Pooja Kathait
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Pradeep Kumar Patel
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
22
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
23
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Xue X, Wang X, Pang M, Yu L, Qian J, Li X, Tian M, Lu C, Xiao C, Liu Y. An exosomal strategy for targeting cancer-associated fibroblasts mediated tumors desmoplastic microenvironments. J Nanobiotechnology 2024; 22:196. [PMID: 38644492 PMCID: PMC11032607 DOI: 10.1186/s12951-024-02452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.
Collapse
Affiliation(s)
- Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxiu Qian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
25
|
Hill M, Chung SJ, Woo HJ, Park CR, Hadrick K, Nafiujjaman M, Kumar PP, Mwangi L, Parikh R, Kim T. Exosome-Coated Prussian Blue Nanoparticles for Specific Targeting and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38598311 PMCID: PMC11056931 DOI: 10.1021/acsami.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Glioblastoma is one of the most aggressive and invasive types of brain cancer with a 5-year survival rate of 6.8%. With limited options, patients often have poor quality of life and are moved to palliative care after diagnosis. As a result, there is an extreme need for a novel theranostic method that allows for early diagnosis and noninvasive treatment as current peptide-based delivery standards may have off-target effects. Prussian Blue nanoparticles (PBNPs) have recently been investigated as photoacoustic imaging (PAI) and photothermal ablation agents. However, due to their inability to cross the blood-brain barrier (BBB), their use in glioblastoma treatment is limited. By utilizing a hybrid, biomimetic nanoparticle composed of a PBNP interior and a U-87 cancer cell-derived exosome coating (Exo:PB), we show tumor-specific targeting within the brain and selective thermal therapy potential due to the strong photoconversion abilities. Particle characterization was carried out and showed a complete coating around the PBNPs that contains exosome markers. In vitro cellular uptake patterns are similar to native U-87 exosomes and when exposed to an 808 nm laser, show localized cell death within the specified region. After intravenous injection of Exo:PB into subcutaneously implanted glioblastoma mice, they have shown effective targeting and eradication of tumor volume compared to PEG-coated PBNPs (PEG:PB). Through systemic administration of Exo:PB particles into orthotopic glioblastoma-bearing mice, the PBNP signal was detected in the brain tumor region through PAI. It was seen that Exo:PB had preferential tumor accumulation with less off-targeting compared to the RGD:PB control. Ex vivo analysis validated specific targeting with a direct overlay of Exo:PB with the tumor by both H&E staining and Ki67 labeling. Overall, we have developed a novel biomimetic material that can naturally cross the BBB and act as a theranostic agent for systemic targeting of glioblastoma tissue and photothermal therapeutic effect.
Collapse
Affiliation(s)
- Meghan
L. Hill
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Seock-Jin Chung
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Hyun-Joo Woo
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Cho Rong Park
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Panangattukara
Prabhakaran Praveen Kumar
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Leila Mwangi
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Rachna Parikh
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department
of Biomedical Engineering, Department of Chemical Engineering and
Materials Science, Department of Human Biology, Lyman Briggs Honors College, and Institute for Quantitative
Health Science and Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
27
|
Farahani MS, Hosseini-Beheshti E, Moazzeni SM, Moghadam MF. Engineered extracellular vesicles expressing ICAM-1: A promising targeted delivery system for T cell modifications. Biochim Biophys Acta Gen Subj 2024; 1868:130541. [PMID: 38103755 DOI: 10.1016/j.bbagen.2023.130541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are natural nano-carriers that possess the required crucial features of an ideal biomolecular delivery system. However, using unmodified EVs may have some limitations such as low accumulation in target sites. Studies have established that engineering EVs against different cell surface markers can overcome most of these hurdles. METHODS In this study, engineered EVs expressing ICAM-1/LAMP2b fusion protein on their surfaces were produced and isolated. The uptake of isolated targeted and non-targeted EVs was evaluated by imaging and flow cytometry. To assess the ability of targeted EVs to be applied as a safe carrier, pAAVS1-Puro-GFP plasmids were encapsulated into EVs by electroporation. RESULTS The HEKT 293 cell line was successfully modified permanently by a lentiviral vector to express ICAM-1 on the surface of the derived EVs. The ELISA and western blot tests established the binding affinity of targeted EVs for recombinant LFA-1 with a remarkable difference from non-targeted EVs. Furthermore, flow cytometry results revealed noteworthy differences in the binding of LFA-1-positive, non-targeted EVs, and targeted EVs to LFA-1-negative cells. Finally, imaging and flow cytometry indicated that newly produced EVs could efficiently interact with T cells and functionally deliver loaded plasmids to them. CONCLUSION These LFA-1-targeted EVs were able to interact with T cells as their recipient cells. They can be utilized as an ideal delivery system to transfer various biomolecules to T cells, facilitating immunotherapies or other cell-based treatments.
Collapse
Affiliation(s)
- Mahboube Shahrabi Farahani
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O.Box: 14115-331, I.R, Jalal ale Ahmad Highway, Tehran, Iran.
| | | | - Seyed Mohammad Moazzeni
- Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O.Box: 14115-331, I.R, Jalal ale Ahmad Highway, Tehran, Iran.
| |
Collapse
|
28
|
Rakshit T, Pal S. Extracellular Vesicles for Drug Delivery and Theranostics In Vivo. JACS AU 2024; 4:318-327. [PMID: 38425894 PMCID: PMC10900499 DOI: 10.1021/jacsau.3c00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanopouches generated by all cells and are abundant in various body fluids. Depending on the parent and recipient cells, EVs exchange diverse constituents including nucleic acids, proteins, carbohydrates, and metabolites. Morphologically, EVs suffer from low zeta potentials and short circulation times, but they also offer low intrinsic immunogenicity and inherent stability. Some crucial factors for the effective clinical application of EVs include controlling immune system clearance, achieving the large-scale production of EVs with efficient quality control, and determining the dominant mechanism of the in vivo action of EVs. In this Perspective, we shed light on how these intriguing nano-objects are utilized in cellular imaging and drug delivery for disease therapeutics. We also discuss potential strategies for overcoming the associated limitations.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR 201314, India
| | - Suchetan Pal
- Department
of Chemistry, Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai, Durg 491001, India
| |
Collapse
|
29
|
Shi R, Zhan A, Li X, Kong B, Liang G. Biomimetic extracellular vesicles for the tumor targeted treatment. ENGINEERED REGENERATION 2023; 4:427-437. [DOI: 10.1016/j.engreg.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
30
|
Zhao Y, Tan H, Zhang J, Pan B, Wang N, Chen T, Shi Y, Wang Z. Plant-Derived Vesicles: A New Era for Anti-Cancer Drug Delivery and Cancer Treatment. Int J Nanomedicine 2023; 18:6847-6868. [PMID: 38026523 PMCID: PMC10664809 DOI: 10.2147/ijn.s432279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid-structured vesicles have been applied for drug delivery system for over 50 years. Based on their origin, lipid-structured vesicles are divided into two main categories, namely synthetic lipid vesicles (SLNVEs) and vesicles of mammalian origin (MDVEs). Although SLNVEs can stably transport anti-cancer drugs, their biocompatibility is poor and degradation of exogenous substances is a potential risk. Unlike SLNVEs, MDVEs have excellent biocompatibility but are limited by a lack of stability and a risk of contamination by dangerous pathogens from donor cells. Since the first discovery of plant-derived vesicles (PDVEs) in carrot cell supernatants in 1967, emerging evidence has shown that PDVEs integrate the advantages of both SLNVEs and MDVEs. Notably, 55 years of dedicated research has indicated that PDVEs are an ideal candidate vesicle for drug preparation, transport, and disease treatment. The current review systematically focuses on the role of PDVEs in cancer therapy and in particular compares the properties of PDVEs with those of conventional lipid vesicles, summarizes the preparation methods and quality control of PDVEs, and discusses the application of PDVEs in delivering anti-cancer drugs and their underlying molecular mechanisms for cancer therapy. Finally, the challenges and future perspectives of PDVEs for the development of novel therapeutic strategies against cancer are discussed.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Bo Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yafei Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
31
|
Patel G, Agnihotri TG, Gitte M, Shinde T, Gomte SS, Goswami R, Jain A. Exosomes: a potential diagnostic and treatment modality in the quest for counteracting cancer. Cell Oncol (Dordr) 2023; 46:1159-1179. [PMID: 37040056 PMCID: PMC10088756 DOI: 10.1007/s13402-023-00810-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Exosomes are nanosized bio vesicles formed when multivesicular bodies and the plasma membrane merge and discharge into bodily fluids. They are well recognized for facilitating intercellular communication by transporting numerous biomolecules, including DNA, RNAs, proteins, and lipids, and have been implicated in varied diseases including cancer. Exosomes may be altered to transport a variety of therapeutic payloads, including as short interfering RNAs, antisense oligonucleotides, chemotherapeutic drugs, and immunological modulators, and can be directed to a specific target. Exosomes also possess the potential to act as a diagnostic biomarker in cancer, in addition to their therapeutic potential. CONCLUSION In this review, the physiological roles played by exosomes were summarized along with their biogenesis process. Different isolation techniques of exosomes including centrifugation-based, size-based, and polymer precipitation-based techniques have also been described in detail with a special focus on cancer therapeutic applications. The review also shed light on techniques of incubation of drugs with exosomes and their characterization methods covering the most advanced techniques. Myriad applications of exosomes in cancer as diagnostic biomarkers, drug delivery carriers, and chemoresistance-related issues have been discussed at length. Furthermore, a brief overview of exosome-based anti-cancer vaccines and a few prominent challenges concerning exosomal delivery have been concluded at the end.
Collapse
Affiliation(s)
- Gayatri Patel
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Manoj Gitte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Roshan Goswami
- Biological E Limited, Plot No-1, Phase 2, Kolthur Village, Medchal District, Shameerpet Mdl, Hyderabad, Telangana, 500078, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
32
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Hatami Z, Hashemi ZS, Eftekhary M, Amiri A, Karpisheh V, Nasrollahi K, Jafari R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int 2023; 23:157. [PMID: 37543612 PMCID: PMC10403883 DOI: 10.1186/s12935-023-02996-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023] Open
Abstract
Chimeric antigen receptor natural killer cells (CAR-NK) promote off-the-shelf cellular therapy for solid tumors and malignancy.However,, the development of CAR-NK is due to their immune surveillance uncertainty and cytotoxicity challenge was restricted. Natural killer cell-derived exosome (NK-Exo) combine crucial targeted cellular therapies of NK cell therapies with unique non-toxic Exo as a self-origin shuttle against cancer immunotherapy. This review study covers cytokines, adoptive (autologous and allogenic) NK immunotherapy, stimulatory and regulatory functions, and cell-free derivatives from NK cells. The future path of NK-Exo cytotoxicity and anti-tumor activity with considering non-caspase-independent/dependent apoptosis and Fas/FasL pathway in cancer immunotherapy. Finally, the significance and implication of NK-Exo therapeutics through combination therapy and the development of emerging approaches for the purification and delivery NK-Exo to severe immune and tumor cells and tissues were discussed in detail.
Collapse
Affiliation(s)
- Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kaveh Nasrollahi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
34
|
Singha A, K T M, Mahalingam R, M SK, R A, A S. Therapeutic Signature of Stem Cell Derivative Exosomes in Oral Cancer: A Scoping Review. Cureus 2023; 15:e39957. [PMID: 37416015 PMCID: PMC10320225 DOI: 10.7759/cureus.39957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Oral cancer poses a serious health challenge to the nations worldwide. India, among all the nations reported, has the largest number of oral cancer cases, which accounts for one-third of the entire population of oral cancer globally. As oral cancer is well-known for delayed diagnosis until an advanced stage, poor outcomes, and a lack of specific biomarkers for the disease and high-budget therapeutic alternatives. Stem cell derivative exosomes gained significant attention as therapeutic agents and diagnostic biomarkers in cancer biology. It's a type of extracellular vesicle, which are lipid-bilayer-enclosed vesicles of endosomal origin. They are nanosized membrane vesicles that are capable of self-renewal, unlimited proliferation, and multi-directional differential potential. Thus, they act salient in the occurrence and development of tumors. Exosomal micro-RNAs (miRNAs) are functionally related to the advancement of cancer, metastasis, and the aggressive nature of tumors with high recurrence rates. It has also been highlighted that exosomes have the potential to serve as diagnostic markers. A quick, easy, high-clarity, and confined rehabilitation method is the basic specification for large-scale usage of exosomes. The constitution of the composite transporters of exosomes is easily available by sampling biological fluids (liquid biopsies) from samples such as saliva. A liquid biopsy based on exosomes focuses on their probable usage in cancer patients' diagnosis and the determination of the outcome or course of the disease. This review explores the therapeutic prospect of stem cell-derived exosomes as intending to offer new ideas for clinical management and institute a new era of therapeutic agents for oral cancer.
Collapse
Affiliation(s)
- Aanuja Singha
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Magesh K T
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Ramya Mahalingam
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Sathya Kumar M
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Aravindhan R
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| | - Sivachandran A
- Oral Pathology and Microbiology, SRM Institute of Science and Technology, SRM Kattankulathur Dental College and Hospital, Chennai, IND
| |
Collapse
|
35
|
Lopes D, Lopes J, Pereira-Silva M, Peixoto D, Rabiee N, Veiga F, Moradi O, Guo ZH, Wang XD, Conde J, Makvandi P, Paiva-Santos AC. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil Med Res 2023; 10:19. [PMID: 37101293 PMCID: PMC10134679 DOI: 10.1186/s40779-023-00453-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.
Collapse
Affiliation(s)
- Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 374-37515, Iran
| | - Zhan-Hu Guo
- Integrated Composites Laboratory (ICL), Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - João Conde
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
36
|
Raguraman R, Bhavsar D, Kim D, Ren X, Sikavitsas V, Munshi A, Ramesh R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett 2023; 558:216093. [PMID: 36822543 PMCID: PMC10025995 DOI: 10.1016/j.canlet.2023.216093] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exosomes are small phospholipid bilayer vesicles that are naturally produced by all living cells, both prokaryotes and eukaryotes. The exosomes due to their unique size, reduced immunogenicity, and their ability to mimic synthetic liposomes in carrying various anticancer drugs have been tested as drug delivery vehicles for cancer treatment. An added advantage of developing exosomes as a drug carrier is the ease of manipulating their intraluminal content and their surface modification to achieve tumor-targeted drug delivery. In the past ten-years, there has been an exponential increase in the number of exosome-related studies in cancer. Preclinical studies demonstrate exosomes-mediated delivery of chemotherapeutics, biologicals and natural products produce potent anticancer activity both, in vitro and in vivo. In contrast, the number of exosome-based clinical trials are few due to challenges in the manufacturing and scalability related to large-scale production of exosomes and their storage and stability. Herein, we discuss recent advances in exosome-based drug delivery for cancer treatment in preclinical and clinical studies and conclude with challenges to be overcome for translating a larger number of exosome-based therapies into the clinic.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dhaval Bhavsar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- School of Chemical, Biological and Material Engineering, The University of Oklahoma, Norman, Oklahoma, 73019, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
37
|
Tan S, Yang Y, Yang W, Han Y, Huang L, Yang R, Hu Z, Tao Y, Liu L, Li Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Cao D, Liao Q, Zhou Y. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:59. [PMID: 36899389 PMCID: PMC9999652 DOI: 10.1186/s13046-023-02634-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
38
|
Feng T, Wan Y, Dai B, Liu Y. Anticancer Activity of Bitter Melon-Derived Vesicles Extract against Breast Cancer. Cells 2023; 12:cells12060824. [PMID: 36980165 PMCID: PMC10047160 DOI: 10.3390/cells12060824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Due to their low immunogenicity, high biocompatibility and ready availability in large quantities, plant-derived vesicles extracts have attracted considerable interest as a novel nanomaterial in tumor therapy. Bitter melon, a medicinal and edible plant, has been reported to exhibit excellent antitumor effects. It is well-documented that breast cancer gravely endangers women’s health, and more effective therapeutic agents must be urgently explored. Therefore, we investigated whether bitter melon-derived vesicles extract (BMVE) has antitumor activity against breast cancer. Ultracentrifugation was used to isolate BMVE with a typical “cup-shaped” structure and an average size of approximately 147 nm from bitter melon juice. The experimental outcomes indicate that 4T1 breast cancer cells could efficiently internalize BMVE, which shows apparent anti-proliferative and migration-inhibiting effects. In addition, BMVE also possesses apoptosis-inducing effects on breast cancer cells, which were achieved by stimulating the production of reactive oxygen species (ROS) and disrupting mitochondrial function. Furthermore, BMVE could dramatically inhibit tumor growth in vivo with negligible adverse effects. In conclusion, BMVE exhibits a pronounced antitumor effect on 4T1 breast cancer cells, which has great potential for use in tumor therapy.
Collapse
Affiliation(s)
| | | | - Bin Dai
- Correspondence: (B.D.); (Y.L.)
| | | |
Collapse
|
39
|
Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat 2023; 67:100937. [PMID: 36753923 DOI: 10.1016/j.drup.2023.100937] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Chemotherapy is one of the primary treatments for malignant tumors. However, the acquired drug resistance hinders clinical efficacy and leads to treatment failure in most patients. Exosomes are cell-derived vesicles with a diameter of 30-150 nm carrying and delivering substances such as DNAs, RNAs, lipids, and proteins for cellular communication in tumor development. Circular RNAs (circRNAs) present covalently closed-loop RNA structures, which regulate tumor cell proliferation, apoptosis, and metastasis by controlling different genes and signaling pathways. CircRNAs are abundant and stably expressed in exosomes. Recent studies have shown that they play critical roles in chemotherapy resistance in various cancers. In this review, we summarized the origin of exosomes and discussed the regulation mechanism of exosomal circRNAs in cancer drug resistance.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang Liaoning Province 110042, China.
| |
Collapse
|
40
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
41
|
Chuang YT, Tang JY, Shiau JP, Yen CY, Chang FR, Yang KH, Hou MF, Farooqi AA, Chang HW. Modulating Effects of Cancer-Derived Exosomal miRNAs and Exosomal Processing by Natural Products. Cancers (Basel) 2023; 15:318. [PMID: 36612314 PMCID: PMC9818271 DOI: 10.3390/cancers15010318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
42
|
Affiliation(s)
- Heba A Eassa
- Department of Pharmaceutical Sciences, University of Saint Joseph, 1678 Asylum Avenue, West Hartford, CT 06117, USA
| |
Collapse
|
43
|
Zhu Y, Zhou X, Yao Z. A mini-review: Advances in plant-derived extracellular vesicles as nano-delivery systems for tumour therapy. Front Bioeng Biotechnol 2022; 10:1076348. [PMID: 36588940 PMCID: PMC9797590 DOI: 10.3389/fbioe.2022.1076348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles are functionally active, nanoscale, membrane-bound vesicles that can be secreted by all cells. They have a key role in most health and disease states and have gradually become a promising class of delivery vehicles for targeted therapies for a variety of diseases. Plant-derived extracellular vesicles have received increasing attention based on their easy availability, non-toxicity and high absorption. However, compared with mammalian extracellular vesicles, the role of these nanoparticles as nano-delivery systems in tumour therapy has been underestimated. In this paper, the application of plant-derived extracellular vesicles and their nano-derivatives as nano-delivery systems in tumour therapy is reviewed to illustrate their great application potential.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaona Zhou
- Department of First Clinical Medical, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Zheng Yao, ; Xiaona Zhou,
| | - Zheng Yao
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China,Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming, China,*Correspondence: Zheng Yao, ; Xiaona Zhou,
| |
Collapse
|
44
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|
45
|
Almeida SFF, Fonseca A, Sereno J, Ferreira HRS, Lapo-Pais M, Martins-Marques T, Rodrigues T, Oliveira RC, Miranda C, Almeida LP, Girão H, Falcão A, Abrunhosa AJ, Gomes CM. Osteosarcoma-Derived Exosomes as Potential PET Imaging Nanocarriers for Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203999. [PMID: 36316233 DOI: 10.1002/smll.202203999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Lung metastases represent the most adverse clinical factor and rank as the leading cause of osteosarcoma-related death. Nearly 80% of patients present lung micrometastasis at diagnosis not detected with current clinical tools. Herein, an exosome (EX)-based imaging tool is developed for lung micrometastasis by positron emission tomography (PET) using osteosarcoma-derived EXs as natural nanocarriers of the positron-emitter copper-64 (64 Cu). Exosomes are isolated from metastatic osteosarcoma cells and functionalized with the macrocyclic chelator NODAGA for complexation with 64 Cu. Surface functionalization has no effect on the physicochemical properties of EXs, or affinity for donor cells and endows them with favorable pharmacokinetics for in vivo studies. Whole-body PET/magnetic resonance imaging (MRI) images in xenografted models show a specific accumulation of 64 Cu-NODAGA-EXs in metastatic lesions as small as 2-3 mm or in a primary tumor, demonstrating the exquisite tropism of EXs for homotypic donor cells. The targetability for lung metastasis is also observed by optical imaging using indocyanine green (ICG)-labeled EXs and D-luciferin-loaded EXs. These findings show that tumor-derived EXs hold great potential as targeted imaging agents for the noninvasive detection of small lung metastasis by PET. This represents a step forward in the biomedical application of EXs in imaging diagnosis with increased translational potential.
Collapse
Affiliation(s)
- Sara F F Almeida
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Alexandra Fonseca
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - José Sereno
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Hugo R S Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Mariana Lapo-Pais
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Teresa Rodrigues
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Rui C Oliveira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561, Coimbra, Portugal
| | - Catarina Miranda
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Luís P Almeida
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Célia M Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| |
Collapse
|
46
|
SIRT1-Enriched Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Alleviate Peripheral Neuropathy via Conserving Mitochondrial Function. J Mol Neurosci 2022; 72:2507-2516. [PMID: 36534294 DOI: 10.1007/s12031-022-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.
Collapse
|
47
|
Yu H, Wu M, Chen S, Song M, Yue Y. Biomimetic nanoparticles for tumor immunotherapy. Front Bioeng Biotechnol 2022; 10:989881. [PMID: 36440446 PMCID: PMC9682960 DOI: 10.3389/fbioe.2022.989881] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2023] Open
Abstract
Currently, tumor treatment research still focuses on the cancer cells themselves, but the fact that the immune system plays an important role in inhibiting tumor development cannot be ignored. The activation of the immune system depends on the difference between self and non-self. Unfortunately, cancer is characterized by genetic changes in the host cells that lead to uncontrolled cell proliferation and evade immune surveillance. Cancer immunotherapy aims to coordinate a patient's immune system to target, fight, and destroy cancer cells without destroying the normal cells. Nevertheless, antitumor immunity driven by the autoimmune system alone may be inadequate for treatment. The development of drug delivery systems (DDS) based on nanoparticles can not only promote immunotherapy but also improve the immunosuppressive tumor microenvironment (ITM), which provides promising strategies for cancer treatment. However, conventional nano drug delivery systems (NDDS) are subject to several limitations in clinical transformation, such as immunogenicity and the potential toxicity risks of the carrier materials, premature drug leakage at off-target sites during circulation and drug load content. In order to address these limitations, this paper reviews the trends and progress of biomimetic NDDS and discusses the applications of each biomimetic system in tumor immunotherapy. Furthermore, we review the various combination immunotherapies based on biomimetic NDDS and key considerations for clinical transformation.
Collapse
Affiliation(s)
- Hanqing Yu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingming Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Chen Z, Lu M, Zhang Y, Wang H, Zhou J, Zhou M, Zhang T, Song J. Oxidative stress state inhibits exosome secretion of hPDLCs through a specific mechanism mediated by PRMT1. J Periodontal Res 2022; 57:1101-1115. [PMID: 36063421 DOI: 10.1111/jre.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, the most common chronic inflammation characterized by persistent alveolar bone resorption in the periodontitis, affects almost half of the adult population worldwide. Oxidative stress is one of the pathophysiological mechanisms underlying periodontitis, which affects the occurrence and development of periodontitis. Exosomes are increasingly recognized as vehicles of intercellular communication and are closely related to periodontitis. However, the effects of oxidative stress on exosome secretion and the specific mechanisms remain elusive in human periodontal ligament cells (hPDLCs). The relationship between exosome secretion and the osteogenic differentiation of hPDLCs also needs to be investigated. METHODS Isolated PDLSCs were identified using flow cytometry. Osteogenesis was measured using alizarin red staining and ALP staining. Expression of exosomal markers and PRMT1 was analyzed using western blot. Immunofluorescence was used to measure exosome uptake and the expression of EEA1. RESULTS The secretion capacity of exosomes was markedly suppressed under oxidative stress. Protein arginine methyltransferase 1 (PRMT1) has been strongly associated with both oxidative stress and inflammation, and PRMT1 was significantly upregulated under oxidative stress conditions. Lentivirus-mediated overexpression of PRMT1 caused a significant reduction in the secretion of exosomes, but multivesicular bodies (MVBs) containing a large number of intraluminal vesicles (ILVs) were increased. Rab11a and Rab27a expression, which mediate MVBs fusion with cell membranes, decreased, although this phenomenon was restored after knocking down PRMT1 expression under oxidative stress. CONCLUSIONS These results indicated that PRMT1 mediated a decrease in exosome secretion of hPDLCs. The decrease in Rab11a and Rab27a leads to a large accumulation of MVBs in cells and is one of the main reasons for impaired exosome secretion. The decrease in osteogenic differentiation of hPDLCs caused by H2 O2 may originate in part from the inhibition of exosome secretion.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Miao Lu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yanan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
49
|
Guo W, Qiao T, Dong B, Li T, Liu Q, Xu X. The Effect of Hypoxia-Induced Exosomes on Anti-Tumor Immunity and Its Implication for Immunotherapy. Front Immunol 2022; 13:915985. [PMID: 35812406 PMCID: PMC9257077 DOI: 10.3389/fimmu.2022.915985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia is a critical feature of solid tumors and is considered to be a key factor in promoting tumorigenesis and progression. Beyond inducing metabolic reprogramming of tumor cells to adapt to the hypoxia tumor microenvironment (TME), hypoxia can also promote tumor growth by affecting the secretion of exosomes. Exosomes are nano-sized (30-150 nm in diameter) extracellular vesicles that can carry numerous substances including lipids, proteins, nucleic acids, and metabolites. Notably, hypoxia-induced exosomes alterations not only exist in tumor cells, but also in various TME cells including stromal cells and immune cells. Besides promoting tumor invasion, angiogenesis, and drug resistance, the secretion of these altered exosomes has recently been found to negatively regulate anti-tumor immune responses. In this review, we focus on the hypoxia-induced changes in exosome secretion and found it can contributes to immune evasion and cancer progression by recruiting protumor immune cells into TME, as well as inhibiting antitumor immune cells. Next, we also describe the recent advances of exosomes in immunotherapy and future direction. In conclusion, ongoing discoveries in this field have brought new insights into hypoxia exosome-led immunosuppression, enabling the development of exosome-based therapeutics and elucidating their potential in immunotherapy.
Collapse
Affiliation(s)
- Wenwen Guo
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Bingwei Dong
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qiang Liu
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Xiaofeng Xu
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
50
|
Li T, Li J, Wang H, Zhao J, Yan M, He H, Yu S. Exosomes: Potential Biomarkers and Functions in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2022; 9:881794. [PMID: 35775082 PMCID: PMC9237451 DOI: 10.3389/fmolb.2022.881794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), originating from the mucosal epithelial cells of the oral cavity, pharynx, and larynx, is a lethal malignancy of the head and neck. Patients with advanced and recurrent HNSCC have poor outcomes due to limited therapeutic options. Exosomes have active roles in the pathophysiology of tumors and are suggested as a potential therapeutic target of HNSCC. Exosomes in HNSCC have been intensively studied for disease activity, tumor staging, immunosuppression, and therapeutic monitoring. In this review, the biological mechanisms and the recent clinical application of exosomes are highlighted to reveal the potential of exosomes as biomarkers and therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haitao Wang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jiayu Zhao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingze Yan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|