1
|
Gao F, Pan L, Liu W, Chen J, Wang Y, Li Y, Liu Y, Hua Y, Li R, Zhang T, Zhu T, Jin F, Gao Y. Idiopathic pulmonary fibrosis microenvironment: Novel mechanisms and research directions. Int Immunopharmacol 2025; 155:114653. [PMID: 40222273 DOI: 10.1016/j.intimp.2025.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressive interstitial lung disease marked by increasing dyspnea and respiratory failure. The underlying mechanisms remain poorly understood, given the complexity of its pathogenesis. This review investigates the microenvironment of IPF to identify novel mechanisms and therapeutic avenues. Studies have revealed that various cell types, including alveolar epithelial cells, fibroblasts, myofibroblasts, and immune cells, are integral to disease progression, engaging in cellular stress responses and inflammatory regulation via signaling pathways such as TGF-β, Wnt, mTOR, and ROS. Non-coding RNAs, particularly miRNAs, are critical in IPF and may serve as diagnostic and prognostic biomarkers. Regarding treatment, mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) or non-vesicular derivatives offer promise by modulating immune responses, enhancing tissue repair, and inhibiting fibrosis. Additionally, alterations in the lung microbiota are increasingly recognized as a contributing factor to IPF progression, offering fresh insights into potential treatments. Despite the encouraging results of MSC-based therapies, the precise mechanisms and clinical applications remain subjects of ongoing research. This review emphasizes the significance of the IPF microenvironment and highlights the need for further exploration to develop effective therapies that could enhance patient outcomes.
Collapse
Affiliation(s)
- Fuguo Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jian Chen
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yifeng Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China; Department of Pulmonary and Critical Care Medicine, Shaanxi provincal people's hospital, Xi'an, 710068, China
| | - Yurou Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yiying Hua
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ruiqi Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Tongtong Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ting Zhu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Faguang Jin
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yongheng Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X. Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer. J Biol Chem 2025:110242. [PMID: 40381695 DOI: 10.1016/j.jbc.2025.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.
Collapse
Affiliation(s)
- Chengyu Ye
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Hao Zhang
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Zhou Chi
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Zhina Xu
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Yujie Cai
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Yajing Xu
- The Affiliated Cancer Hospital of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou, 325000, PR China
| | - Xiangmin Tong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
3
|
Gostomczyk K, Drozd M, Marsool Marsool MD, Pandey A, Tugas K, Chacon J, Tayyab H, Ullah A, Borowczak J, Szylberg Ł. Biomarkers for the detection of circulating tumor cells. Exp Cell Res 2025; 448:114555. [PMID: 40228709 DOI: 10.1016/j.yexcr.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a key biomarker in cancer detection and prognosis, and their molecular profiling is gaining importance in precision oncology. Liquid biopsies, which allow the extraction of CTCs, circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), have measurable advantages over traditional tissue biopsies, especially when molecular material is difficult to obtain. However, this method is not without limitations. Difficulties in differentiating between primary and metastatic lesions, uncertain predictive values and the complexity of the biomarkers used can prove challenging. Recently, high cell heterogeneity has been identified as the main obstacle to achieving high diagnostic accuracy. Because not all cells undergo epithelial-mesenchymal transition (EMT) at the same time, there is a large population of hybrid CTCs that express both epithelial and mesenchymal markers. Since traditional diagnostic tools primarily detect epithelial markers, they are often unable to detect cells with a hybrid phenotype; therefore, additional markers may be required to avoid false negatives. In this review, we summarize recent reports on emerging CTCs markers, with particular emphasis on their use in cancer diagnosis. Most of them, including vimentin, TWIST1, SNAI1, ZEB1, cadherins, CD44, TGM2, PD-L1 and GATA, hold promise for the detection of CTCs, but are also implicated in cancer progression, metastasis, and therapeutic resistance. Therefore, understanding the nature and drivers of epithelial-mesenchymal plasticity (EMP) is critical to advancing our knowledge in this field.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland.
| | - Magdalena Drozd
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| | | | - Anju Pandey
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jose Chacon
- American University of Integrative Sciences, Saint Martin, Cole Bay, Barbados
| | | | - Ashraf Ullah
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| |
Collapse
|
4
|
Guo C, Li S, Liu J, Ma Y, Liang A, Lou Y, Liu H, Wang H. FBF1 maintains stem cell-like properties in breast cancer via PI3K/AKT/SOX2 axis. Stem Cell Res Ther 2025; 16:83. [PMID: 39988656 PMCID: PMC11849350 DOI: 10.1186/s13287-025-04194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Considerable evidence suggests that tumor initiation, malignancy, metastasis and recurrence occur due to emergence of cancer stem cells (CSCs). Fas binding factor 1 (FBF1) is a multifunctional protein that plays essential roles in the regulation of development and cell fate decisions. However, the function in maintaining stem cell-like properties of breast cancer remains elusive. METHODS Tissue microarray was used to evaluate FBF1 expression. Cancer stemness assays were performed in FBF1 silencing and overexpressing cells in vitro and in a xenograft model in vivo. RNA sequencing, immunofluorescence and immunoprecipitation assays were performed to explore the underlying mechanism. Clinical expression and significance of FBF1 and stemness-associated factors were explored by analyzing datasets. RESULTS We report that FBF1 was highly expressed in breast cancer and significantly correlated with clinical progression. Silencing FBF1 in MDA-MB-231 cells restrained CSCs properties, including side population, sphere formation and migration, whereas ectopic FBF1 expression increased the side population proportion, enhanced the sphere formation ability, and promoted the expression of core stemness genes, such as SOX2, OCT4, KLF4 and NANOG, as well as facilitated metastasis of T47D breast cancer cells. Furthermore, mice bearing FBF1-overexpressed T47D xenografts had higher tumorigenic frequency and stronger metastasis potential. In addition, exploration of the underlying mechanism indicated that FBF1 binds PI3K which then activates PI3K-AKT phosphorylation cascades. Then the activated p-AKT interacts with stemness marker SOX2, elevates SOX2 and OCT4 activity, and finally forms PI3K/AKT/SOX2 axis, which mediates stem cell-like identities. Moreover, PI3K inhibitors abolished FBF1-mediated signaling pathway and diminished breast cancer stemness in vitro and in vivo. In 24 human breast cancer samples, we found a good positive correlation between the expression of FBF1 and p-AKT, as well as between FBF1 and SOX2 as determined by IHC. Clinical data showed that FBF1 expression was positively correlated with the expression of POU5F1 (OCT4), AKT1 and was negatively correlated with PTEN, which is a negative regulator of PI3K/AKT signaling. CONCLUSION Collectively, we identified a potential CSCs regulator and suggested a novel mechanism by which FBF1 governs cancer cell stemness. This study thus introduces an effective target for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Shuang Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jiaqing Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yuqiu Ma
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ang Liang
- School of Nursing, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Hao YY, Xiao WQ, Zhang HN, Yu NN, Park G, Han YH, Kwon T, Sun HN. Peroxiredoxin 1 modulates oxidative stress resistance and cell apoptosis through stemness in liver cancer under non-thermal plasma treatment. Biochem Biophys Res Commun 2024; 738:150522. [PMID: 39154551 DOI: 10.1016/j.bbrc.2024.150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The role of peroxiredoxin 1 (PRDX1), a crucial enzyme that reduces reactive oxygen and nitrogen species levels in HepG2 human hepatocellular carcinoma (HCC) cells, in the regulation of HCC cell stemness under oxidative stress and the underlying mechanisms remain largely unexplored. Here, we investigated the therapeutic potential of non-thermal plasma in targeting cancer stem cells (CSCs) in HCC, focusing on the mechanisms of resistance to oxidative stress and the role of PRDX1. By simulating oxidative stress conditions using the plasma-activated medium, we found that a reduction in PRDX1 levels resulted in a considerable increase in HepG2 cell apoptosis, suggesting that PRDX1 plays a key role in oxidative stress defense mechanisms in CSCs. Furthermore, we found that HepG2 cells had higher spheroid formation capability and increased levels of stem cell markers (CD133, c-Myc, and OCT-4), indicating strong stemness. Interestingly, PRDX1 expression was notably higher in HepG2 cells than in other HCC cell types such as Hep3B and Huh7 cells, whereas the expression levels of other PRDX family proteins (PRDX 2-6) were relatively consistent. The inhibition of PRDX1 expression and peroxidase activity by conoidin A resulted in markedly reduced stemness traits and increased cell death rate. Furthermore, in a xenograft mouse model, PRDX1 downregulation considerably inhibited the formation of solid tumors after plasma-activated medium (PAM) treatment. These findings underscore the critical role of PRDX 1 in regulating stemness and apoptosis in HCC cells under oxidative stress, highlighting PRDX1 as a promising therapeutic target for NTP-based treatment in HCC.
Collapse
Affiliation(s)
- Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Wan-Qiu Xiao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Hui-Na Zhang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea; Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| |
Collapse
|
7
|
Fan Y, Zou HQ. CMTM5 influences Hippo/YAP axis to promote ferroptosis in glioma through regulating WWP2-mediated LATS2 ubiquitination. Kaohsiung J Med Sci 2024; 40:890-902. [PMID: 39166861 DOI: 10.1002/kjm2.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Glioma, a common malignancy, is characterized by high morbidity and mortality. Promoting ferroptosis can delay tumor progression. Here, we aimed to explore the underlying mechanism of ferroptosis in glioma. In vitro and in vivo experiments were conducted using glioma cells and nude mice. The expression of genes and proteins was evaluated by RT-qPCR, Western blot assay, and immunohistochemical staining. Malignant activities of glioma cells were evaluated using MTT, EdU, and Transwell assays. The levels of Fe2+, lipid reactive oxygen species, and malondialdehyde were determined using commercial kits. The interplays among CMTM5, WWP2, and LATS2 were validated using Co-immunoprecipitation assay. The UALCAN database predicted downregulation of CMTM5 expression in glioma, and low expression of CMTM5 was associated with poor survival outcomes. CMTM5 overexpression inhibited cell growth and invasion and promoted ferroptosis of glioma cells. Besides, CMTM5 protein interacted with WWP2 protein and decreased WWP2 expression. WWP2 silencing attenuated LATS2 ubiquitination to enhance LATS2 expression and phosphorylation of YAP1. CMTM5 exerted a suppressive effect on cell growth and invasion and promoted ferroptosis of glioma cells by regulating the WWP2/LATS2 pathway. In the in vivo experiments, CMTM5 overexpression suppressed tumor growth and enhanced ferroptosis. CMTM5 regulated Hippo/YAP signaling to inhibit cell growth and invasion and to promote ferroptosis in glioma by regulating WWP2-mediated LATS2 ubiquitination, thereby attenuating glioma progression.
Collapse
Affiliation(s)
- Ye Fan
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - He-Qin Zou
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
8
|
Qiu D, Wang T, Xiong Y, Li K, Qiu X, Feng Y, Lian Q, Qin Y, Liu K, Zhang Q, Jia C. TFCP2L1 drives stemness and enhances their resistance to Sorafenib treatment by modulating the NANOG/STAT3 pathway in hepatocellular carcinoma. Oncogenesis 2024; 13:33. [PMID: 39266516 PMCID: PMC11392926 DOI: 10.1038/s41389-024-00534-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive malignancy associated with high risks of recurrence and metastasis. Liver cancer stem cells (CSCs) are increasingly recognized as pivotal drivers of these processes. In our previous research, we demonstrated the involvement of TFCP2L1 in maintaining the pluripotency of embryonic stem cells. However, its relevance to liver CSCs remains unexplored. In this study, we report an inverse correlation between TFCP2L1 protein levels in HCC tissue and patient outcomes. The knockdown of TFCP2L1 significantly reduced HCC cell proliferation, invasion, metastasis, clonal formation, and sphere-forming capacity, while its overexpression enhanced these functions. In addition, experiments using a nude mouse model confirmed TFCP2L1's essential role in liver CSCs' function and tumorigenic potential. Mechanistically, we showed that TFCP2L1 promotes the stemness of CSCs by upregulating NANOG, which subsequently activates the JAK/STAT3 pathway, thereby contributing to HCC pathogenesis. Importantly, we identified a specific small molecule targeting TFCP2L1's active domain, which, in combination with Sorafenib, sensitizes hepatoma cells to treatment. Together, these findings underscore TFCP2L1's pathological significance in HCC progression, supporting its potential as a prognostic biomarker and therapeutic target in this disease.
Collapse
Affiliation(s)
- Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiantian Wang
- Department of Medical Oncology; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Xiong
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qinghai Lian
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kunpeng Liu
- Medical college of Guangxi University, Nanning, Guangxi, China.
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Ding LJ, Jiang X, Li T, Wang S. Role of UFMylation in tumorigenesis and cancer immunotherapy. Front Immunol 2024; 15:1454823. [PMID: 39247188 PMCID: PMC11377280 DOI: 10.3389/fimmu.2024.1454823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Protein post-translational modifications (PTMs) represent a crucial aspect of cellular regulation, occurring after protein synthesis from mRNA. These modifications, which include phosphorylation, ubiquitination, acetylation, methylation, glycosylation, Sumoylation, and palmitoylation, play pivotal roles in modulating protein function. PTMs influence protein localization, stability, and interactions, thereby orchestrating a variety of cellular processes in response to internal and external stimuli. Dysregulation of PTMs is linked to a spectrum of diseases, such as cancer, inflammatory diseases, and neurodegenerative disorders. UFMylation, a type of PTMs, has recently gained prominence for its regulatory role in numerous cellular processes, including protein stability, response to cellular stress, and key signaling pathways influencing cellular functions. This review highlights the crucial function of UFMylation in the development and progression of tumors, underscoring its potential as a therapeutic target. Moreover, we discuss the pivotal role of UFMylation in tumorigenesis and malignant progression, and explore its impact on cancer immunotherapy. The article aims to provide a comprehensive overview of biological functions of UFMylation and propose how targeting UFMylation could enhance the effectiveness of cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Li-Juan Ding
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Te Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Zhang H, Bai Y, Li J, Chen T, Shang G. FBXO22 promotes osteosarcoma progression via regulation of FOXO1 for ubiquitination and degradation. J Cell Mol Med 2024; 28:e70021. [PMID: 39153212 PMCID: PMC11330286 DOI: 10.1111/jcmm.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Accumulating evidence has demonstrated that F-box protein 22 (FBXO22) participates in tumour development and progression in various types of human malignancies. However, the functions and detailed molecular mechanisms of FBXO22 in osteosarcoma tumorigenesis and progression remain elusive. In this study, we aimed to determine the effects of FBXO22 on the cell proliferation, migration and invasion of osteosarcoma cells using cell counting kit-8 and Matrigel Transwell approaches. Moreover, we explored the molecular mechanisms by which FBXO22 mediated oncogenesis and progression in osteosarcoma via Western blotting, immunoprecipitation and ubiquitination. We found that FBXO22 depletion inhibited the proliferation, migration and invasion of osteosarcoma cells, whereas FBXO22 overexpression increased the proliferation and motility of osteosarcoma cells. Mechanistically, FBXO22 promoted the ubiquitination and degradation of FoxO1 in osteosarcoma cells. FBXO22 depletion reduced cell proliferation and motility via regulation of FoxO1. Taken together, our findings provide new insight into FBXO22-induced osteosarcoma tumorigenesis. The inhibition of FBXO22 could be a promising strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- He Zhang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yang Bai
- Department of NursingShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiatong Li
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ting Chen
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanning Shang
- Department of OrthopedicsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
11
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
12
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
13
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
14
|
Ren X, Wang L, Liu L, Liu J. PTMs of PD-1/PD-L1 and PROTACs application for improving cancer immunotherapy. Front Immunol 2024; 15:1392546. [PMID: 38638430 PMCID: PMC11024247 DOI: 10.3389/fimmu.2024.1392546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Immunotherapy has been developed, which harnesses and enhances the innate powers of the immune system to fight disease, particularly cancer. PD-1 (programmed death-1) and PD-L1 (programmed death ligand-1) are key components in the regulation of the immune system, particularly in the context of cancer immunotherapy. PD-1 and PD-L1 are regulated by PTMs, including phosphorylation, ubiquitination, deubiquitination, acetylation, palmitoylation and glycosylation. PROTACs (Proteolysis Targeting Chimeras) are a type of new drug design technology. They are specifically engineered molecules that target specific proteins within a cell for degradation. PROTACs have been designed and demonstrated their inhibitory activity against the PD-1/PD-L1 pathway, and showed their ability to degrade PD-1/PD-L1 proteins. In this review, we describe how PROTACs target PD-1 and PD-L1 proteins to improve the efficacy of immunotherapy. PROTACs could be a novel strategy to combine with radiotherapy, chemotherapy and immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Xiaohui Ren
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lijuan Wang
- Department of Hospice Care, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likun Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Liu
- Department of Special Needs Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
16
|
Du YQ, Yuan B, Ye YX, Zhou FL, Liu H, Huang JJ, Wei YF. Plumbagin Regulates Snail to Inhibit Hepatocellular Carcinoma Epithelial-Mesenchymal Transition in vivo and in vitro. J Hepatocell Carcinoma 2024; 11:565-580. [PMID: 38525157 PMCID: PMC10960549 DOI: 10.2147/jhc.s452924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Background/Aims Plumbagin (PL) has been shown to effe ctively inhibit autophagy, suppressing invasion and migration of hepatocellular carcinoma (HCC) cells. However, the specific mechanism remains unclear. This study aimed to investigate the effect of PL on tumor growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) in HCC. Methods Huh-7 cells were cultured, and in vivo models of EMT and HCC-associated lung metastasis were developed through tail vein and in situ injections of tumor cells. In vivo imaging and hematoxylin and eosin staining were used to evaluate HCC modeling and lung metastasis. After PL intervention, the expression levels of Snail, vimentin, E-cadherin, and N-cadherin in the liver were evaluated through immunohistochemistry and Western blot. An in vitro TGF-β-induced cell EMT model was used to detect Snail, vimentin, E-cadherin, and N-cadherin mRNA levels through a polymerase chain reaction. Their protein levels were detected by immunofluorescence staining and Western blot. Results In vivo experiments demonstrated that PL significantly reduced the expression of Snail, vimentin, and N-cadherin, while increasing the expression of E-cadherin at the protein levels, effectively inhibiting HCC and lung metastasis. In vitro experiments confirmed that PL up-regulated epithelial cell markers, down-regulated mesenchymal cell markers, and inhibited EMT levels in HCC cells. Conclusion PL inhibits Snail expression, up-regulates E-cadherin expression, and down-regulates N-cadherin and vimentin expression, preventing EMT in HCC cells and reducing lung metastasis.
Collapse
Affiliation(s)
- Yuan-Qin Du
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Bin Yuan
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Yi-Xian Ye
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Feng-ling Zhou
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Hong Liu
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Jing-Jing Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530024, People’s Republic of China
| | - Yan-Fei Wei
- Department of Physiology, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530200, People’s Republic of China
| |
Collapse
|
17
|
Chen X, Ma J, Wang ZW, Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol 2024; 154:167-174. [PMID: 36872193 DOI: 10.1016/j.semcdb.2023.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence has illustrated that the E3 ubiquitin ligases critically participate in the development and progression of cardiovascular diseases. Dysregulation of E3 ubiquitin ligases exacerbates cardiovascular diseases. Blockade or activation of E3 ubiquitin ligases mitigates cardiovascular performance. Therefore, in this review, we mainly introduced the critical role and underlying molecular mechanisms of E3 ubiquitin ligase NEDD4 family in governing the initiation and progression of cardiovascular diseases, including ITCH, WWP1, WWP2, Smurf1, Smurf2, Nedd4-1 and Nedd4-2. Moreover, the functions and molecular insights of other E3 ubiquitin ligases, such as F-box proteins, in cardiovascular disease development and malignant progression are described. Furthermore, we illustrate several compounds that alter the expression of E3 ubiquitin ligases to alleviate cardiovascular diseases. Therefore, modulation of E3 ubiquitin ligases could be a novel and promising strategy for improvement of therapeutic efficacy of deteriorative cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhi-Wei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhiting Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
18
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
19
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
20
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
21
|
Zhan J, Li Z, Lin C, Wang D, Yu L, Xiao X. The role of circRNAs in regulation of drug resistance in ovarian cancer. Front Genet 2023; 14:1320185. [PMID: 38152652 PMCID: PMC10751324 DOI: 10.3389/fgene.2023.1320185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Ovarian cancer is one of the female reproductive system tumors. Chemotherapy is used for advanced ovarian cancer patients; however, drug resistance is a pivotal cause of chemotherapeutic failure. Hence, it is critical to explore the molecular mechanisms of drug resistance of ovarian cancer cells and to ameliorate chemoresistance. Noncoding RNAs (ncRNAs) have been identified to critically participate in drug sensitivity in a variety of human cancers, including ovarian cancer. Among ncRNAs, circRNAs sponge miRNAs and prevent miRNAs from regulation of their target mRNAs. CircRNAs can interact with DNA or proteins to modulate gene expression. In this review, we briefly describe the biological functions of circRNAs in the development and progression of ovarian cancer. Moreover, we discuss the underneath regulatory molecular mechanisms of circRNAs on governing drug resistance in ovarian cancer. Furthermore, we mention the novel strategies to overcome drug resistance via targeting circRNAs in ovarian cancer. Due to that circRNAs play a key role in modulation of drug resistance in ovarian cancer, targeting circRNAs could be a novel approach for attenuation of chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyi Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Changsheng Lin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Dingding Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Lei Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Khan AQ. Special issue: Deregulated transcription factors in the cancer therapeutic challenges: An update on cancer stemness features. Semin Cancer Biol 2023; 96:3-4. [PMID: 37673315 DOI: 10.1016/j.semcancer.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
23
|
Wang C, Zhang M, Liu Y, Cui D, Gao L, Jiang Y. CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs. J Exp Clin Cancer Res 2023; 42:242. [PMID: 37723588 PMCID: PMC10507871 DOI: 10.1186/s13046-023-02816-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified. METHODS The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess the effects of circRNF10 on ferroptosis using in vitro and in vivo assays. The hypothesis that ZBTB48 promotes ferroptosis defense was established using bioinformatics analysis and functional assays. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between circRNF10 and target proteins including ZBTB48, MKRN3 and IGF2BP3. The posttranslational modification mechanism of ZBTB48 was verified using coimmunoprecipitation (co-IP) and ubiquitination assays. The transcription activation of HSPB1 and IGF2BP3 by ZBTB48 was confirmed through luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays. The stabilizing effect of IGF2BP3 on circRNF10 was explored by actinomycin D assay. Finally, a series of in vivo experiments were performed to explore the influences of circRNF10 on the glioma progression. RESULTS A novel circular RNA, hsa_circ_0028912 (named circRNF10), which is significantly upregulated in glioblastoma tissues and correlated with patients' poor prognosis. Through integrated analysis of the circRNA-proteins interaction datasets and sequencing results, we reveal ZBTB48 as a transcriptional factor binding with circRNF10, notably promoting upregulation of HSPB1 and IGF2BP3 expression to remodel iron metabolism and facilitates the launch of a circRNF10/ZBTB48/IGF2BP3 positive feedback loop in GSCs. Additionally, circRNF10 can competitively bind to MKRN3 and block E3 ubiquitin ligase activity to enhance ZBTB48 expression. Consequently, circRNF10-overexpressed glioma stem cells (GSCs) display lower Fe2+ accumulation, selectively priming tumors for ferroptosis evading. CONCLUSION Our research presents abnormal circRNAs expression causing a molecular and metabolic change of glioma, which we leverage to discover a therapeutically exploitable vulnerability to target ferroptosis.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Minjie Zhang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingliang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
24
|
Zhang L, Shi Z, Zhang F, Chen B, Qiu W, Cai L, Lin X. Ubiquitination-related biomarkers in metastatic melanoma patients and their roles in tumor microenvironment. Front Oncol 2023; 13:1170190. [PMID: 37274231 PMCID: PMC10235493 DOI: 10.3389/fonc.2023.1170190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest type of cutaneous malignancy. Ubiquitination is a process of protein sorting and degradation that exhibits multiple functions in the progression of various tumors. This study aimed to characterize a set of genes for ubiquitination in SKCM. Methods The expression patterns of ubiquitin-associated genes (URGs) and the corresponding clinical information in SKCM tissues were comprehensively analyzed based on The Cancer Genome Atlas (TCGA) database. We performed univariate and multivariate Cox proportional regression models to characterize the risk scores and identify four critical genes related to prognostic ubiquitination (HCLS1, CORO1A, NCF1 and CCRL2), which were used to construct the prognostic signatures. We also studied the effects of HCLS1, CORO1A and CCRL2 on tumor metastasis-related indicators at the cellular level through in vitro experiments. Results SKCM patients in the low-risk group showing a longer survival than those in the high-risk group. Characteristic risk scores correlated with several clinicopathological variables and reflected the infiltration of multiple immune cells. In addition, the knockdown of CLS1, CORO1A and CCRL2 affected cellular malignant biological behavior through the EMT signaling pathway. Conclusion This study provides a novel and prospective strategy to improve the clinical survival of SKCM patients.
Collapse
|
25
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
26
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
27
|
Hou B, Chen T, Zhang H, Li J, Wang P, Shang G. The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Front Immunol 2023; 14:1123244. [PMID: 36733484 PMCID: PMC9887025 DOI: 10.3389/fimmu.2023.1123244] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
The tumor microenvironment (TME) is the tumor surrounding environment, which is critical for tumor development and progression. TME is also involved in clinical intervention and treatment outcomes. Modulation of TME is useful for improving therapy strategies. PD-L1 protein on tumor cells interacts with PD-1 protein on T cells, contributing to T cell dysfunction and exhaustion, blockage of the immune response. Evidence has demonstrated that the expression of PD-1/PD-L1 is associated with clinical response to anti-PD-1/PD-L1 therapy in cancer patients. It is important to discuss the regulatory machinery how PD-1/PD-L1 protein is finely regulated in tumor cells. In recent years, studies have demonstrated that PD-1/PD-L1 expression was governed by various E3 ubiquitin ligases in TME, contributing to resistance of anti-PD-1/PD-L1 therapy in human cancers. In this review, we will discuss the role and molecular mechanisms of E3 ligases-mediated regulation of PD-1 and PD-L1 in TME. Moreover, we will describe how E3 ligases-involved PD-1/PD-L1 regulation alters anti-PD-1/PD-L1 efficacy. Altogether, targeting E3 ubiquitin ligases to control the PD-1/PD-L1 protein levels could be a potential strategy to potentiate immunotherapeutic effects in cancer patients.
Collapse
Affiliation(s)
- Bo Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiatong Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Guanning Shang,
| |
Collapse
|